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In comments on our paper “Within-host genetic diversity of SARS-CoV-
2 lineages in unvaccinated and vaccinated individuals,” Soni et al.
argue that the methods we employed for detecting natural selection
are unreliable. Our study examined nucleotide diversity (π)1, the mean
number of pairwise differences per nucleotide site, which is a common
metric for quantifyingwithin-host viral polymorphism2. Comparisonof
π at nonsynonymous (πN) and synonymous (πS) sites is thought to
provide evidence for positive (πN >πS orπN/πS > 1) or purifying (πN <πS

or πN/πS < 1) selection acting on amino acid changes3,4. This method
has been used to study the intrahost evolution of viruses like influenza,
often with evidence of positive selection in regions encoding immune
epitopes5. Intrahost πN and πS have also been examined in SARS-CoV-
26–10, and our study11 compared πN – πS across distinct COVID-19
patient subsets. We found that breakthrough infections in 2- or 3-dose
Comirnaty and CoronaVac vaccinated individuals do not show ele-
vated viral πN and may not change the direction of selection. These
negative conclusions inherently control for viral demographic factors
like bottlenecks that operate similarly in each patient, allowing
straightforward interpretation of πN – πS differences.

Soni et al.12 challenge our null hypothesis of πN – πS = 0 (i.e.,
πN =πS), instead proposing that simulation is necessary for defining a
precise expectation under neutrality. Indeed, πN – πS has widely
recognized limitations13; for detecting positive selection, it is both
overly conservative (may fail to detect positive selection when it has
occurred) and susceptible to false positives (may spuriously detect
positive selection when it has not occurred). Value is therefore placed
on complementing the metric with other approaches. While recog-
nizing these points, we believe the criticisms of Soni et al. may not be
entirely valid. In fact, their own simulations demonstrate that selection
is often readily detectable using a simple πN versus πS method.

First, Soni et al. employ analytical methods that do not reflect our
study11. In our approach, the codon is treated as the observational unit,
such thatπN andπS values for each codon are averaged across all 2,820
intrahost samples or subsets thereof. Selection is then evaluatedwith a

Z-test of the null hypothesis πN – πS = 0 by bootstrapping codons. This
detects codon-specific patterns that are consistent across samples;
takes advantage of the independent diversity generated in each sam-
ple; and compensates for the typically small number of intrahost single
nucleotide variants (iSNVs) that pass quality control for any one sam-
ple. In contrast, Soni et al.12 use the sample as the observational unit
and report values of πN and πS for 200 replicates, analogous to only
200 samples. Their simulations also fail to recapitulate key aspects of
the observed biological data, including πN – πS values and numbers of
iSNVs per sample (Supplementary Fig. 1).

Next, Soni et al. report no statistical tests. However, based on data
simulated with SLiM14, they suggest that large variances make πN >πS

probable even under purifying selection alone. This claim relies on the
visual inspection of standard deviations in their Figs. 1–3. To assess it,
we used the models of Soni et al. to simulate intrahost data for
100 samples, estimating standard errors of mean πN and πS as in our
study. Purifying selection is highly significant for all models
(P ≤ 5.0 × 10−7, Z-tests) (Supplementary Fig. 1). Purifying selection is
detected even using their own sample-based approach (P ≤ 1.6 × 10−6,
Wilcoxon Signed Rank tests). Thus, in contrast to their conclusions, a
relatively small number of samples has sufficient statistical power to
detect widespread selection using both methods.

Soni et al. then offer several simulations of positive selection.
First, directional selection is modelled by introducing a single highly
beneficial mutation (i.e., a selective sweep) in the context of a neutral/
deleterious distribution of mutational fitness effects (DFE). Because
the fractionof nonsynonymousmutations that arebeneficial (fb) in this
scenario is ~0.00007%, it is not surprising that πN – πS fails to detect
positive selection. Specifically, πN – πS is tailored to detecting perva-
sive (multi-site), incomplete positive selection that is ‘caught in the
act’. Population genetics theory suggests that the substitution of
beneficial mutations takes an average of approximately 2lnð2NesÞ=s
generations15. For selection coefficients (s) of 0.01–0.1 and intrahost
effective population sizes (Ne) of 10

3–105, this implies an average of
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45–644 days for SARS-CoV-2 (i.e., 106–1,520 replication cycles of
610 minutes16). A selective sweep is therefore not expected to com-
plete over the course of a typical acute infection within a host. Fur-
thermore, within-host viral evolution is likely to involve trade-offs,
compensatory mutations, shifting fitness landscapes, and potentially
balancing selection as a result of intrahost heterogeneity and fre-
quency dependence17. In all cases, segregating nonsynonymous
mutations will elevate πN.

In a second scenario of positive selection, Soni et al. set fb to 1.0%
or 9.7% (s =0.05–0.13) in the context of a DFE derived from Flynn et al.
forMpro (nsp5)18. We again used theirmodels to simulate 100 samples
(Fig. 1). Although they claim that πN – πS cannot detect selection,
positive selection was highly significant at the whole-genome level for
fb = 9.7% (πN/πS = 4.43, P < 2.2 × 10−16), whereas purifying selection was
detected for fb = 1.0% (πN/πS = 0.90, P =0.0033; Z-tests). Thus, under
the simulation parameters of Soni et al., positive selection becomes
highly significant for fb somewhere in the range 1–10%, due tomultiple
beneficial mutations segregating at intermediate frequencies.

To estimate fb for SARS-CoV-2, we utilized the fitness effect cal-
culations of Bloom and Neher19. The central 95% of synonymous
mutational effects was considered a null (neutral) distribution, such
that nonsynonymous mutations were classified as beneficial if their
effects fell above the 97.5th percentile of synonymous mutations.

Results are summarized in Table 1. For thewholegenome, fb is 1.5%. For
individual ORFs, fb ranges from 0.8% (ORF1ab) to 6.6% (ORF7a). For
sliding windows of 30 codons such as used in our study11, fb
ranges from0% to 13.7%. Maximum regional fb values occur near Spike
codons ~127–175 and ~461–512, overlapping the antigenically impor-
tant amino-terminal (NTD) and receptor-binding (RBD) domains20.
Thus, at the levels of whole ORFs and functional domains, fb for SARS-
CoV-2 often falls in a range that allows detection of positive selection
by πN – πS.

Last, we modified the simulations of Soni et al. by introducing a
DFE based on the nonsynonymous fitness effect estimates of Bloom
and Neher19. Whole-genome mutation effect fractions (bottom row of
Table 1) were used as a background. Deleterious and beneficial selec-
tion coefficients (s) were modelled using gamma (mean = −0.32,
shape = 1.70) and exponential (mean = 0.087) distributions, respec-
tively. Under these parameters, at the whole-genome level, selection
was not significant (πN/πS = 1.03, P = 0.51) (Fig. 1b bottom). At the level
of 30-codon sliding windows, we considered regions with πN >πS to be
candidates for positive selection at various P value cut-offs, detecting
131 true positives (windowswith at least one beneficialmutation) and0
false positives for P < 0.0124. Thus, even under a nonideal scenario
where the precise genomic targets of selection (codons with beneficial
mutations) differ stochastically across samples, sliding windows are a

Fig. 1 | Characterization of simulated data generated using models that allow
multiple beneficial mutations. The SLiM14 simulations of Soni et al.12. were mod-
ified to generate 100 whole-genome (30 kbp) samples for each of three distribu-
tions of mutational fitness effects (DFEs) based on Flynn et al.18 and Bloom &
Neher19. Flynn et al.18 refers to a DFE background estimated for Mpro (nsp5), with
either 1.0% (blue text and arrow) or 9.7% (green text and arrow) of mutations
beneficial (selection coefficients [s] = 0.05–0.13). Bloom & Neher19 (grey arrow)
refers to a DFE estimated from publicly available viral consensus sequence data,
where the fractions of each mutation effect type were set to the whole-genome
values given in Table 1 (bottom row). For the latter, s values were approximated by
dividing fitness effects (range −7.14–6.17) by 7.14 (maximum absolute value),
yielding a range of −1.0–0.86. These values were simulated as lethal = −1.0; dele-
terious = gamma (mean −0.32, shape 1.70); neutral = 0.0; and beneficial = expo-
nential (mean 0.087). For the gamma distribution shape parameter, a maximum
likelihoodestimatewasobtained from the absolute valuesof all negative susing the
MASS::fitdistr() function inR.All other parameterswere retained from the scripts of

Soni et al.: mutation rate = 2.135 × 10−6 per site per cycle; recombination rate =
5.5 × 10−5 per site per cycle; infection bottleneck size = 1; carrying capacity =
100,000; runtime = 168 cycles (https://github.com/vivaksoni/Gu_etal_2023_
response, accessed 2023/09/26). Simulated data were analyzed using the method
of our original study11, i.e., eliminating iSNVs with frequency <2.5% and estimating
πN – πS with codon-based bootstrapping. a DFEs for nonsynonymous mutations.
Violin plots show the emergent s distributions of the three DFE models, each
determined by simulating 10,000 mutations. b Nucleotide diversity under each
DFE. Error bars show standard errors of mean πN (red) and πS (blue), each deter-
mined using 1,000 bootstrap replicates (codon unit, with codon values calculated
as means across all 100 samples). P values refer to two-sided Z-tests of πN =πS

(three tests; no adjustment for multiple tests). πN/πS ratios are displayed in grey
text; for comparison, themean empiricalπN/πS value observed across all biological
samples in our original study11 was 0.62. Scripts, analysis code, input data, and
intermediate files are available at https://doi.org/10.5281/zenodo.10552831. Source
data are provided as a Source Data file.
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reasonable candidate generator for regions undergoing positive
selection.

All simulation results reportedby Soni et al. andherein are subject
to many limitations and likely do not reflect biological reality. First,
DFEs were derived from functional assays18 or clinical isolates19 and
therefore describe between-host evolution, but it is known that pur-
ifying selection is weaker within hosts6,21. Second, the models may
contain important misspecifications, including (1) sequencing cover-
age of only 100 effective reads (median coverage in our study was
20,782 reads); (2) 2/3 of sites nonsynonymous (compared to ~3/4 in
most real ORFs); (3) s > 1.0 in a SLiM non-Wright-Fisher context (Soni
et al. Figure 2); (4) intrahost dynamics that may deviate from expected
viral population sizes; and (5) no tendency for the same site to be
under similar selection pressures across multiple samples (e.g., no
convergent selected changes). Model complexity potentiates
increased misspecification bias, and it is important for both biological
parameters and analytical methods to match between simulated and
empirical data.

To summarize, πN – πS has limitations. Care must be exercised, as
factors other than positive selection can yield πN >πS, especially in
shortgenomeregionswhereπS is subject to stochasticfluctuation. The
expected value of πN/πS depends on fb and DFE properties. More work
is needed to determine the precise values of fb necessary for detecting
positive selection, intrahost DFEs, and additional criteria for lowering
the false-discovery rate (e.g., a minimum πN cutoff). All parameters are
likely to vary by host, virus, lineage, and many other contexts. SLiM
offers unprecedented opportunities for simulating complex evolu-
tionary scenarios in order to test specific hypotheses14. Nevertheless,
we maintain that simple methods like πN – πS have value. In the same
way, simple dN/dS analyses continue to yield highly informative
results22 even though viral consensus sequences do not incorporate
real-world complexity, and each site in a genomemay in reality follow
its own ‘model’ of evolution which changes over time23. As the
aphorism suggests, the question is not whether models are realistic,
but rather whether they are useful24. While more advanced methods
are always welcome, there is no one ‘right’way to analyze evolutionary
genomics data23.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All input data, intermediate files, and simulated data have been
deposited at Zenodo under accession code https://doi.org/10.5281/
zenodo.10552831. Data for estimating fb were obtained from the
aamut_fitness_all.csv file of Bloom and Neher19 (public_2023-10-01
dataset; accessed 2023/10/05). Figure source data are provided as a
Source Data file. Source data are provided with this paper.

Code availability
Simulation and analysis scripts have been deposited at Zenodo under
accession code https://doi.org/10.5281/zenodo.10552831.
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