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A framework for evaluating clinical artificial
intelligence systems without ground-truth
annotations

Dani Kiyasseh 1 , Aaron Cohen2,3, Chengsheng Jiang2 & Nicholas Altieri2

A clinical artificial intelligence (AI) system is often validated on data withheld
during its development. This provides an estimate of its performance upon
future deployment on data in the wild; those currently unseen but are
expected to be encountered in a clinical setting. However, estimating perfor-
mance on data in the wild is complicated by distribution shift between data in
thewild andwithheld data and the absence of ground-truth annotations. Here,
we introduce SUDO, a framework for evaluating AI systems on data in the wild.
Through experiments on AI systems developed for dermatology images, his-
topathology patches, and clinical notes, we show that SUDO can identify
unreliable predictions, inform the selection of models, and allow for the pre-
viously out-of-reach assessment of algorithmic bias for data in thewildwithout
ground-truth annotations. These capabilities can contribute to the deploy-
ment of trustworthy and ethical AI systems in medicine.

A clinical artificial intelligence (AI) system is often developed to
achieve some task (e.g., diagnose prostate cancer1) on some training
data and subsequently validated on a held-out set of data to which it
has never been exposed. This widely-adopted evaluation process
assumes that the held-out data are representative of data in the wild2;
those which are currently unseen yet are expected to be encountered
in a clinical setting. For example, an AI systemmay be trained on data
from one electronic health record (EHR) system and subsequently
deployed on data from another EHR system. However, data in the wild
often (a) follow a distribution which is different from that of the held-
out data and (b) lack ground-truth labels for the task at hand (Fig. 1a).
Combined, such distribution shift which is known to adversely affect
the behaviour of AI systems3, and the absence of ground-truth labels
complicate the evaluation of an AI system and its predictions. It
becomes challenging to identify reliable AI predictions, select
favourable AI systems for achieving some task, and even perform
additional checks such as assessing algorithmic bias4. Incorrect pre-
dictions, stemming from data distribution shift, can lead to inaccurate
decisions, decreased trust, and potential issues of bias. As such, there
is a pressing need for a framework that enablesmore reliable decisions
in the face of AI predictions on data in the wild.

To address this need, previous work assumes highly-confident
predictions are reliable5,6, even though AI systems are known to gen-
erate highly-confident incorrect predictions7. Recognising these lim-
itations, others have demonstrated the value of modifying AI-based
confidence scores through explicit calibration methods such as Platt
scaling8,9 or through ensemble models10. Such calibration methods,
however, can be ineffective when deployed on data in the wild that
exhibit distribution shift11. Regardless, quantifying the effectiveness of
calibration methods would still require ground-truth labels, a missing
element of data in the wild. Another line of research focuses on esti-
mating the overall performance of models with unlabelled data12,13.
However, it tends to be model-centric, overlooking the data-centric
decisions (e.g., identifying unreliable predictions) that would need to
be made upon deployment of thesemodels, and makes the oft fallible
assumption that the held-out set of data is representative of data in the
wild, and therefore erroneously extends findings in the former setting
to those in the latter.

In this study, we propose pseudo-label discrepancy (SUDO), a
framework for evaluating AI systems deployed on data in the wild.
Through experiments on three clinical datasets (dermatology images,
histopathology patches, and clinical notes), we show that SUDO can be
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Fig. 1 | SUDO is a framework to evaluate AI systems without ground-truth
labels. a An AI system is often deployed on data in the wild, which can vary sig-
nificantly from those in the held-out set (distribution shift), and which can also lack
ground-truth labels. b SUDO is a 5-step framework that circumvents the challenges
posed by data in the wild. First, deploy an AI system on data in the wild to obtain
probability values. Second, discretize those values into quantiles. Third, sample
data points from each quantile and pseudo-label (temporarily label) them with a

possible class (SUDOClass0). Sample data pointswith ground-truth labels from the
opposite class to form a classification task. Fourth, train a classifier to distinguish
between these data points. Repeat the process with a different pseudo-label (SUDO
Class 1). Finally, evaluate and compare the performance of the classifiers on the
same held-out set of data with ground-truth labels, deriving the pseudo-label dis-
crepancy. This discrepancy and the relative classifierperformance indicatewhether
the sampled data points are more likely to belong to one class than another.
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a reliable proxy for model performance and thus be used to identify
unreliable AI predictions. This finding holds even with overconfident
models.We also show that SUDO informs the selection ofmodels upon
their deployment on data in the wild. By implementing SUDO across
patient groups, we demonstrate that it also allows for the previously
out-of-reach assessment of algorithmic bias for data without ground-
truth labels.

Results
Overview of the SUDO framework
SUDO is a framework that helps identify unreliable AI predictions,
select favourable AI systems, and assess algorithmicbias for data in the
wild without ground-truth labels. We outline the mechanics of SUDO
through a series of steps (Fig. 1b).

Step 1 - Deploy probabilistic AI system on data points in the
wild and return probability, s∈ [0, 1], of positive class for each
data point.

Step 2 - Generate distribution of output probabilities and dis-
cretize them into several predefined intervals (e.g., deciles).

Step 3 - Sample data points in the wild from each interval and
assign them a temporary class label (pseudo label). Retrieve an equal
number of data points with the opposite class label from the training
set (ground-truth).

Step 4 - Train a classifier to distinguish between the pseudo-
labelled data points and those with a ground-truth label.

Step 5 - Evaluate classifier on held-out set of data with ground-
truth labels (e.g., using any metric such as AUC). A performant
classifier supports the validity of the pseudo-label. However, each
interval may consist of data points from multiple classes, exhi-
biting class contamination. To detect this contamination, we
repeat these steps while cycling through the different possible
pseudo-labels.

Pseudo-label discrepancy - Calculate the discrepancy between
the performance of the classifiers with different pseudo labels. The
greater the discrepancy between classifiers, the lower the class con-
tamination, and the more likely that the data points belong to a single
class. We refer to this discrepancy as the pseudo-label discrepancy
or SUDO.

SUDO correlates with model performance on Stanford diverse
dermatology images dataset
We used SUDO to evaluate predictions made on the Stanford diverse
dermatology image (DDI) data14 (n: 656) (see Description of datasets).
We purposefully chose two AI models (DeepDerm15 and HAM1000016)
that were performant on their respective data (AUC=0.88 and 0.92)
and whose performance degraded drastically when deployed on the
DDI data (AUC=0.56 and 0.67), suggesting the presence of
distribution shift.

We found that these models struggle to distinguish between
benign (negative) and malignant (positive) lesions in images. This
is evident by the lack of separability of the AI-based probabilities
corresponding to the ground-truth negative and positive classes
(Fig. 2a for DeepDerm and Fig. 2b for HAM10000). We set out to
determine whether SUDO, without having access to the ground-
truth labels, can quantify this class contamination. We found
that SUDO correlates with the proportion of positive instances in
each of the chosen probability intervals (ρ = −0.84 p < 0.005 for
DeepDerm in Fig. 2c, and ρ = −0.76 p < 0.01 for HAM10000 in
Fig. 2d). Such a finding, which holds regardless of the evaluation
metric used (Supplementary Fig. 5), suggests that SUDO can be a
reliable proxy for the accuracy of predictions. Notably, this ability
holds irrespective of the underlying performance of the AI model
being evaluated, as evidenced by the high correlation values for
the two models which performed at different levels (AUC = 0.56
and 0.67).

SUDO informsmodel selectiononStanforddiversedermatology
images dataset
We can leverage SUDO to create two tiers of predictions. Reliable
predictions are associated with large SUDO values that indicate low
class contamination and are therefore incorporated into downstream
analyses. The remaining predictions are considered unreliable and
flagged for further review by a human expert. By changing our
threshold for reliable predictions, we notice a trade-off between the
reliability of such predictions and the proportion of which is incor-
porated into downstream analyses (i.e., completeness). For example,
by selecting only the most reliable predictions, we reduce their com-
pleteness. Ideally, models should produce predictions that exhibit
both high reliability and completeness. These two dimensions, which
we capture via the reliability-completeness curve (see Producing
reliability-completeness curve in Methods for details), offer an
opportunity to rank order models particularly when ground-truth
labels are unavailable (Fig. 2e).

We found that the ordering of the performance of the models is
consistent with that presented in previous studies14. Specifically,
HAM10000 and DeepDerm achieve an area under the reliability-
completeness curve of AURCC=0.86 and 0.62, respectively and, with
ground-truth annotations, these models achieve (AUC =0.67 and
0.56). We note that the emphasis here is on the relative ordering of
models and not on their absolute performance. These consistent
findings suggest that SUDO can help informmodel selection on data in
the wild without annotations.

SUDO helps assess algorithmic bias without ground-truth
annotations
Algorithmic bias often manifests as a discrepancy in model perfor-
mance across two protected groups (e.g., male and female patients).
Traditionally, this would involve comparing AI predictions to ground-
truth labels. With SUDO as a proxy for model performance, we hypo-
thesised that it can help assess such bias even without ground-truth
labels. We tested this hypothesis on the Stanford DDI dataset by stra-
tifying the AI predictions according to the skin tone of the patients
(Fitzpatrick scale I-II vs. V-VI) and implementing SUDO for each of
these stratified groups. A difference in the resultant SUDO values
would indicate a higher degree of class contamination (and therefore
poorer performance) for one group over another. We found that
SUDOAUC = 0.60 and 0.58 for the two groups, respectively. This dis-
crepancy, calculated without ground-truth labels, is indicative of the
biaswe also observedwhen using ground-truth labels and the negative
predictive value of the predictions (NPV) (NPV= 0.83 and 0.78,
respectively). Our findings demonstrate that both SUDO and the tra-
ditional approach (with ground-truth labels) identified a bias in favour
of patients with a Fitzpatrick scale of I-II, which is consistent with
previously-reported bias findings14.

SUDO correlates with model performance on Camelyon17-
WILDS histopathology dataset
We provide further evidence that SUDO can identify unreliable
predictions on datasets that exhibit distribution shift. Here, we
trained a model on the Camelyon17-WILDS dataset to perform
binary tumour classification (presence vs. absence) based on a sin-
gle histopathological image, and evaluated the predictions on the
corresponding test set (n: 85,054) (see Description of datasets).
This dataset has been constructed such that the test set contains
data from a hospital unseen during training, and is thus considered
in the wild. We found that the trained model achieved an average
accuracy ≈ 0.85 despite being presented with images from an
unseen hospital (Fig. 3a). We used SUDO to quantify the class con-
tamination across probability intervals (Fig. 3b), and found that it
continues to correlate (ρ = −0.79 p < 0.005) with the proportion of
positive instances in each of the intervals.
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Fig. 3 | SUDO can be a reliable proxy for model performance on the
Camelyon17-WILDS histopathology dataset. a Distribution of the prediction
probability values produced by a model colour-coded based on the ground-truth

label (negative vs. positive) of the data points. b SUDO values colour-coded
according to the most likely label of the predictions in each probability interval.
Source data are provided as a Source Data file.

Fig. 2 | SUDO can be a reliable proxy for model performance on the Stanford
diverse dermatology image dataset. Two models (left column: DeepDerm, right
column: HAM10000) are pre-trained on the HAM10000 dataset and deployed on
the entire Stanford DDI dataset. a, b Distribution of the prediction probability
values produced by the two models colour-coded based on the ground-truth label
(negative vs. positive) of the data points. c, d Correlation of SUDO with the pro-
portion of positive data points in each probability interval: ∣ρ∣ =0.94 (p <0.005)

and ∣ρ∣ =0.76 (p <0.008), respectively. P-values are calculatedbasedon a two-sided
t-test. Results are shown for ten mutually-exclusive probability intervals that span
the range [0, 1]. A strong correlation indicates that SUDO can be used to identify
unreliable predictions. e Reliability-completeness curves of the two models, where
the area under the reliability-completeness curve (AURCC) can inform the selection
of an AI system without ground-truth annotations. Source data are provided as a
Source Data file.
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SUDO can even be used with overconfident models
AI systems are prone to producing erroneous overconfident predic-
tions, complicating our dependence on their confidence scores alone
to identify unreliable predictions. It is in these settings where SUDO
adds most value. To demonstrate this, we first trained a natural lan-
guage processing (NLP) model to distinguish between negative
(n: 1000) and positive (n: 1000) sentiment in product reviews
with distribution shift as part of the Multi-Domain Sentiment dataset17

(see Description of datasets). We showed that SUDO continues to
correlate with model performance, pointing to the applicability of the
framework across data modalities. To simulate an overconfident
model, we then overtrained (i.e., extended training for an additional
number of epochs) the same NLP model, as confirmed by the more
extreme distribution of the prediction probability values (Supple-
mentary Fig. 1b). Notably, we found that SUDO continues to correlate
well with model performance despite the presence of overconfident
predictions (Supplementary Fig. 1h). This is because SUDO leverages
pseudo-labels to quantify class contamination and is not exclusively
dependent on confidence scores.

Exploring the limits of SUDO with simulated data
To shed light on the scenarios in which SUDO remains useful, we
conducted experiments on simulated data that we can finely control
(seeDescription of datasets). Specifically, we varied thedata in thewild
to encompass distribution shift (a) with the same two classes observed
during training, (b) with a severe imbalance (8:1) in the number of data
points from each class, and (c) alongside data points from a third and
never-seen-before class. As SUDO is dependent on the evaluation of
classifiers on held-out data (see Fig. 1, Step 5), we also experimented
with injecting label noise into such data.

We found that SUDO continues to strongly correlate with model
performance, even in the presence of a third class (∣ρ∣ >0.87 p < 0.005,
Supplementary Fig. 2). This is not surprising as SUDO is designed to
simply quantify class contamination in each probability interval,
regardless of the data points contributing to that contamination.
However, we did find that SUDO requires held-out data to exhibit
minimal label noise, whereρ =0.99→0.33 upon randomlyflipping 50%
of the labels in the held-out data to the opposite class. We also found
that drastically changing the relationship between class-specific dis-
tributions of data points in the wild can disrupt the utility of SUDO
(Supplementary Fig. 3).

SUDO correlates with model performance on Flatiron Health
ECOG Performance Status dataset
To demonstrate the applicability of SUDO to a range of datasets, we
investigated whether it also acts as a reliable proxy for model perfor-
mance on the Flatiron Health Eastern Cooperative Oncology Group
Performance Status (ECOG PS) dataset. Building on previous work18,
we developed an NLP model to infer the ECOG PS, a value reflecting a
patient’s health status, from clinical notes of oncology patient visits
(see Methods for description of data and model).

In this section, we exclusively deal with data which (a) do not
exhibit distribution shift and (b) are associated with a ground-truth
label. The motivation behind these experiments was to first demon-
strate that we can learn an NLP model that accurately classifies ECOG
PS as a prerequisite for applying SUDO to the target setting in which
distribution shift exists and ground-truth labels do not.

We found that the NLP model performs well in classifying ECOG
PS from clinical notes of oncology patient visits (precision =0.97,
recall = 0.92, and AUC=0.93). We hypothesise that these results are
driven by the discriminative pairs ofwords that appear in clinical notes
associated with low and high ECOG PS. For example, typical phrases
found in low ECOG PS clinical notes include “normal activity” and
“feeling good” whereas those found in high ECOG PS clinical notes
include “bedridden” and “cannot carry”. This strong discriminative

behaviour can be seen by the high separability of the two prediction
probability distributions (Fig. 4a). Although it was possible to colour-
code these distributions and glean insight into the degree of class
contamination, this is not possible in the absence of ground-truth
labels. SUDO attempts to provide this insight despite the absence of
ground-truth labels.

We found that data points with s ≈0 are more likely to belong to
the low ECOG PS label than to the high ECOG PS label, and vice versa
for data points with s ≈ 1. This is evident by the large absolute SUDOAUC

values at either end of the probability spectrum (Fig. 4c). This is not
surprising and is in line with expectations. Consistent with findings
presented earlier, SUDO also correlates with model performance on
this dataset. This can be seen by the strong correlation (∣ρ∣ =0.95 p <
0.005) between SUDO and the proportion of positive instances in
each of the chosen probability intervals. This bodes well for when we
ultimately use SUDO to identify unreliable predictions without
ground-truth annotations.

Sensitivity analysis of SUDO’s hyperparameters
To encourage the adoption of SUDO, we conducted several experi-
ments on the Flatiron Health ECOG PS dataset to measure SUDO’s
sensitivity to hyperparameters. Specifically, we varied the number of
data points sampled fromeachprobability interval (Fig. 1b, Step 3), the
type of classifier used to distinguish between pseudo- and ground-
truth labelled data points (Fig. 1b, Step 4), and the amount of label
noise in the held-out data being evaluated on (Fig. 1b, Step 5). We
found that reducing the number of sampled data points (from 200 to
just 50) and using different classifiers (logistic regression and random
forest) continued to produce a strong correlation between SUDO and
model performance (∣ρ∣ > 0.94 p <0.005) (Supplementary Fig. 4). Such
variations, however, altered the directionality (net positive or nega-
tive) of the SUDO values (from one experiment to the next) in the
probability intervals with a high degree of class contamination. For
example, in the interval 0.20 < s <0.25 (Fig. 4a), SUDOAUC =0.05 and
SUDOAUC = −0.05when sampling 50and200data points, respectively.
We argue that such an outcome does not practically affect the inter-
pretation of SUDO, as it is the absolute value of SUDO that matters
most when it comes to identifying unreliable predictions. We offer
guidelines on how to deal with this scenario in a later section.

Using SUDO to identify unreliable predictions onFlatironHealth
ECOG Performance Status dataset
To further illustrate theutility of SUDO,wedeployed theNLPmodel on
the Flatiron Health ECOG PS data in the wild without ground-truth
annotations. It is likely that such data (clinical notes without ECOG PS
labels) follow a distribution that is distinct from that of the training
data (clinical notes with ground-truth ECOG PS labels). This is sup-
portedby the distinctdistributions of the prediction probability values
across these datasets (see Fig. 4a, b). Such a shift can make it ambig-
uous to identify unreliable predictions based exclusively on con-
fidence scores. To resolve this ambiguity, we implemented SUDO for
ten distinct probability intervals, choosing more granular intervals in
the range 0 < s <0.40 to account for the higher number of predictions
(Fig. 4d). These results suggest that predictions with 0 < s <0.20 are
more likely to belong to the low ECOG PS class than to the high ECOG
PS class. The opposite holds for predictions with 0.30 < s < 1. Such
insight, which otherwise would have been impossible without ground-
truth annotations, can now better inform the identification of unreli-
able predictions.

Validating SUDO-guided predictions with a survival analysis
To gain further confidence in SUDO’s ability to identify unreliable
predictions, we leveraged the known relationship between ECOG PS
and mortality: patients with a higher ECOG PS are at higher risk of
mortality19. As such, we can compare the overall survival estimates of
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patients with reliable AI predictions (i.e., large SUDO values) to those
of patients with known ECOG PS values (e.g., patients in the training
set). The intuition is that if such overall survival estimates are similar to
one another, then we can become more confident in the ECOG PS
labels thatwere newly assigned to clinical notes fromoncology patient
visits. While this approach makes the assumption that the ECOG PS
label is the primary determinant of overall survival, we acknowledge

that additional confounding factors, beyond the ECOG PS label, may
also play a role20.

For patients in the training set of the Flatiron Health ECOG PS
dataset, we present their survival curves stratified according towhether
they have a low or high ECOGPS (Fig. 4e). For patients in the data in the
wild, for whom we do not have a ground-truth ECOG PS label, we first
split them into three distinct groups based on the SUDO value (Fig. 4d),

Fig. 4 | SUDO correlates with model performance on the Flatiron Health ECOG
Performance Status data without ground-truth annotations. Results for (left
column) test set with ground-truth annotations and (right column) data in the wild
without ground-truth annotations. a,bDistributionofpredictionprobability values
of NLP model. c, d SUDO values colour-coded with most likely label in each
probability interval. Survival curves for patient groups identified via (e) ground-
truth annotations and (f) SUDOvalueswith lowECOGPS (0< p <0.2), high ECOGPS

(0.5 < p < 1.0), and unreliable (0.2 < p <0.5) predictions. The shaded area reflects
the 95% confidence interval. g, h Correlation between SUDO and proportion of
positive instances (using ground-truth annotations, ∣ρ∣ =0.95 p <0.005) and the
median survival time of patients (without ground-truth annotations, ∣ρ∣ =0.97 p <
0.005) in each probability interval. P-values are calculated based on a two-sided t-
test. ECOG Eastern Cooperative Oncology Group, PS Performance Status.
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employing the intuition that a higher absolute value is reflective ofmore
reliable predictions (e.g., ∣SUDOAUC∣ >0.05). We refer to these groups
based on their corresponding predictions: low ECOG PS group
(0 < s≤0.2, n: 12, 603), high ECOGPS group (0.5 ≤ s < 1.0, n: 552), and an
uncertain ECOG PS group (0.2 < s<0.5, n: 3729). As demonstrated in an
earlier section, the chosen SUDO threshold creates a trade-off between
the reliability and completeness of the predictions. We present the
group-specific survival curves (Fig. 4f). To control for confounding
factors, weonly considereddata samples associatedwith thefirst line of
therapy where patients are provided their first medication in their
treatment pathway (see Methods for more details).

There are two main takeaways. First, and in alignment with our
expectations and established clinical observations, we found that
patients in the low ECOG PS group do indeed exhibit a longer median
survival time than patients in the high ECOG PS group (1.87 vs. 0.68
years, respectively) (Fig. 4f). Second, the chosen probability intervals
based on which the survival analysis was stratified reasonably identi-
fied distinct patient cohorts. This is evident by the distinct survival
curves of the patient cohorts with 0 < s ≤0.2 and 0.5 ≤ s < 1 and their
similarity to the survival curves of patients with a ground-truth ECOG
PS label (Fig. 4e). For example, the median survival estimates of these
two patient cohorts are 2.07 (vs. 1.87) and 0.95 (vs. 0.68) years,
respectively. Although we do not expect such values to be perfectly
similar, due to potential hidden confounding factors we cannot con-
trol for, they are similar enough to suggest that these newly-identified
patient cohorts correspond to low and high ECOG PS patient cohorts.

Demonstrating that SUDO correlates with a meaningful variable
can engender trust in its design. When ground-truth annotations are
available, we chose this variable to be the proportion of positive
instances in each probability interval (i.e., accuracy of predictions).
Without ground-truth annotations, we chose the median survival time
of patients in each interval. Specifically, we quantified the correlation
between SUDO and themedian survival time of patient cohorts in each
of the ten chosen probability intervals (Fig. 4h). We found that that
these two variables are indeed strongly correlated (∣ρ∣ =0.97 p <
0.005). Such a finding suggests that SUDO can provide useful insight
into the clinical characteristics of patient cohorts in datasets without
ground-truth labels (seeDiscussion for benefits and drawbacks of such
an approach).

Practical guidelines for using SUDO
We have made the case and presented evidence that SUDO can eval-
uate AI systems without ground-truth annotations. We now take stock
of our findings to offer practical guidelines around SUDO. First, we
demonstrated that SUDO works well across multiple data modalities
(images, text, simulation). We therefore recommend using SUDO
irrespective of the modality of data a model is evaluated on. Second,
we showed that SUDO is agnostic to the neural network architecture of
the AI system being evaluated (convolutional for images, feed-forward
for text). The only requirement is that the neural network returns a
probabilistic value. Third,we showed that SUDOcandealwith as fewas
50 data points sampled fromeachprobability interval (on the Stanford
DDI dataset). Although sampling too few data points did not change
the absolute value of SUDO, and thereby reliably quantifying class
contamination, it did alter its directionality (negative or positive),
affecting the perceived proportion of the majority class in a set of
predictions. To avoid being misled by this behaviour, we recommend
sampling at least 50% of the data points in each probability interval in
order to capture a representative set of predictions. We also note that
the absolute value of SUDO should take precedent for determining
unreliable predictions. Only if that value is large enough (i.e., low class
contamination) should its directionality be considered.

Fourth, we showed that SUDO is unperturbed by an imbalance in
thenumber of data points fromeach class or by thepresenceof a third-
and-unseen class (on the simulated dataset). If data in the wild are

suspected to exhibit these features, then SUDO can still be used. Fifth,
we showed that SUDO is sensitive to the quality of the labels in the
held-out set of data. As such, we recommend curating a dataset with
minimal label noise when using SUDO. Furthermore, we showed that
SUDO produces consistent results irrespective of the classifier used to
distinguish betweenpseudo-labelled andground-truthdata points and
of the metric used to evaluate these classifiers. We therefore recom-
mend using a lightweight classifier (to speed up computation) and the
metric most suitable for the task at hand.

Discussion
AI systems have long been validated on withheld data, with the
assumption that such data are representative of data in the wild. When
this assumption is violated, as is often the case with clinical data, and
ground-truth annotations are unavailable, it becomes difficult to trust
the predictions made by an AI system.

We have shown that SUDO can comfortably assess the reliability
of predictions of AI systems deployed on data in the wild. Notably, we
demonstrated that SUDO can supplement confidence scores to iden-
tify unreliable predictions, help in the selection of AI systems, and
assess the algorithmic bias of such systems despite the absence of
ground-truth annotations. Although we have presented SUDO pri-
marily for clinical AI systems and datasets, we believe its principles can
be applied to probabilistic models in almost any other scientific
discipline.

Comparedwith previous studies, our study offers awider range of
applications forpredictionsondatawithout ground-truth annotations.
Theseapplications include identifyingunreliable predictions, selecting
favourable models, and assessing algorithmic bias. Previous work
tends to be more model-centric than SUDO, focusing on estimating
model performance12,13,21,22 and assessing algorithmic bias23 using both
labelled and unlabelled data. It therefore overlooks the myriad data-
centric decisions that would need to be made upon deployment of an
AI system, such as identifying unreliable predictions. The same lim-
itation holds for other studies that attempt to account for verification
bias24,25, a form of distribution shift brought about by only focusing on
labelled data. In contrast, SUDO provides the optionality of guiding
decisions at the model level (e.g., relative model performance) and at
the data level (e.g., identifying unreliable predictions).

Most similar to our work is the concept of reverse testing26 and
reverse validation27,28 where the performance of a pair of trained AI
systems is assessed by deploying them on data without annotations,
pseudo-labelling these data points, and training a separate classifier to
distinguish between these data points. The classifier that performs
better on a held-out set of labelled data is indicative of higher quality
pseudo-labels and, by extension, a favourable AI system. SUDO differs
from this line of work in twomain ways. First, reverse testing assigns a
single AI-based pseudo-label to each data point in the wild whereas we
assign all possible pseudo-labels to that data point (through distinct
experiments) in order to determine themost likely ground-truth label.
Second, given the probabilistic output of an AI system, reverse testing
performs pseudo-labelling for data points that span the entire prob-
ability spectrum for the exclusive purpose ofmodel selection. As such,
it cannot be used for identifying unreliable predictions. Notably, pre-
vious work heavily depends on the assumption that the held-out set of
data is representative of data in the wild. SUDO circumvents this
assumption by operating directly on data in the wild.

SUDO’s ability to identify unreliable predictions has far-reaching
implications. Froma clinical standpoint, data points whose predictions
are flagged as unreliable can be sent for manual review by a human
expert. By extension, and from a scientific standpoint, this layer of
human inspection can improve the integrity of research findings. We
note that SUDO can be extended to the multi-class setting (e.g., c > 2
classes) by cycling through all of the pseudo-labels and retrieving data
points from the mutually-exclusive classes (Fig. 1b, Step 3) to train a
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total of c classifiers (Fig. 1b, Step 4). The main difference to the binary
setting is that SUDO would now be calculated as the maximum dif-
ference in performance across all classifiers (Fig. 1b, Step 5). SUDO’s
ability to select favourable (i.e., more performant) AI systems can lead
to the deployment of more accurate systems that contribute to
improved patient care. SUDO’s ability to assess algorithmic bias, which
was not previously possible for data without ground-truth labels, can
contribute to the ethical deployment of AI systems. This ensures that
AI systemsperformas expectedwhendeployed ondata in thewild.We
note that SUDO can also be used to assess algorithmic bias across
multiple groups by simply implementing SUDO for data points from
each group. Bias would still manifest as a discrepancy in the SUDO
value across the groups. Overall, our study offers a first step towards a
framework of inferring clinical variables which suffer from low com-
pleteness in the EHR (such as ECOG PS) in the absence of explicit
documentation in their charts and ground-truth labels.

There are several challenges that our work has yet to address.
First, SUDO cannot identify the reliability of a prediction for an indi-
vidual data points. This is because we often calculated SUDO as a
function of prediction probability intervals. This is in contrast to pre-
vious work on uncertainty quantification and selective classification.
While SUDO can be applied to individual data points, this is not
practical as it depends on the learning of predictive classifiers, which
typically necessitate a reasonable number of training data points. We
do note, though, that SUDO was purposefully designed to assess the
relative reliability of of predictions across probability intervals. It is
also worth noting that SUDO may be considered excessive if the
amount of data in the wild is small and can be annotated by a team of
experts with reasonable effort. However, when presented with large-
scale data in the wild, SUDO can yield value by acting as a data triage
mechanism, funneling the most unreliable predictions for further
inspection by human annotators. In doing so, it stands to reduce the
annotation burden placed on such annotators. Furthermore, despite
having presented evidence of SUDO’s utility on multiple real-world
datasets with distribution shift, we have not explored how SUDO
would behave for the entire space of possible distribution shifts. It
therefore remains an open question whether a particular type of dis-
tribution shift will render SUDO less meaningful. On some simulated
data, for example, we found that SUDO is less meaningful upon
introducing drastic label noise or changing the class-specific dis-
tributions of the data points in the wild.More generally, we view SUDO
merely as one of the first steps in informing decision-making pro-
cesses. Subsequent analyses, such as statistical significance tests,
would be needed to gain further confidence in the resulting
conclusions.

To validate SUDO without ground-truth annotations, we mea-
sured its correlation withmedian survival time, a clinical outcomewith
a known relationship to ECOGPS. This approachwasmade possible by
leveraging domain knowledge. In settings where such a relationship is
unknown, we recommend identifying clinical features in the labelled
data that are unique to patient cohorts. These features can include the
type and dosage of medication patients receive and whether or not
they were enroled in a clinical trial. A continuous feature (e.g., medi-
cation dosage) may be preferable to a discrete one (e.g., on or off
medication) in order to observe a graded response with the prediction
probability intervals. If identifying one such feature is difficult and
time-consuming, a data-driven alternative could involve clustering
patients in the labelled data according to their clinical characteristics.
Distinct clusters may encompass a set of features unique to patient
cohorts. Prediction on data in the wild can then be assessed based on
the degree to which they share these features. On the other hand, the
more severe the distribution shift, the less likely it is that features will
be shared across the labelled and unlabelled data.

There are also important practical and ethical considerations
when it comes to using SUDO. Without SUDO, human experts would

have to painstakingly annotate all of the data points in the wild. Such
an approach does not scale as datasets grow in size. Moreover, the
ambiguity of certain data points can preclude their annotation by
human experts. SUDO offers a way to scale the annotation process
while simultaneouslyflagging unreliablepredictions for further human
inspection. However, aswith anyAI-based framework, over-relianceon
SUDO’s findings can pose risks particularly related tomislabelling data
points. This can be mitigated, in some respects, by choosing a more
conservative operating point on the reliability-completeness curve.

Moving forward, we aim to expand the application areas of SUDO
to account for the myriad decisions that AI predictions inform. This
could include using SUDO to detect distribution shift in datasets,
thereby informing whether, for example, an AI system needs to be
retrained on updated data. Another line of research includes improv-
ing the robustness of SUDO to label noise and expanding its applic-
ability to scientific domains in which label noise is rampant. We look
forward to seeing how the community leverages SUDO for their own
applications.

Methods
Description of datasets
Stanford diverse dermatology images. The Stanford diverse der-
matology images (DDI) dataset consists of dermatology images col-
lected in the Stanford Clinics between 2010 and 2020. These images
(n: 656) reflect either a benign or malignant skin lesion from patients
with three distinct skin tones (Fitzpatrick I-II, III-IV, V-VI). For further
details, we refer interested readers to the original publication14. We
chose this as the data in the wild due to a recent study reporting the
degradation of several models’ performance when deployed on the
DDI dataset. Thesemodels (seeDescriptionofmodels) were trainedon
the HAM10000 dataset, which we treated as the source dataset.

HAM10000dataset. TheHAM10000dataset consists of dermatology
images collected over 20 years from the Medical University of Vienna
and the practice of Cliff Rosendahl16. These images (n: 10015) reflect a
wide range of skin conditions ranging from Bowen’s disease and basal
cell carcinoma to melanoma. In line with a recent study14, and to
remain consistent with the labels of the Stanford DDI dataset, we map
these skin conditions to a binary benign or malignant condition. We
randomly split this model into a training and held-out set using a 80:
20 ratio. We did not use a validation set as publicly-available models
were already available and therefore did not need to be trained from
scratch.

Camelyon17-WILDSdataset. TheCamelyon17-WILDSdataset consists
of histopathology patches from50whole slide images collected from5
different hospitals29. These images (n: 450, 000) depict lymph node
tissuewith orwithout the presence of a tumour.Weuse the exact same
training (n: 302, 436), validation (n: 33, 560), and test (n: 85, 054) splits
constructed by the original authors3. Notably, the test set contains
patches from a hospital whose data was not present in the training set.
This setup is therefore meant to reflect the real-world scenario in
which models are trained on data from one hospital and deployed on
those from another. We chose this dataset as it was purposefully
constructed to evaluate the performance of models when presented
with data distribution shift.

Simulated dataset. We generated a dataset to include a training and
held-out set, and data in the wild. To do so, we sampled data from a
two-dimensional Gaussian distribution (one for each of the two clas-
ses) with diagonal covariance matrices. Specifically, data points from
class 1 (x1) and class 2 (x2) were sampled as follows:
x1 ∼N ð½1,1�, ½0:8,0:8�Þ, x2 ∼N ð½2,2�, ½0:1,0:1�Þ. We assigned 500 and
200 data points to the training and held-out sets. As with the DDI
dataset,wedidnot create a validation set because therewasnoneed to
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optimise themodel’s hyperparameters. As for the data in the wild (xW),
these were sampled from different distributions based on the experi-
ment we were conducting. In the out-of-domain setting with and
without an imbalance in the number of data points from each class,
xW1 ∼N ð½2,� 1�, ½1,1�Þ and xW

2 ∼N ð½3,0�, ½1,1�Þ. Data points from a third
class were sampled as follows: xW

3 ∼N ð½3,� 1�, ½1,1�Þ. We assigned 1000
data points to each class for the data in the wild, except for in the label
imbalance experiment where we assigned 4000 data points to class 1
and 500 data points to class 2, reflecting an 8: 1 ratio. For the scenario
in which we inject label noise into the held-out dataset, we randomly
flip 50% of the labels to the opposite class.

Multi-domain sentiment dataset. The multi-domain sentiment data-
set consists of reviews of products on Amazon. These products span
four different domains from books and electronics to kitchen and
DVDs. Each review is associated with either a negative or positive label
reflecting the sentiment of the review. In each domain, there are
n = 1000 reviews reflecting positive and negative sentiment (n = 2000
total). When conducting experiments with this dataset, we split the
reviews in each domain into training, validation, and test sets using a
60: 20: 20 split.

Flatiron Health ECOG Performance Status (PS). The nationwide
electronic health record (EHR)-derived longitudinal Flatiron Health
database, comprises de-identified patient-level structured and
unstructured data curated via technology-enabled abstraction, with
de-identified data originating from ~ 280 US cancer clinics ( ~ 800 sites
of care)30. The majority of patients in the database originate from
community oncology settings; relative community/academic propor-
tionsmay varydepending on study cohort. Our dataset, whichwe term
the Flatiron Health ECOG Performance Status database, included 20
disease specific databases available at Flatiron Health as of October
2021 including acute myeloid leukaemia (AML), metastatic breast
cancer (mBC), chronic lymphocytic leukaemia (CLL), metastatic col-
orectal cancer (mCRC), diffuse large B-cell lymphoma (DLBCL), early
breast cancer (eBC), endometrial cancer, follicular lymphoma (FL),
advanced gastro-esophageal cancer (aGE), hepatocellular carcinoma
(HCC), advanced head and neck cancer (aHNC), mantle cell lymphoma
(MCL), advanced melanoma (aMel), multiple myeloma (MM),
advanced non-small cell lung cancer (aNSCLC), ovarian cancer, meta-
static pancreatic cancer, metastatic prostate cancer, metastatic renal-
cell carcinoma (mRCC), small cell lung cancer (SCLC), and advanced
urothelial cancer. For these patients, the database contains dates of
line of therapy (LOT) which is a sequence of anti-neoplastic therapies
that a patient receives following the disease cohort inclusion date. The
start and end dates of the distinct lines of therapy were captured from
both structured and unstructured data sources in the EHR via
previously-developed and clinically-informed algorithms. Further-
more, our dataset also contains unstructured clinical notes generated
by clinicians that are time-stamped with the visit date (e.g., June
1st, 2017).

Ethics approval. The Institutional Review Board of WCG IRB (refer-
ence number: IRB00000533) approved of the study protocol prior to
study conduct, and included a waiver of informed consent. Patient
consent was waived because (a) the research does not involve greater
thanminimal risk, (b) leverages observational research, which relies on
data which was previously collected-as such it is not practicable to
conduct the research without the waiver or alteration, and (c) waiving
or altering the informed consent will not adversely affect the subjects’
rights and welfare. This ethics approval pertains to the use of the Fla-
tiron Health ECOG Performance Status dataset.

ECOG PS labels. ECOG PS is a clinical variable that reflects the per-
formance status of an oncology patient. It ranges from 0 (patient has

no limitations in mobility) to 5 (patient deceased)31 and has been lar-
gely used within the context of clinical trials but is also often used by
physicians in clinical practice as they make treatment decisions for
patients32,33. Additionally, in the context of real world evidence, ECOG
PS can be used to identify study cohorts of interest (typically those
with ECOG PS < 234).

In the Flatiron Health ECOG Performance Status database, the
ECOG PS is captured as part of the EHR in either a structured or
unstructured form, as outlined next (see Table 1). Structured ECOG PS
refers to ECOG values captured in the structured fields of the EHR,
such as from drop down lists. In contrast, extracted and abstracted
ECOG PS both refer to ECOG values that are captured in unstructured
oncologist-generated clinical notes in the EHR. Extracted ECOG PS
implies that an NLP symbol-matching (regular expressions) algorithm
was used to extract it from clinical notes. This regular expression
algorithm was previously developed by researchers at Flatiron Health.
Finally, abstracted ECOG PS implies that a human abstractor was able
to extract it through manual inspection of clinical notes.

ECOG task description. We developed a model which leverages
oncology clinical notes to infer a patient’s ECOG PSwithin a window of
time (e.g., 30 days) prior to the start of distinct lines of therapy. In
oncology research, it is often important to know a patient’s ECOGPS at
treatment initiation. This allows researchers to investigate the inter-
play between ECOG PS and different lines of therapy. To achieve this,
we consolidated clinical notes within awindowof timeprior to distinct
line of therapy start dates, and combined ECOG PS values (where
applicable) using the following strategies.

Combining clinical notes across time. We hypothesised that clinical
notes up to one month (30 days) before the start date of a line of
therapy would contain sufficient information about the performance
status of the patient to facilitate the inference of ECOGPS. Given that a
patient’s ECOG PS can fluctuate over time, retrieving clinical notes
further back beyond a month would have potentially introduced
superfluous, or even contradictory, information that exacerbated an
NLP model’s ability to accurately infer ECOG PS. Conversely, exclu-
sively retrieving clinical notes too close to the start date of the LOT
might avoid picking up on valuable information further back in time.
Based on this intuition, we concatenated all of a patient’s clinical notes
time-stamped up to and including 30days before the start date of each
of their lines of therapy.

Combining ECOG PS from multiple sources. A particular line of
therapy for a patient may sometimes be associated with a single ECOG
PS (e.g., in structured form) or multiple ECOG PS values (e.g., in
extracted and an abstracted form). Whenmultiple sources of ECOG PS
scores were available, we consolidated them by only considering the

Table 1 | Examples of potential sources of the ECOG PS label

Source of ECOG PS

Scenario Structured Unstructured

Extracted Abstracted

A list ✗ human

B ✗ regex human

C ✗ ✗ human

D ✗ ✗ ✗

The ECOG PS clinical variable can be structured; derived from a drop-down list, extracted;
through the use of a Flatiron-specific regular expression (regex) algorithm, or abstracted;
through the manual inspection of clinical notes by human abstractors.
✗ indicates the absence of an ECOG PS value from a particular source. The development of an
NLPmodel to infer the ECOGPS is thereforemost valuablewhennoneof the the aforementioned
sources can produce an ECOG PS value (Scenario D).
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largest value (e.g., assign ECOG PS 1 if structured ECOG PS = 0 and
abstracted ECOG PS = 1).

Moreover, and without loss of generality, we combined ECOG PS
such that [0, 1] map to low ECOG PS and [2, 3, 4] map to high ECOG PS.
We chose this binary bucketing since clinical trials inmedical oncology
typically only include patients with an ECOG PS < 2. The distribution of
low and high ECOG PS scores in our study cohort was 82: 18.

Description of data sample. Given the above two consolidation stra-
tegies, each sample of data ourNLPmodelwas exposed to consisted of
(a) concatenated clinical notes for a patient up to 30 days before an
LOT and, where available, (b) an ECOG PS label associated with that
LOT. Such samples are referred to as labelled. We refer to samples of
concatenated clinical notes without an associated ECOG PS label (for
details on why, see next section on missingness of ECOG PS) as unla-
belled. It is in this scenario where inferring a patient’s ECOG PS ismost
valuable. (see Table 1).

Missingness of ECOG PS. There exist a myriad of reasons behind the
missingness of the ECOG PS score. For example, in some cases, doc-
umenting an ECOG PS score may simply not be a part of a clinician’s
workflow or may be difficult to document. Alternatively, not doc-
umenting an ECOG PS score could be directly related to the qualitative
assessment of a patient’s health statuswhere its absence could suggest
an underlying low ECOG PS value. These reasons, in a majority of
settings, imply that the unlabelled clinical notes might follow a dis-
tribution that is different from that followed by labelled clinical notes.
This discrepancy is also known as covariate shift. As such, we are faced
with unlabelled data that exhibit distribution shift. Although our fra-
mework’s design was motivated by these characteristics, quantifying
its utility exclusively on this dataset is challenging due to the absence
of ground-truth ECOG PS labels.

Samples with and without ECOG PS labels. Our first study cohort
consists of n = 117, 529 samples associated with ECOG PS labels. As
outlined above, each sample consists of concatenated clinical notes
before a particular line of therapy for a patient. When conducting
experimentswith this cohort, we split the data into training, validation,
and test sets using a 70: 10: 20 split. This amounted to n = 81, 909,
n = 11, 806, n = 23, 814 samples, respectively. Our second study cohort
consists of n = 33, 618 samples not associated with ECOG PS labels.

Description of models
Models for image-based datasets. For the image-based datasets
(StanfordDDI andHAM10000), we used twopublicly-availablemodels
(DeepDerm15 and HAM1000016) that had already been trained on the
HAM10000 dataset. We refer readers to the respective studies for
details on how these models were trained. In this study, we directly
used these models (without retraining) as part of the SUDO experi-
ments. As for the Camelyon17-WILDS dataset, we trained a Dense-
Net121model using the default hyperparameters recommendedby the
original authors3.

Models for language-based datasets. For language-based datasets
(Multi-Domain Sentiment and FlatironHealth ECOGPS), we developed
a neural network composed of three linear layers which received text
as input and returned the probability of it belonging to the positive
class, which is positive sentiment for the Multi-Domain Sentiment
dataset, and high ECOG PS for the Flatiron Health ECOG Performance
Status dataset. An in-depth description of how we pre-processed the
input text can be found in the Methods section.

Pre-processing of text. We represented text via a bag of words (BoW).
This first involved identifying a fixed vocabulary of pairs of words (also
known as bigram tokens) present in the training set. After

experimenting with a different number of tokens (e.g., 500, 1,000,
5,000, 10,000), we decided to focus on the 1000 most common
tokens as we found that number to provide enough information to
learn a generalisable NLP model while not being computationally
intensive. The remaining experiments did not result in improved per-
formance. Each document was thus converted into a 1000-
dimensional representation (1 dimension for each token) where each
dimension reflected the frequency of a particular token in the docu-
ment. The token mean and standard deviation was calculated across
training samples in order to standardise each bigram representation.
We found this to result in slightly better performance than settings
without input scaling.

Details of SUDO framework
SUDO is a framework that helps identify unreliable predictions, select
favourable AI models, and assess the algorithmic bias of such systems
on data without ground-truth labels. To implement SUDO, we
recommend following the steps outlined in the Results (Fig.1b). Here,
we provide additional details and intuition about SUDO, mentioning
how they align with the previously-outlined steps.

Let us assume we have a probabilistic model that returns a single
value reflecting the probability, s, that an input belongs to the positive
class (e.g., high ECOG PS in the Flatiron Health ECOG PS dataset). We
cangenerate adistributionof suchprobability values for all data points
and discretize the distribution in probability intervals (Fig. 1b, Step 1
and Step 2).

Sample data points. From each probability interval s∈ (s1, s2] where
s1 < s2, we sampled a subset of the data points (Fig. 1b, Step 3). To avoid
sampling more data points from one probability interval than from
another, and potentially affecting the reliability of estimates across
intervals, we fixed the number of data points,m, to sample from each
interval. Specifically, m was chosen based on the lowest number of
data points within an interval, across all probability intervals. For
example, if the interval s∈ (0.4, 0.5] contains the lowest number of
data points (e.g., 50), then we sample m = 50 data points from each
interval. This also ensures that we sample data points without repla-
cement to avoid a single data point from appearing multiple times in
our experiments and biasing our results. Next, we assigned these
sampled data points a temporary label, also known as a pseudo-label,
hypothesizing that they belong to a certain class (e.g., class 0).

Train classifier. We then trained a classifier, gϕ, to distinguish between
such newly-labelled data points and data points with a ground-truth
label from the opposite class (e.g., class 1) (Fig. 1b, Step 4). It is worth-
while tomention that this classifier neednotbe theexact samemodel as
the one originally used to perform inference (i.e., gϕ ≠ fθ). The prime
desiderata of the classifier are that it (i) is sufficiently expressive such
that it can discriminate between positive and negative examples and (ii)
can ingest the inputdata. Such amodular approach,where onemodel is
used for the original inference (Fig. 1b, Step 1) and another is used to
distinguish between positive and negative examples ((Fig. 1b, Step 4) is
less restrictive for researchers and can obviate the need to (re)train
potentially computationally expensive inference models. This line of
argument also extends to settings with different data modalities (e.g.,
images, time-series, etc.), and, as such, makes SUDO agnostic to the
modality of the data used for training and evaluating the model.

Evaluate classifier. After training gϕ, we evaluated it on a held-out set
of data comprising data points with ground-truth labels (from both
class 0 and class 1) (Fig. 1b, Step 5). The intuition here is that a classifier
which can successfully distinguish between these two classes, by per-
forming well on the held-out set of data, is indicative that the training
data and the corresponding ground-truth labels are relatively reliable.
Since the data points from class 1 are known to be correct (due to our

Article https://doi.org/10.1038/s41467-024-46000-9

Nature Communications |         (2024) 15:1808 10



use of ground-truth labels), then a highly-performing classifier would
suggest that the class 0 pseudo-labels of the remaining data points are
likely to be correct. In short, this step quantifies howplausible it is that
the sampled unlabelled data points belong to class 0.

As presented, this approach determines how plausible it is that
the sampled set of data points in some probability interval, s∈ (s1, s2],
belongs to class 0. It is entirely possible, however, that a fraction of
these sampled data points belong to the opposite class (e.g., class 1).
We refer to this mixture of data points from each class as class con-
tamination. We hypothesised (and indeed showed) that the degree of
this class contamination increases as the probability output, s, by an AI
system steers away from the extremes (s ≈0 and s ≈ 1). To quantify the
extent of this contamination, however, we also had to determine how
plausible it was that the sampled set of data points belong to class 1, as
we outline next.

Cycle through the pseudo-labels. We repeated the above approach
(Fig. 1b, Steps 3, 4, and 5) however with two distinct changes. First, we
pseudo-labelled the sampled data points with class 1 (instead of class
0). In doing so, we are hypothesizing that these data points belong to
class 1. Second, we trained a classifier to distinguish between such
newly-labelled data points and data points with ground-truth labels
from class 0.

When experimenting with the distinct pseudo-labels, we always
sample the same set of data points, as enforced by a random seed.
Doing so ensures that any difference in the predictive performance of
the learned classifiers, gϕ, is less attributable to differences in the
sampled data points and, instead, more attributable to the pseudo-
labels that we have assigned. Moreover, to ensure that our approach is
not constrained by a particular subset of sampled data points, we
repeat this entire process multiple (k = 5) times, each time sampling a
different subset of data points from each probability interval, as
enforced by a random seed (e.g., 0 to 4 inclusive).

Derive the pseudo-label discrepancy. The discrepancy between, and
ranking of, the classifier performances above is indicative of data
points that are more likely to belong to one class than another. Con-
cretely, if the classifier, gϕ, achieves higher performance when pre-
sented with sampled data points that are pseudo-labelled as class 0
than as class 1, then the set of pseudo-labelled data points are more
likely to belong to class 0. We refer to this discrepancy in performance
under different scenarios of pseudo-labels as the pseudo-label dis-
crepancy, or SUDO.

Implementation details of SUDO experiments
SUDO involves selecting several hyperparameters. These can include
the granularity and number of probability intervals, the number of
data points to sample from each probability interval, the number of
times to repeat the experiment, and the type of classifier to use. We
offer guidelines on how to select these hyperparameters in theResults.

Stanford DDI dataset. For the DeepDermmodel (Fig. 2a), we selected
ten mutually-exclusive and equally-sized probability intervals in the
range 0 < s < 1, and sampled 10 data points from each probability
interval. For the HAM10000model (Fig. 2b), we selected tenmutually-
exclusive and equally-sized probability intervals in the range
0 < s < 0.5, and sampled 50 data points from each probability interval.
In the latter setting, we chose a smaller probability range and more
granular probability intervals to account for the high concentration of
data points as s→0.

To amortize the cost of training classifiers as part of the SUDO
experiments, we extracted image representations offline (before the
start of the experiments) and stored them for later retrieval. To cap-
ture a more representative subset of the data points and obtain a
better estimate of the performance of these classifiers, we repeated

these experiments 5 times for each probability interval and pseudo-
label. To accelerate the experiments, we used a lightweight classifier
such as a logistic regression, discovering that more complex models
simply increased the training overhead without altering the findings.
Unless otherwise noted, we adopted this strategy for all experiments.

Camelyon17-WILDS dataset. We selected eleven mutually-exclusive
and equally-sized probability intervals in the range 0.10 < s <0.75
whichwas chosen based onwhere theAI-based probability valueswere
concentrated. We sampled 1000 data points from each probability
interval. To remain consistentwith the other experiments in this study,
we used the provided in-distribution validation set as the held-out set
(Fig. 1, Step 5). Aswith the StanfordDDIdataset, tominimise the cost of
conducting the SUDO experiments, we first extracted and stored the
image representations of the histopathology patches using the trained
DenseNet121model. We otherwise followed the same approach as that
mentioned above.

Multi-domain sentiment dataset. We also selected ten mutually-
exclusive and equally-sized probability intervals in the range 0 < s < 1,
and sampled 50and 10data points fromeachprobability intervalwhen
dealing with a network that was not overconfident and one that was
trained to be overconfident.We sampled fewer data points in the latter
setting because prediction probability values were concentrated at the
extreme ends of the probability range (s→0 and s→ 1), leaving fewer
data points in the remaining probability intervals. As demonstrated in
the Results, SUDO can deal with such data-scarce settings.

Simulated dataset. We selected ten mutually-exclusive and equally-
sized probability intervals in the range 0 < s < 1, and sampled 50 data
points from each probability interval.

Flatiron Health ECOG PS dataset. On the Flatiron Health ECOG Per-
formance Status dataset with ECOG PS labels, we sampled 200 data
points from each probability interval. This valuewas chosen to capture
a sufficient number of predictions from each probability interval
without having to sample with replacement. On the Flatiron Health
ECOG Performance Status dataset without ECOG PS labels (data in the
wild), we sampled 500 data points from each interval in the range
(0, 0.45] and 100 data points from each interval in the range (0.45, 1].
This was due to the skewed distribution of the probability values
generated in such a setting (see Fig. 4b).

Implementation details of algorithmic bias experiment
To demonstrate that SUDO can help assess algorithmic bias on data
without ground-truth annotations, we conducted experiments on the
Stanford DDI dataset because those images could be categorised
based on a patient’s skin tone (Fitzpatrick I-II, III-IV, V-VI). As such, we
would be able to assess the bias of the pre-trained AI systems against
particular skin tones.

We followed the same steps to implement SUDO (see Fig. 1b). The
maindifference is thatwefirst stratified thedatapoints according to skin
tone. Based on the bias reported in a recent study14, we focused on skin
tone I-II and V-VI. Although such stratification can be done within each
probability interval, after having observed the the HAM10000 model’s
predictionprobability values (Fig. 2b),we considereda singleprobability
interval 0 < s<0.20 where data points would be classified as negative
(benign lesions). We sampled 200 data points from this probability
interval for each group (I-II and V-VI) to conduct the SUDO experiments
and calculated the AUC of the subsequently-learned classifiers.

Applications of SUDO
SUDO can help with identifying unreliable clinical predictions, select-
ing favourable AI systems, and assessing the bias of such systems, as
outlined next.
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Identifying unreliable AI-based predictions. Identifying unreliable
AI-based predictions, those whose assigned label may be incorrect, is
critical for avoiding the propagation of error through downstream
researchanalyses. SUDOallows for this as it provides anestimateof the
degree of class contamination for data pointswhose correspondingAI-
based output probabilities are in some probability interval. Specifi-
cally, a ↓∣D∣ (small difference in classifier performance across pseudo-
label settings) implies ↑ class contamination. As such, by focusing on
probability intervals with ∣D∣ < τwhere τ is some predefined cutoff, one
can now identify unreliable AI-based predictions. As we will show,
there is an even greater need to identify such contamination when
dealing with over-confident AI systems.

Selecting AI systems. An AI system is often chosen based on its
reportedperformanceon aheld-out set of data.Wedefine a favourable
AI system as that which performs best on a held-out set of data com-
pared to a handful of models. The ultimate goal is to deploy the
favourable model on data in the wild. However, with data in the wild
exhibiting a distribution shift and lacking ground-truth labels, it is
unknown what the performance of the chosen AI system would be on
the data in the wild, thereby making it difficult to assess whether it
actually is favourable for achieving its goal.

Assessing algorithmic bias. Assessing algorithmic bias is critical for
ensuring the ethical deployment of AI systems. A commonapproach to
quantify such bias is through a difference in AI system performance
across groups of patients (e.g., those in different gender groups)35. The
vast majority of these approaches, however, requires ground-truth
labels which are absent fromdata points in the wild therebymaking an
assessment of bias out-of-reach. However, SUDO, by producing a
reliable proxy for model performance, allows for this capability.

Implementation details of survival analysis
Weassessed realworldoverall survivaldefined as time from the start of
first line of therapy (LOT = 1) to death36. If death was not observed by
the study end date (October 2021), patients were censored at the date
of a patient’s latest clinical visit.We estimated survival using theKaplan
Meier method and used lifelines package to conduct our analysis37. To
avoid confounding due to lines of therapy, we conducted all survival
analyses for patients receiving their first line of therapy only (i.e.,
LOT = 1). No other adjustments were made.

Steps to generate Fig. 4e. We first filtered our data samples with
known ground-truth ECOG PS labels (n = 117, 529) to only consider
those tagged with the first line of therapy (LOT = 1). Using these sam-
ples, we conducted two survival analyses: one with data samples for
patients with a low ECOG PS label and another for patients with a high
ECOG PS label.

Steps to generate Fig. 4f. We filtered our data samples in the data in
thewild (n = 33, 618) to only consider those taggedwith the first line of
therapy (LOT= 1). However, since these data samples were not asso-
ciated with a ground-truth ECOG PS label, we split them into three
groups based on a chosen threshold on the pseudo-label discrepancy
presented in Fig. 4d. Using the intuition that a higher absolute pseudo-
label discrepancy is indicative of more reliable predictions, we chose
three probability intervals to reflect the three distinct patient cohorts:
lowECOGPSgroup (0< s≤0.2), high ECOGPSgroup (0.5≤ s < 1.0), and
an uncertain ECOG PS group (0.2 < s <0.5). We subsequently con-
ducted a survival analysis using the data samples in each group.

Steps to generate Fig. 4h. We conducted multiple survival analyses.
Each analysis was performed as described above and for the subset of
patients whose associated AI-based predictions fell in a probability
interval (e.g., 0 < s ≤ 0.05, 0.05 < s < 0.10, etc.). Since there were 14

probability intervals in total, we performed 14 survival analyses and
calculated themedian survival time in each analysis. This allowed us to
correlate the median survival time, per probability interval, to the
derived pseudo-label discrepancy.

Producing reliability-completeness curves
The completeness of a variable (the proportion of missing values that
are inferred) is equally important as the reliability of the predictions
that are being made by a model. However, these two goals of data
completeness and data reliability are typically at odds with one
another. Quantifying this trade-off confers a twofold benefit. It allows
researchers to identify the level of reliability that would be expected
when striving for a certain level of data completeness. Moreover, it
allows for model selection, where preferred models are those that
achieve a higher degree of reliability for the same level of complete-
ness. To quantify this trade-off, we needed to quantify the reliability of
predictions without ground-truth labels and their completeness. We
outline how to do so next.

Quantify reliability. SUDO reflects the degree of class contamination
within a probability interval. The higher the absolute value of SUDO,
the lower the degree of class contamination. Given a set of low prob-
ability thresholds, α∈A, and high probability thresholds, β∈B, we can
make predictions ŷ of the following form,

ŷ=
0, s ≤ maxðAÞ
1, s ≥ minðBÞ

�
ð1Þ

Tocalculate the reliabilityRA,Bof suchpredictions, we could average
the absolute values of SUDO for the set of probability thresholds (A, B),

RA,B =
1

2 � jAjjBj
X

α2A,β2B
jSUDOðαÞj+ jSUDOðβÞj ð2Þ

Quantify completeness. By identifying the maximum probability
threshold in the set, A, and the minimum probability threshold in the
set, B, the completeness, CA,B∈ [0, 1], can be defined as the fraction of
all data points in thewild,M, that fallswithin this rangeof probabilities,

CA,B =
XM
j = 1

1½sj ≤ maxðAÞ or sj ≥ minðBÞ� ð3Þ

Generate reliability-completeness curve. After iterating over K sets
of A and B, we can populate the reliability-completeness (RC) curve for
a particular model of interest (see Fig. 2e). From this curve, we derive
the area under the reliability-completeness curve, or the AURCC∈
[0, 1].

AURCC=
1
2K

XK
k = 1

RA,BðkÞ+RA,Bðk + 1Þ
ΔCA,B

ð4Þ

Whereas the area under the receiver operating characteristic curve
(AUROC) summarises the performance of a model when deployed on
labelled instances, theAURCCdoes so onunlabelleddata points. Given
this capability, the AURCC can also be used to compare the perfor-
mance of different models.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The Stanford diverse dermatology images (DDI) dataset is available at
https://ddi-dataset.github.io/index.html#access. The Camelyon17-
WILDS dataset is available at https://wilds.stanford.edu/get_started/.
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TheMulti-Domain Sentiment dataset is available at https://www.cs.jhu.
edu/m̃dredze/datasets/sentiment/index2.html. All publicly-available
datasets were used as permitted, exclusively for research purposes.
TheFlatironHealth ECOGPSdataset is available under restricted access
due to patient privacy. Requests for data sharing by license or by per-
mission for the specificpurposeof replicating results in thismanuscript
can be submitted to PublicationsDataAccess@flatiron.com. A response
will be provided within a week of receiving the request. The data for
generating the figures in this study are in the Source Data file. Source
data are provided with this paper.

Code availability
Our code is publicly available at https://github.com/flatironhealth/
SUDO.
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