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An agricultural digital twin for mandarins
demonstrates the potential for
individualized agriculture

Steven Kim 1 & Seong Heo 2

A digital twin is a digital representation that closely resembles or replicates a
real world object by combining interdisciplinary knowledge and advanced
technologies. Digital twins have been applied to various fields, including to the
agricultural field. Given big data and systematic data management, digital
twins canbeused for predicting future outcomes. In this study,we endeavor to
create an agricultural digital twin usingmandarins as amodel crop.We employ
an Open API to aggregate data from various sources across Jeju Island, cov-
ering an area of approximately 185,000 hectares. The collected data are
visualized and analyzed at regional, inter-orchard, and intra-orchard scales.We
observe that the intra-orchard analysis explains the variation of fruit quality
substantially more than the inter-orchard analysis. Our data visualization and
analysis, incorporating statistical models and machine learning algorithms,
demonstrate the potential use of agricultural digital twins in the future, par-
ticularly in the context of micro-precision and individualized agriculture. This
concept extends the current management practices based on data-driven
decisions, and it offers a glimpse into the future of individualized agriculture
by enabling customized treatment for plants, akin to personalized medicine
for humans.

Since the concept of a digital twin (DT) was emerged by Grieves M1., it
has been introduced in various fields including aerospace, automotive,
manufacturing, construction, real estate, health, medicine, and
agriculture2–6. Though DT has broad meanings in various fields, it is
generally defined as the implementation of virtual counterparts of real-
world physical systems in a digital environment. It often allowsusers to
simulate, model, and analyze data to make informed decisions7. DT
relies on the integration of state-of-the-art technologies including
information and communication technologies (ICT), Internet of things
(IoT), remote sensing, geographic information systems (GIS), big data
analytics, and artificial intelligence (AI)8,9. The ICT provides the infra-
structure and communication networks necessary for the acquisition,
aggregation, storage, and analysis of data from IoTdevices and remote
sensing, thereby farmers can access and use digital platforms for
precision farming and cropmanagement. Wireless IoT devices such as

sensors collect agricultural data including weather conditions, soil
moisture, and crop physiological information10. Furthermore, digital
imagery produced fromUAV and satellites (remote sensing) has led to
a paradigm shift for farmers and researchers from an approach of
homogeneous management of heterogeneous fields to one of a het-
erogeneous management of heterogeneous fields (soil fertility, soil
moisture, plant pathogens etc.)11. For this paradigm shift, the agri-
cultural data should bemanaged in combinationwith longitudinal data
andgeospatial data for implementing agricultural practices at the right
time and location. In particular, geospatial data enable farmers to
apply input materials based on crop needs on a precise site-specific
basis12. Given big data and systematic data management, AI such as
machine learning and deep learning algorithms can be used for pre-
dictions and data-driven decisions. The results provide farmers with
insights for improving decision making and supplying the required
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input resources (water, fertilizer, pesticides, etc.) for every square
meter in a crop field as needed at every plant growth stage11,13,14.

There are a number of studies on agricultural digitalization using
the above advanced technologies6,8,9,11,15. Jayaraman et al. presented an
IoT-based platform, SmartFarmNet, that can automatically collect data
on environments, soil conditions, fertilization, and irrigation10. Fur-
thermore, it can integrate data from other sources, and all data can be
stored on the cloud server to analyze and present the results to the API
user. Teschner et al. showed that anUAV-based intrusion detection DT
is effective in protecting agricultural fields16. In this study, all data was
distributed over 5G communication networks. Moghadam et al. initi-
ated a DT at an orchard scale17. Specifically, they created a system that
scans the status of every tree using 3D LiDAR cameras. This orchardDT
enables continuous monitoring of tree’s health, structure, and fruit
quality, and it predicts tree’s stress level, presence of disease, and yield
loss. Given all information, the DT simulates various scenarios based
on environmental and management parameters17. Delgado et al. pro-
posed a WebGIS framework that collects geospatial data and aggre-
gates into regional and global views of agriculture to support big data
analytics for farmers and agricultural policymakers11. Verdouw &
Kruize reported six cases of using the FIWARE open source platform
for the development of agricultural DT for the first time18. The FIWARE
easily connects IoT sensors and provides cloud services andOpenAPIs
to enable real-time data processing and big data analysis. As an
example of crop management using a deep learning algorithm, Ana-
gnostis et al. proposed an approach for orchard tree segmentation
using aerial images based on the U-net algorithm, a convolutional
neural network variant19. This model was proven to be effective in the
detection and localization of tree canopies, achieving performance
levels up to 99%. Jiang et al. predicted forest change trends in the study
area using a DT approach based on machine learning20. This DT was
based on remote sensing imagery from the Landsat 7 satellite to
investigate forestry canopy, species, and distribution succession. In
post-harvest management, Tagliavini et al. proposed a DT that can
manage the quality of harvested mangoes21. In this case, throughout
the cold chain, computational fluid dynamics was used to evaluate
quality losses, such as fruit firmness, total soluble solids, acidity, and
vitamin content. As such, applications of DT have become sophisti-
cated and diversified.

The Republic of Korea established a smart farm research policy to
advance smart farm research from indoor greenhouses to open fields.
As part of this, our research team aimed to develop a DT for managing
mandarin (Citrus unshiu) orchards in open fields. Fruit crops are pro-
pagated through asexual reproduction (grafting), resulting in every
tree being of the identical genomes. Additionally, as fruit crops are
perennial, the data can be updated annually from the same individuals,
enabling spatiotemporal analysis. Unlike other crops, fruit crops
require ample space per individual, which facilitates the collection of
individual-specific data.

Unfortunately, unforeseeable research policy changes with bud-
get cuts stopped all open-field smart farm research projects. As a
result, we could not continue collaborations with data producers
involved in mandarin cultivation. As a surrogate, we aggregated and
centralized the data that was available independently from different
sources (Fig. 1). According to the Act on Promotion of the Provision
and Use of Public Data22, the Korean government has released a large
number of datasets generated from various national and public insti-
tutions, and this public information is referred to as open data. Each
public institution can directly provide open data generated and
acquired by itself, as well as through the open data portal (https://
www.data.go.kr), an integrated archive that can store and provide all
open data in one site. The Rural Development Administration (RDA)
annually surveys soil chemical properties according to land-use type
and provides the information to farmers for field-specific fertilization.
Using this information, farmers can supply an appropriate amount of

fertilizer to crops at a low cost and contribute to environmental con-
servation by eliminating fertilizer misuse and preventing soil leakage.
Jeju Island, located at the lowest latitude in the Korean Peninsula,
produces mandarin fruits with a dormant volcano in the center of the
island. The Jeju Free International City Development Center (JDC)
collected data on fruit sugar content and size, weather information,
and agricultural practices in mandarin orchards. The JDC surveyed
thirty randomly selected orchards in 2021 and has made the infor-
mation available through the data portal. Geocoding of the data was
performed through the Kakao Developers server based on regional
codes and address information published by the Ministry of the
Interior and Safety (MOIS). In order to visualize the geocodeddata on a
map, the GIS map files were downloaded from the National Spatial
Data Infrastructure Portal (NSDIP). All open data is distributed through
the Open API, and it is freely and easily accessible23.

The aim of this study is to showcase the feasibility of an agri-
cultural DT to support data monitoring and data-driven decisions. We
selected mandarin as a model crop for this study due to its wide cul-
tivation in Jeju Island and its perennial nature. We judged that such
sustainable conditions are necessary for the long-termsuccess of DT in
the future. This article illustrates that through the integration of mul-
tiple datasets obtained from diverse sources (utilizing Open APIs) and
the creation of a DT for mandarin orchard management, we can
achieve not only precision agriculture but also individualized agri-
culture, where each fruit tree is managed on an individual basis. The
available datasets encompass various information including soil che-
mical properties, fruit quality, weather data, and agricultural practices;
they are analyzed at regional, inter-orchard, and intra-orchard scales;
and an interactive applet, R Shiny, is created to demonstrate how an
agricultural DT can support data-driven decisions for policymakers,
researchers, distributors, and farmers. It is very important to monitor
at regional, inter-orchard, and intra-orchard levels, and in particular, it
is essential to monitor fruit quality from individual trees on a regular
basis for successful individualized agriculture, and the DT can add
value by making the monitoring accurate and efficient.

Results
Regional scale analyses
The spatial information and observed soil components are presented
in Fig. 2 using the kernel density estimation (KDE). The soil compo-
nents include available phosphate, exchangeable cations (Exch. K, Ca,
and Mg), acidity (pH), organic matter, and electrical conductivity. The
color gradation fromblue (low values) to yellow (high values) is used in
the figure. This visualization accounts for locations and soil conditions
observed in Jeju Island, excluding the other available information such
as rice paddy and greenhouse soils from the KDE analysis. The levels of
available phosphate, Exch. K and Mg, pH, and electrical conductivity
tended to be higher in the western region of the island, when com-
pared to the eastern region, in contrast to Exch. Ca and organicmatter.
According to the JARES report24, thewestern part of Jeju Island is a non-
volcanic ash soil area which is similar to the land soil of the Korean
Peninsula and is highly productive. On the other hand, the eastern part
is a volcanic ash soil which is characterized by low organic matter and
available phosphate content and high Exch. Ca content. These soil
characteristics are likely responsible for the high available phosphate
content of the orchards in the western region, a non-volcanic ash soil
region (Fig. 2A). Relative to the western region, the observed levels of
available phosphate in the eastern region were close to
200–300mgkg−1 which is a range recommended by RDA. It appears
that farmers in the eastern region applied a lot of organic fertilizer to
address the low organic matter content due to the regional char-
acteristics of a volcanic ash soil. As a result, the observed levels of
organic matter in the eastern region were above the recommended
level of 110–150g kg−1 (Fig. 2F). If these patterns are continuously
observed and confirmed, policymakers or local government
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agricultural officials may plan for the supply and demand of organic
fertilizer in Jeju and prepare alternatives to resolve regional imbal-
ances. Additionally, thewestern region ismore likely to be alkaline due
to the higher soil pH, and policymakers need to encourage the supply
of pH-lowering lime-based fertilizers to orchards in thewestern region.
Currently, frequencies of soil data collection are irregular and soil data
are relatively scarce (about once a year). More frequent data collection
is needed to increase knowledge regarding the regional soil conditions
and regional relationships with mandarin fruit quality.

The anticipated fruit size and sugar content may depend on
regions and harvest time. The time- and location-specific estimates are
depicted in Fig. 3. The size of each data point is proportional to the
estimated average fruit size, and sugar content levels are color-coded.
A darker color (brown) indicates a high sugar level (>11.5° Brix). In late
October, it was uncommon to observe an average sugar level above
11.5° Brix, but it wasmore common in mid- and late November. During
late November, the observed sugar level was higher in the orchards
located in the southern region (latitude below 33.4°N) than the orch-
ards in the northern region. It appears that the time and location
served as informative layers that influence the sugar content and fruit
size, respectively.

The merged dataset showed that sugar content had monotonic
relationships with some soil- (Exch. K, Mg, pH, and electrical con-
ductivity) and weather-related variables (temperature and humidity)
and non-monotonic relationships with available phosphate, Exch. Ca,
organic matter, and air pressure. Relatively high sugar content, rather

thanbig fruit size,was observednear the ranges of availablephosphate
and organic matter recommended by the RDA (Fig. 4A, F). In contrast,
Exch. Ca had a stronger relationship with fruit size rather than with
sugar content (Fig. 4C). This observation suggests suppressing
excessive application of Ca fertilizer in order to avoid oversized fruit.
The sugar content tended to increase when air pressure is between 0
and 5 atm, while the fruit size tended to decrease. The opposite trends
were observed when air pressure is above 6 atm (Fig. 4J). The inverse
relationship between sugar content and fruit size was also found in the
recommended ranges of available phosphate, Exch. Ca, and organic
matter. As explained above, however, if variations in sugar content and
fruit size were primarily influenced by the soil and weather factors, it
would not bepossible for farmers to artificially control these factors by
altering air pressure.

Inter-field analyses
The frequency and time of agricultural practices varied among orch-
ards. The majority of orchards (27 out of 30) recorded and provided
information on agricultural practices including pruning, fertilization,
spraying, mulching, and thinning. Pruning is the process of selectively
removing parts of a plant, such as branches or stems, with the aim of
enhancing plant growth, increasing fruit yield, and improving overall
fruit quality25. Pruning plays crucial roles in achieving high-quality fruit
production and maintaining a consistent fruit size26. Additionally, it
stimulates sugar content in the fruit. Optimal fertilization increases
fruit production by influencing fruit weight and quality27. Spraying can

Fig. 1 | The schematic diagram illustrates the process of data collection, ana-
lysis, and decision-making support via an agricultural digital twin. The inde-
pendent data collected from various sources through the Open API are merged and
geocoded with spatial information. The merged data can be displayed on a GIS map
and analyzed using various statisticalmethods andmachine learning algorithms. The
analyzed data enable regional scale, inter-orchard, or intra-orchard analysis, pro-
viding customized information based on the perspective of stakeholders. Through
this process, stakeholders can receive support for regional or orchard-level

decisions, and they can obtain customized information at the tree-level within an
orchard. Therefore, future agricultural systems have potential to evolve from pre-
cision agriculture to individualized agriculture. On the map of Jeju Island, the gray
dots indicate the location of all identified orchards, and the purple dots indicate the
selected orchards presented in this paper. The abbreviations are as follows: MOIS,
Ministry of the Interior and Safety; RDA, Rural DevelopmentAdministration; JDC, Jeju
Free International City Development Center; NSDIP, National Spatial Data Infra-
structure Portal. Source data are provided as a Source Data file.
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Fig. 3 | Spatiotemporal variability of sugar content and fruit size with respect
to mandarin orchards in Jeju Island. The changes in sugar content and fruit size
by orchard and time (from the fourth-fifth weeks of October to the third-fourth
weeks of November) are indicated by the circle type (open and closed) and the size.

With a digital twin, fruit quality data can be explained by specific location and time.
The figure represents 27 selected mandarin orchards of the 30 mandarin orchards
surveyed by Jeju Free International City Development Center. Source data are
provided as a Source Data file.

Fig. 2 | Kernel density estimationmaps of soil chemical properties with regard
to mandarin orchards on Jeju Island. A: available phosphate (Av. P2O4),
B: exchangeable potassium (Exch. K), C: exchangeable calcium (Exch. Ca),
D: exchangeablemagnesium (Exch.Mg),E: soil acidity (pH),F: organicmatter (OM),

and G: electrical conductivity (EC). The estimated level of each soil chemical
component near the selected mandarin orchards is represented by the color gra-
dation from blue (low values) to yellow (high values) in each panel. Source data are
provided as a Source Data file.
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help control pests and diseases that can harm trees and lower fruit
quality. Mulching serves for retaining soil moisture and suppressing
weed competition which promote plant growth. Thinning is an vital
agricultural practice in fruit production that is used to reduce the
number of fruits per tree and improve fruit size28. While each agri-
cultural practice is known to be beneficial, the observed frequency and
time of application varied between orchards. Supplementary Fig. 1
presents a ridge plot displaying the monthly frequencies of agri-
cultural practices performed by all orchards combined. The spraying
started in March and was frequently done between April and Sep-
tember, and this kind of information allows researchers to investigate
the targeted prevalent pathogens or pests. Thinning of fruits occurred

between April and September with most farmers doing it in July or
August. Farmers generally made similar decisions regarding the time
of mulching (mostly in June or July) and pruning (typically in March).
However, the timing of fertilization showed high variability, ranging
from February to July, and some farmers fertilized even in January and
October. If this kind of information on agricultural practices is avail-
able over time and is associated with fruit quality, it will facilitate
planning and operational decisions. Such a system will be especially
beneficial for inexperienced farmers or those new to the region.

For the marketing purpose, fruit quality is categorized based on
the two main factors, sugar content and fruit size. Mandarin fruits
typically have a sugar content exceeding 10° Brix to be sold. Given this

Fig. 4 | The average trends of sugar content and fruit size with respect to soil
chemicalproperties andweather-related conditions. A: available phosphate (Av.
P2O4),B: exchangeable potassium (Exch. K),C: exchangeable calcium (Exch. Ca),D:
exchangeablemagnesium (Exch.Mg),E: soil acidity (pH),F: organicmatter (OM),G:

electrical conductivity (EC)H: temperature, I: humidity, and J: air pressure. The gray
box represents the appropriate range for each componentofmandarinorchard soil
recommendedby theRuralDevelopmentAdministration. Sourcedata are provided
as a Source Data file.
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condition, quality classes were established based on the fruit size as
follows: too small (<49mm), 2 S (49–54), S (54–59), M (59–63), L
(63–67), 2 L (67–71), and too large (>71). Fruits that were either too
small or too large were deemed unsaleable, while the other classes
were suitable for the market. Fruits classified as S or M were rated as
prime grade, indicating the highest quality, and fruits categorized as
2 S, L, or 2 Lwere rated as saleable at a fair quality. The fruit quality and
soil chemical properties were compared between the two orchards,
Hab in the western region and Iab in the eastern region, which growed
the same cultivar named Miyagawa Wase. The comparison revealed
significant differences in soil chemical properties which could be
associated with the variations in fruit quality (Fig. 5 and Table 1). The
gray box in Fig. 5A represents the recommended fertilization stan-
dards by RDA29. The Iab orchard had a low level of available phosphate
content and a high level of Exch. Ca content due to the characteristics
of volcanic ash soil found in the eastern region. Most orchards had
adequate levels of organic matter due to government policies aiming
at increasing the supply of organic fertilizer. However, unlike the Iab
orchard, the Hab orchard had a high level of electrical conductivity
which indicates an excess of nutrients in the soil that can negatively
impact the nutrients uptake by the mandarin tree. The Iab orchard
performed the agricultural practices in later months than the Hab
orchard did with an exception of pruning (Fig. 5B). The sugar content
of Iab was higher, except in late October, and the fruit size of Iab was
larger, except in early November (Fig. 5C), when compared to those of
Hab. The fruit sugar content from both orchards exceeded the mar-
ketable standard of 10° Brix. However, if this pattern persists annually,
it is advisable to harvest from the third week of October to the first
week of November for the Iab orchard and from the first week of
November to the fourth week of November for the Hab orchard
(Fig. 5D) in order to obtain prime grade fruit (54–63mm).

Significant variations in fruit ripening and quality were observed
between the two orchards, even though they were growing the same
cultivar, indicating the identical genotype. These differences can be
attributed to distinct environmental factors and variations in agri-
cultural practices and management as discussed earlier. Similarly,
notable variations in sugar content and fruit size were observed within
the same orchard (Fig. 5C), despite growing the same genotype. These
variations on a smaller scale are likely influenced by micro-
environmental factors. This clearly emphasizes the importance of
collectingmicro-environmental data within the orchard. Suchdata will
provide information on the environment ×management interaction
for researchers and profits for farmers and distributors. They can sell
and purchase high-quality fruits fromeach orchard at optimal times to
maximize their profits.

There were different trends in sugar content and fruit size among
orchards. The inter-orchard variation in fruit size, where the median
size ranged from 43.9 to 67.6mm, was significantly greater than the
inter-orchard variation in sugar content, which ranged from 9.8 to 12.1
°Brix (Fig. 6). Unlike sugar content, the orchardwith the lowestmedian
fruit size (Xab) and the orchardwith the largestmedian fruit size (Uab)
were clearly distinguishable (Fig. 6B). The Xab orchard produced fruits
of relatively high sugar content, whereas the Uab orchard produced
fruits of relatively low sugar content (Fig. 6A). As aforementioned in
the regional scale analysis (Fig. 4), it seems that sugar content and fruit
size are inversely related in mandarin fruit. To this end, the determi-
nation of harvest time is very important to balance the two mandarin
quality factors, which eventually increase the proportion of prime
grade fruit.

Additionally, the trend of sugar content increased over time in
most orchards, while the trend in fruit size did not follow a consistent
pattern across orchards (Supplementary Fig. 2). Mandarin fruit was
harvested simultaneously starting from the third week of October,
coinciding with the beginning of fruit quality surveys. The mixed-
effects model estimated that the mean sugar content continued

increasing over time, largely unaffected by ongoing harvesting, and
the continual increase of the mean sugar content was strongly sig-
nificant (p <0.001). When compared to the initial week, the third week
of October (denoted by 10-3), the estimated mean sugar content was
higher by 0.309, 0.308, 0.658, 1.047, 1.248, and 1.435 °Brix for 10-4, 10-
5, 11-1, 11-2, 11-3, and 11-4, respectively. The model estimated that the
mean fruit size decreased after the initial week, but the patternwas not
as clear as the mean sugar content. See Supplementary Table 1 for the
estimatedparametersunder themixed-effectmodel. The time factor is
limited to soil, weather, and agricultural practices in our research data.
When the same cultivar is planted, variations in the longitudinal trend
of fruit quality between orchards can be attributed to different envir-
onments and management.

The automatic machine learning (AutoML) algorithm, imple-
mented by the ‘h2o’ package in R30, predicted the fruit size better than
the sugar content when they were analyzed with the time of fruit
observation and orchard-level variables including the five agricultural
practices (fertilization, mulching, pruning, spraying, and thinning) and
the three weather variables (temperature, humidity, air pressure). The
selected model was the stacked ensemble model which resulted in
root mean square error (RMSE) = 0.97, mean absolute error (MAE) =
0.76, and R-square (R2) = 0.43 for sugar content and RMSE = 3.73,
MAE = 2.96, and R2 = 0.84 for fruit size. The orchard index was identi-
fied as the most important predictor followed by air pressure for both
sugar content and fruit size. At the orchard-level, the prediction of fruit
size is substantially better than of sugar content (Fig. 7), and it implies
that intra-orchard analysis may be needed especially to improve the
sugar content prediction.

Intra-field analyses
Significant variability in fruit quality was observed within orchards. In
addition to differences between orchards, it is crucial to comprehend
the variability of fruit quality within orchards, known as intra-orchard
differences. For illustrative purposes, the Iab orchard is selected in
Fig. 8. In the dataset, fruit samples were categorized into high, middle,
and low positions based on their height from the ground level, and
three samples were collected from each position per tree each week.
The distributions of sugar content and fruit size seemed to be quite
similar across the three position levels (Fig. 8A).

When analyzed with the mixed-effect model, there was a differ-
ence in expected sugar content based on the position, but the esti-
mated difference in average sugar content was minimal. Fruits in the
high position had higher sugar content than those in the middle
position only by 0.020 °Brix on average (p = 0.131), and fruits in the
middle position had higher sugar content than those in the low posi-
tion by 0.039 °Brix on average (p =0.000251). However, therewere no
statistically significant differences in fruit size among the three posi-
tions. Therefore, grading fruits based on their position appears to have
little practical significance. See Supplementary Table 2 for the esti-
mated parameters under the mixed-effect model.

Hierarchical clustering analysis grouped individual trees in the Iab
orchard into four clusters based on the observed trends of sugar
content and fruit size over time (Fig. 8). Oneof the clusters (Cluster 2 in
Fig. 8A) clearly shows an increasing trend of sugar content during the
survey period, whereas the other three clusters do not. On the other
hand, all of the four clusters show decreasing trends of fruit size
(Fig. 8B). There was substantial variation in sugar content among trees
over time, indicating potential room for improvement in sugar content
with specific management practices, even when the same cultivar is
planted in the same orchard. For instance, after identifying a group of
trees producing fruits with low sugar content through hierarchical
clustering analysis (Cluster 3 in Fig. 8A), customized agricultural
practices can be applied to each selected tree to improve its sugar
content. The groups were categorized based on sugar content in the
third week of October, when the investigation began. Trees with high
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sugar content in the third week of October maintained high sugar
content until the second week of November. In contrast, trees with
initially low sugar content retained low sugar content until the second
week of November. Therefore, trees with low sugar content may
benefit from tailored agricultural practices such as rain-shelter culti-
vation, irrigation control, foliar fertilization, proper pruning, and
thinning to enhance their sugar content. Similarly, when clustering
analysis identifies trees with very small fruit sizes, simultaneous agri-
cultural practices like fruit thinning or late harvesting can be applied.
As such, clustering analysis can be another statistical tool for

individualized agriculture by determining specific needs of individual
trees to improve sugar content and fruit size.

The orchard-level mixed-effects model demonstrates the poten-
tial of individualized agriculture within each orchard. When consider-
ing the harvest time and the five orchard-level agricultural practices
only, 19% of the variance in sugar content was explained (R2 = 0.19).
However, the orchard-level mixed-effects model explained 38% of the
variance in sugar content (R2 = 0.38), indicating that the current
orchard-level practices have limited capacity to explain the variation in
sugar content between orchards. On the other hand, when the tree-
level model was applied, 66% of the variance in sugar content was
explained (R2 = 0.66). Figure 9displays the scatterplotof predicted and
observed values of sugar content, highlighting the different predictive
powers between inter-field analysis (Fig. 9A) and intra-field analysis
(Fig. 9B). It appears that the predictive power of the intra-field analysis
is better than of the inter-field analysis which implies that farmers can
benefit from tree-level management (individualized agriculture) in
addition to the orchard-level management (precision agriculture), and
an agricultural DT can be a helpful tool for monitoring individual trees
in an orchard. As such, the development of DT has a potential to open
up the transition from precision agriculture to individualized agri-
culture. All supplementary data used to create all figures (Fig. 1 to 9)
and supplementary figures (Supplementary Fig. 1 and 2) provided in
Supplementary Data.

Agricultural DT demonstration
For the purpose of demonstration, a tree of the Iab orchard is
demonstrated using the agricultural DT (https://stevenkimcsumb.
shinyapps.io/ShinyDT/). In the webpage, the user may select the
orchard (Iab), click on the Submit button below, select the fifth tree
(Iab-5), and click on the Submit button below. After the submission,
there are nine panels shown: Map, Soil, Weather, Agricultural Practice,
Sugar Content Distribution, Fruit Size Distribution, Sugar Content
History, and Fruit Size History. TheMap panel presents the location of
the Iab orchard in Jeju Island. The Soil panel presents the percentile of
each soil component (available phosphate, exchangeable potassium,
exchangeable calcium, exchangeable magnesium, soil acidity, organic
matter, electric conductivity) compared to other areas in the island. It
also shows whether the observed level is within the RDA recommen-
dation or not. The Weather panel presents the percentile of tempera-
ture, humidity, and air pressure compared to other areas in the island.
TheAgricultural Practice panel compares thefive agricultural practices
(fertilization, mulching, spraying, pruning, and thinning) to other
orchards in the island. The Sugar Content Distribution and Fruit Size
Distribution compare the sugar content and fruit size, respectively. In
each panel, the Iab orchard is compared to other orchards in the
island, and the Iab-5 tree is compared to other trees in the Iab orchard.
The Sugar Content History and Fruit Size History show the weekly
patterns of sugar content and fruit size, respectively, at orchard-level
and tree-level. The DT will show that the average sugar content and
fruit size increases and decreases, respectively, with respect to time at
both orchard-level (Iab) and tree-level (Iab-5).

Fig. 5 | Inter-orchard analysis between the two orchards, Hab (located in the
eastern region) and Iab (western region).The soil chemical properties of the two
orchards are compared with the fertilization standard (gray box) recommended by
the Rural Development Administration (A). The monthly frequency of each agri-
cultural practice is compared between the two orchards, and Comparison of
monthly number of agricultural practices performed in each orchard (B). The violin
plots compare the distributions of sugar content and fruit size in the two orchards
over time; N = 300 mandarins in mid-10, late-10, and early-11 for Hab; N = 300 in
mid-10 and late-10 300 and N = 600 in early-11 for Iab. The 5-number summaries
used for the boxplots (minimum, first quartile, median, third quartile, and max-
imum) of sugar content (°Bx) are (7.7, 9.5, 10.5, 11.4, 14.2) in mid-10, (6.8, 10.3, 11.2,

12.1, 13.9) in late-10, and (8.8, 10.2, 11.3, 12.5, 15.0) in early-11 for Hab; and (7.2, 10.3,
11.7, 12.9, 16.3) inmid-10, (8.2, 10.1, 10.9, 11.6, 14.4) in late-10, and (8.8, 11.6, 12.2, 12.8,
15.5) in early-11 for Iab. The 5-number summaries of fruit size (mm) are (40.6, 43.2,
45.8, 48.8, 51.4) in mid-10, (40.6, 43.3, 46.1, 48.7, 51.4) in late-10, and (47.9, 52.4,
56.7, 61.3, 65.5) in early-11 for Hab; and (44.9, 53.2, 61.6, 67.8, 75.8) in mid-10, (47.1,
49.9, 53.2, 56.3, 59.4) in late-10, and (40.1, 41.9, 45.4, 53.1, 58.7) in early-11 for Iab (C).
The barplots show the proportions of unsaleable, saleable, and prime grade were
compared over time; N = 300 mandarins in 10-3, 10-5, 11-1, and 11-2 and N = 288
mandarins in 11-3 and 11-4 for theHaborchard;N = 300mandarins in 10-3, 10-4, 11-1,
and 11-2 for the Iab orchard (D). Source data are provided as a Source Data file.

Table 1 | The comparisonbetween theHaband Iab orchards in
Jeju Island

Hab (western
region)

Iab (eastern
region)

Location Latitude (°N) 33.28 32.33

Longitude (°E) 126.37 126.74

Soil Component Available phosphate
(mg/kg)

205 180

Exchangeable potas-
sium (cmolc/kg)

0.94 0.49

Exchangeable calcium
(cmolc/kg)

7.4 10.7

Exchangeable magne-
sium (cmolc/kg)

1.9 3.7

Soil acidity (1:5) 5.4 6.3

Organic matter (g/kg) 128 134

Electrical conductivity
(dS/m)

2.64 1.39

Agricultural
Practice

Pruning (month) Mar Mar

Fertilization (month) Mar, May May, Aug

Spraying (month) Apr May

Mulching (month) May Jun

Thinning (month) Jul Sep

Fruit Quality Mean (SD) of sugar
content (°Brix)

Mid-Oct: 10.4
(1.31)
Late Oct: 11.2
(1.29)
Early Nov:
11.4 (1.39)

Mid-Oct: 11.7
(1.97)
Late Oct: 11.0
(1.19)
Early Nov:
12.1 (1.17)

Mean (SD) of fruit
size (mm)

Mid-Oct: 46.0
(3.15)
Late Oct: 46.0
(3.10)
Early Nov:
56.7 (5.17)

Mid-Oct: 60.9
(8.82)
Late Oct: 53.1
(3.65)
Early Nov:
47.5 (6.04)

Prime grade (%) Mid-Oct: 0.0
Late Oct: 0.0
Early Nov: 39.0

Mid-Oct: 21.3
Late Oct: 33.7
Early Nov: 35.7

Unsalable (%) Mid-Oct: 84.3
Late Oct: 81.7
Early Nov: 27.0

Mid-Oct: 42.3
Late Oct: 35.7
Early Nov: 28.7
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Discussion
Digital twin for soil management
Incorporating detailed soil information into regional monitoring for
precision agriculture would be highly beneficial. One promising
approach is the utilization of satellite image analysis proposed by ref.
31. This method involves the analysis of data obtained through remote
sensing, allowing for the visualization of the distribution of individual
soil components on a field-by-field basis. It can also provide critical soil
information at a fine scale. They demonstrated that a near-infrared
spectroscopy technology can efficiently measure nitrogen,

phosphorus, and potassium in soil. This non-destructive method can
resolve disadvantages associated with conventional destructive
methods for soil measurement. Furthermore, it can be combined with
image data from UAV or satellites to streamline and expedite data
acquisition process. For instance, field-scale soil moisture maps have
been generated by utilizing data from Landsat8,32, including the nor-
malized difference vegetation index and land surface temperature.
Additionally, yield prediction models have been established by inte-
grating soil moisture and maize yield data33. Using orchard-level soil
chemical information from satellite imagery, it will be feasible to

Fig. 7 | The scatterplot of thepredicted andobserved sugar content and fruit size usingmachine learningmodels basedonweather and fruit quality data. A: sugar
content, B: fruit size. Source data are provided as a Source Data file.

Fig. 6 | The distributions of sugar content and fruit size by orchard. A: sugar
content,B: fruit size. Theorchards areorderedby themedian sugar content (A) and
the median fruit size (B) among N = 39,679 fruits observed between mid-October
(the third week of October) and late November (the fourth week of November) in
the 27 orchards. The Nab orchard has the lowest median sugar content (°Bx), and
the 5-number summary of its boxplot (minimum, first quartile, median, third
quartile, andmaximum) is (6.6, 9.1, 9.8, 10.6, 14.1). The Cbb orchard has the highest

median sugar content, and the 5-number summary of its boxplot is (8.2, 11.3, 12.1,
12.9, 15.3). The Xab orchard has the smallest median size (mm), and the 5-number
summary of its boxplot is (40.3, 42.3, 43.9, 46.3, 54.5). The Uab orchard has the
largest median size (mm), and the 5-number summary of its boxplot is (55.9, 63.7,
67.6, 71.8, 80.4) where the minimum size observed Uab (55.9mm) is greater than
the maximum size observed Xab (40.3mm). Source data are provided as a Source
Data file.
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develop a DT which can generate regional and orchard-level maps of
soil profile and predict fruit quality.

Fruit trees occupy a larger space than other crops, and soil com-
ponents vary within the space of an orchard. A fruit tree is directly
affected by the soil underneath the tree rather than all soil in the entire
field. Furthermore, achieving uniform fertilizer distribution within the
two-dimensional space of an orchard is challenging, and it becomes
even more complex to discern variations in fruit quality based on the
regional or orchard-level soil chemical components. If we could mea-
sure the soil chemical components at specific points using an IoT
sensor, it would be feasible to apply fertilization tailored to each
component’s needs. This means that each tree would receive the
precise amount of soil nutrients necessary for its optimal growth, and
point-specific fertilization would facilitate precision agriculture and
precision conservation by minimizing fertilizer misuse.

A map representing the soil chemical properties should provide
interactive soil and fruit information on the website for each point in

the field, along with spatial information for stakeholders (e.g., policy-
makers, researchers, farmers). The GIS serves as a fundamental fra-
mework for analysis of all data in relation to location. Looking ahead,
there is an opportunity to integrate spatial information with data on
fruit quality, weather conditions, and agricultural practices, including
activities like spraying, pruning, and thinning. This integration pro-
vides regional-level, orchard-level, and tree-level information.

Digital twin for agricultural practice management
Agricultural practices have a direct and significant impact on fruit
quality. Unlike certain environmental factors, thesepractices are under
human control and can be implemented throughout the year. Asmore
data accumulates, the monthly records of agricultural practices
become increasingly valuable. Moreover, information on agricultural
practices from neighboring orchards of a specific orchard is more
relevant than information from distant areas. This localized informa-
tion is rooted in the local environment and accounts for inter-field

Fig. 8 | Intra-orchard analyses of the Iab orchard. The distribution of sugar
content and of fruit size are compared by the position of the fruit on the tree with
respect to time; 3 mandarins per tree (one in each position) and 100 trees. The
distributions are similar across the three positions, but they are different with
respect to time. Combining all positions, the 5-number summaries for the boxplots
(minimum, first quartile, median, third quartile, and maximum) of sugar content
(°Bx) are (7.2, 10.3, 11.7, 12.9, 16.3) in 10-3, (82, 10.1, 10.9, 11.6, 14.4) in 10-4, (8.9, 10.7,

11.8, 12.3, 15.1) in 11-1, and (8.8, 12.2, 12.6, 13.0, 15.5) in 11-2; and the 5-number
summaries of fruit size (mm) are (44.9, 53.2, 61.6, 67.8, 75.8) in 10-3, (47.1, 49.9, 53.2,
56.3, 59.4) in 10-4, (46.9, 50.0, 53.1, 55.8, 58.7) in 11-1, and (40.1, 41.1, 41.9, 43.1, 43.9)
in 11-2 (A). The hierarchical clustering analysis of sugar content and fruit size
(longitudinal observations of the 100 trees) is shown using 4 clusters (B). Source
data are provided as a Source Data file.
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variations. Spraying data, in combination with spatial and weather
data, can serve as an effective disease and pest monitoring system.
Since the spread of fungal diseases is closely linked to weather con-
ditions, such as raindrops and wind34,35, this system can be used to
predict disease outbreaks and facilitate preventive measures. By clo-
selymonitoring and analyzing time-series data on disease outbreaks in
conjunction with spatial information, it may be possible to lower the
likelihood or reduce the loss due to disease spread. The important
initial step is to establish automated systems for frequent data col-
lection and management for all orchards.

The significance of agricultural practices can be assessed by
increased fruit yield. For instance, pruning plays a crucial role in
shaping trees and promoting flower bud differentiation, directly
influencing fruit production. By meticulously organizing pruning-
related data (such as pruning techniques, location of flower buds, by-
product weight resulting from pruning, etc.) and metadata for survey
items, the correlation between pruning and fruit production can be
thoroughly analyzed. Furthermore, this approach allows for a com-
prehensive investigation into yield variations amongdifferent cultivars
based on pruning methods. As a result, the functionality of an agri-
cultural DT can be leveraged to create optimal environmental condi-
tions tailored to specific cultivars.

Digital twin for weather information management
Weather information plays a crucial role in agricultural practices and
fruit quality. For example, flower or fruit thinning should commence
during the flowering period, and it is important to avoid rains when
thinning chemicals are applied. Decisions on the timing of agricultural
practices should bemade based on weather information, and it can be
equipped in a DT. Moreover, it is pivotal to develop various weather
metrics andmetadata to study their influence on specific targets, such
as fruit quality, based on the crop species. This is necessary because
each crop has its unique optimal environmental conditions.

Digital twin for fruit quality management
The overarching goal is to increase the fruit quality, but too many
factors are associated with it. As presented in this study, fruit quality
significantly varies between orchards and within orchards (e.g., the Iab
orchard in Fig. 8). In particular, given the regular data updates, the

tree-level variations and the longitudinal patterns can be monitored
for the purpose of quality control. In this sense, individualized agri-
culture will become a feasible agricultural system in the future. The
current agricultural system, which produces high-quality products in
small areas, such as greenhouses, can be expanded and applied to
large areas of open fields in the future. The application of individua-
lized agriculture is essential not only for the production of high-quality
agricultural products in large areas but for multi-variety small-scale
production systems as well. Recently, space agriculture has been
explored in the context of space development, and the application of
individualized agriculture is fundamental to produce agricultural
products in a limited space.

An agricultural DT must be a shared tool for stakeholders. It
requires active discussion among stakeholders, updates on a regular
basis, and continuous improvements for helpful real-world feedback.
For policymakers, data visualization like Fig. 2 can guide their regional
decisions. Such information can be reflected in the budget of policy-
makers who are in charge of agricultural soils and fertilizer supply in
Jeju Island. For distributors, data visualizations like Figs. 6, 7, and 8 can
support inter-orchard quality assessment and tracking. If more
detailed information is available than presented in this study, a DT can
provide information regarding yield forecasts, expected profits, and
management of distributed fruit. For researchers, data visualization
like Figs. 3 and 4 can help understand regional and inter-orchard var-
iations, generate and test hypotheses, andmake practical suggestions.
They can even plan matched studies by cultivar and conduct cultivar-
specific studies. Finally, for farmers, Fig. 8 can help assess intra-
orchard fruit quality and monitor longitudinal patterns after per-
formingparticular agricultural practices, and aDTcanpresent detailed
information at tree-level.

Improvingormaintaininghigh fruit quality is both science and art,
and farmers shall balance between empirical evidence and farmers’
observations, experiences, and knowledge. At this point, it is an open
question whether an individualized tree-level management will be
more profitable than regional or orchard-level management. We need
to consider how to lower the cost of implementing DT. Themagnitude
of benefits from implementing DT is unknown as of now, and we need
a scientific approach to this question. We need to compare current
regional or orchard-level practice versus new individualized

Fig. 9 | The scatterplot of the predicted sugar content against true (observed) sugar content. The inter-field mixed-effect model results in R2 = 0.380 (A). The intra-
field mixed-effect model results in R2 = 0.662 (B). Source data are provided as a Source Data file.
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agriculture guided by DT using a controlled randomized experiment.
Dividing orchards into the control zone and experimental zone, it is
necessary to confirm and estimate the benefit of DT. This study is
limited to mandarin fruit with observational data, but we want to
observe and experiment with more kinds of fruit. Unlike the current
speed of technological advances, it will be a patient process.

Applying individualized agriculture to cereal or vegetable crops is
very challenging. Because individual plants of cereal or vegetable
crops are not genetically identical, it is difficult to expect the same
quality or yield under the same environment or management. In con-
trast, fruit crops (like mandarins) are relatively easy to study at indi-
vidual levels and feasible to apply individualized agriculture because
each tree propagates through asexual reproduction and have identical
genomes. Thus, when researching orchards that cultivate a single
cultivar (genotype), the variations in the phenotypes they exhibit are
influenced by the environment and agricultural practices (manage-
ment). Researching this genotype × environment × management
interaction remains highly challenging, and more experimentations
are needed to address this complex question. From the consumers’
perspective, regardless of the scientific merit of individualized agri-
culture, most consumers would not purchase a ten-dollar high-quality
mandarin inSouthKorea and elsewhere. Future studies should address
lowering the cost and labor in data collection, precision agriculture,
and individualized agriculture.

The long-term objective of our research team is to make regio-
nal, inter-orchard, and intra-orchard informationmore complete and
accessible through interactive digital platforms, tailored to the goals
and needs of stakeholders. We are currently developing a stream-
lined process that automatically retrieves data via an Open API,
securely stores it on a cloud server, conducts comprehensive ana-
lyses, and disseminates the results to various IT devices. As an initial
step, we have developed a freely accessible webpage (https://
stevenkimcsumb.shinyapps.io/ShinyDT/) for demonstration pur-
poses based on all information currently available to us. This version
of DT does not demonstrate how to automatically suggest agri-
cultural practices and how to assess the effect of the agricultural
practices on fruit quality, and it is a main limitation of our study. The
current form of interactive applet is to be improved over time and
communicated with the stakeholders in order to operate in a closed
loop. We anticipate that the agricultural DT opens a new era of
individualized agriculture via interdisciplinary collaboration among
agricultural researchers, farmers, statisticians, software engineers,
and more.

Methods
Data resources and collection through Open API
Publicly accessible Open APIs, which are potential sources for
developing an agricultural DT for mandarin orchard management,
were collected from multiple sources on the data portal (https://
www.data.go.kr). All processes including data collection, parsing,
and analysis were performed using statistical software R36. The
regional codes were obtained from theMOIS, soil data were obtained
from the RDA of Republic Korea, and data on fruit quality, weather,
and agricultural practices of mandarin orchards were obtained from
the JDC (Fig. 1).

The soil data analyzed from 2020 to 2022 were collected by the
administrative district of Jeju using ‘xml’37 and ‘jsonlite’38 packages in R.
The chemical properties of 30,261 agricultural soils in Jeju Island were
crawled, and 5939 orchard soils were used for our analysis. The soil
data included available phosphate, Exch. K, Ca, and Mg, pH, organic
matter, and electrical conductivity.

The JDC randomly selected the 30mandarin orchards in Jeju and
collected data on weather, agricultural practices, and fruit quality
from each orchard. The weather data were obtained by installing a
sensor at each orchard which is capable of recording temperature,

relative humidity, and air pressure (daily average). The data on
agricultural practices were self-reported by the farmers, and they
reported practice type, treatment amount, date, units, and agro-
chemical product name. One hundredmandarin trees were randomly
selected in each orchard, and these trees were repeatedly observed
from the third week of October to the fourth week of November in
2021. The sugar content (°Brix), fruit size (mm), and fruit position
(high, middle, and low) were recorded with three replicates (one per
fruit position level) each week per tree. These fruit quality data were
measured manually by investigators using destructive measuring
methods. All fruit-level information (sugar content, fruit size, and
position) was matched with the month, week, day, and tag number
(tree identification number). See the Data Availability section for
more information.

Data parsing
Geocoding is a computation process of converting address informa-
tion into geographic coordinates (latitude and longitude), and it canbe
used tomap locations. All address information in Jeju Island associated
with the soil data was integrated into one file for the geocoding. All
data were geocoded to add the spatial information through the server
developed by Kakao, and all data were merged using R packages
including ‘rjsonio’39, ‘data.table’40, ‘dplyr’41, and ‘httr’42.

A single data frame was created by merging the geocoding data
and the soil data, and it was used for map visualization using R
packages including ‘terra’43, ‘maps’44, ‘sp’45, and ‘sf’46. For this map
visualization, the GIS maps (shape files) provided by the NSDIP were
used (Fig. 1). The regional-level, orchard-level, and tree-level data were
merged and used for inter-orchard analysis (e.g., variation between
orchards) and intra-orchard analysis (e.g., variation between trees
within the same orchard). Combining all data, an agricultural DT was
created with the four kinds of information: soil, weather, agricultural
management practice, and fruit quality.

Regional-scale data visualization and analysis
For the regional-scale data visualization, a 1-km grid map was created
by a shape file using the QGIS program (v 3.26.2)47, and it was com-
bined with the soil data (available phosphate, Exch. K, Ca, and Mg, pH,
organic matter, and electrical conductivity) after averaging observed
values of each soil chemical component within each grid (Fig. 2A–G).
The KDE was applied to describe the regional level of each soil com-
ponent. The kernel-smoothed intensity function could be estimated
given soil data values with the associated longitudes and latitudes.
Therewere regions where data are sparse, and it was assumed that soil
conditions aremore similar when two regions are closer to each other.
The KDE was plotted with a color scale to represent locations and
observed values of soil data. For clear visual presentations, the plot
concentrated the areas of soil data collection by using the top 25% of
estimated density values48.

The locationof eachorchard canbe identifiedby its longitude and
latitude, and this information was used for regional presentations of
quality over time. The average fruit size and sugar content at each
orchardwere averaged for the following three time periods: the fourth
and fifth weeks of October, the first and second weeks of November,
and the third and fourth weeks of November. The temporal averages
were plotted at the given longitudes and latitudes (Fig. 3).

The observed trend of fruit size and sugar content with respect
to each soil- and weather-related variable were visualized using
smooth splines (Fig. 4). When the soil-related data were not available
for the exact location of an orchard, the soil data were sorted
according to the Euclidean distance from the orchard, and the
averaged values of close locations were used as approximations. The
regional-scale analysis was for descriptive purposes, and we state
here that it was not for causal inference as the merged data were not
obtained from an experiment.
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Inter-orchard analyses
Farmers’management practices are factors which distinguish between
orchards. These are important as farmers can decide and control
unlike weather conditions in open fields. Farmers self-reported their
agricultural practices including thinning, mulching, spraying (pest
control), fertilization, and pruning recorded from January to October
in 2021. The frequency and time of each practice at each orchard
varied, and themonthly frequency of each type of agricultural practice
was visualized by ridge plot (Supplementary Fig. 1).

For demonstration purposes, we randomly selected two orchards
(which grew the same cultivar) and compared their observed soil
conditions, agricultural practices, and fruit quality (Fig. 5). We then
separated the fruit quality data by orchard (27 orchards), ordered the
orchards by the median sugar content andmedian fruit size, and used
boxplots to graphically describe the inter-orchard variability of sugar
content and fruit size (Fig. 6). In order to visualize the longitudinal
patterns of mean sugar content and mean fruit size by orchard, we
used the spaghetti plots between mid-October and late November
(Supplementary Fig. 2).

To quantify the variation of sugar content and fruit size explained
by orchard and harvest time, the R2 was calculated under the mixed-
effect model. This statistical model accounts for similarity of fruit
quality within orchards, and it is useful particularly when observed
fruit quality valueswithinorchards are correlatedwhich is a reasonable
assumption as shown in Fig. 6 and Supplementary Fig. 2. The ‘lme4’49,
‘lmerTest’50, and ‘MuMIn’51 packages were used in R for this analysis. In
thismixed-effectmodel, the orchardwas treated as the random-effect,
and the time was treated as the fixed-effect. Two-sided p-values were
calculated for the relationship between time and fruit quality and the
p-values are adjusted for the multiple testing52.

An agricultural DT can be more valuable when orchard-level
variables can predict the fruit quality. In addition to the aforemen-
tioned orchard-level variables, the orchard-level weather variables
(temperature, humidity, and air pressure) were considered for pre-
dictive analysis of sugar content and fruit size. To gauge the predictive
power of these orchard-level variables, an automaticmachine learning
(AutoML) algorithm was implemented with the following predictors:
time (week and month), the three weather variables (temperature,
humidity, and air pressure), the frequency of each of the five agri-
cultural practices (thinning, mulching, spraying, fertilization, and
pruning), and the orchard index. The AutoML algorithm compared the
predictive performance of multiple machine learning algorithms and
automatically selected the best one. The AutoML was implemented
using the ‘h2o’ package30 in R. The predicted values and observed
valueswere plotted (Fig. 7), and theR2, RMSE, andMAEwere calculated
to measure the predictive performance.

Intra-orchard analyses
As aforementioned, one hundred trees were randomly selected and
observed weekly in each orchard, and each tree was identified by a
unique tag number. There were three levels of fruit position (low,
middle, and high) determined based on the height from ground level.
One fruitwas taken fromeachpositionper treeperweek, so therewere
a total of 300 fruit observed per orchard per week. One orchard was
selected, and the hierarchical clustering analysis was used to group
similar longitudinal trends for demonstration purposes (Fig. 8).

In addition to the orchard-level variation (inter-orchard), we
assumed that the tree-level variation (intra-orchard) is another level of
random-effect. We added the tree-level random-effect to the afore-
mentioned mixed-effects model. Under this statistical model, orchard
and treewere treated as the independent random-effects, the time and
fruit position were treated as the fixed-effects. Two-sided p-values
were calculated for the fixed-effects and adjusted for the multiple
testing52. The predictability of the inter-orchard analysis and the intra-
orchard analysis were compared by plotting the predicted values and

observed values of sugar content were visualized (Fig. 9). This com-
parison is to demonstrate potential benefit and necessity of tree-level
analysis, in addition to the orchard-level analysis, for explaining the
unknown source of variance in the fruit quality.

Agricultural DT interface applet
Data collection and analysis are not sufficient for successful indivi-
dualized agriculture, and farmers shall monitor individual trees on a
regular basis. In this regard, it will be convenient if a user-friendly
applet provides summaries of one’s orchard (and comparison with
other orchards in near locations) and a specific tree (and comparison
with other trees in the orchard). For demonstrations with currently
available data, we created an interface applet which is freely and
easily accessible. If a user selects an orchard and then a tree of
interest, the interactive applet provides the following information:
(1) geographic location of the orchard, (2) regional soil components
with RDA recommendations and comparison to other orchards in
Jeju Island, (3) weather information with comparison to the other
orchards, (4) agricultural practices with comparison to the other
orchards, (5) inter- and intra-orchard comparison of sugar content,
(6) inter- and intra-orchard comparison of fruit size, (7) inter- and
intra-orchard history of sugar content, and (8) inter- and intra-
orchard history of fruit size.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data for the figures are provided in the Source Data file. All data
(soil chemical properties, fruit quality, weather, agricultural practice,
and the GISmap) used in this study have been deposited in the Github
(https://github.com/heoseong/Digital_twin) and Zenodo repository
(https://zenodo.org/records/10531851, https://doi.org/10.5281/
zenodo.10531851)53. The data (soil chemical properties, fruit quality,
weather, agricultural practice) used in this study are available in the
open data portal (https:///www.data.go.kr) via Open API after regis-
tration and authorization process. The data on the GIS map of Jeju
Island used in this study are available in the National Spatial Data
Infrastructure Portal (https://www.vworld.kr) after registration and
authorization process, and accessibility is limited to users in Korea.
The regional codes of Jeju Island are available in the Ministry of the
Interior and Safety (https://www.code.go.kr/stdcode/regCodeL.do),
and the usermust specify Jeju Island in Korean (제주특별자치도) in the
dropdown menu of city/province (시/도) of the area selection (지역선

택) to obtain the relevant data. Source data are provided with
this paper.

Code availability
All codes and associated data are available in the Github (https://
github.com/heoseong/Digital_twin) and Zenodo repository (https://
zenodo.org/records/10531851, https://doi.org/10.5281/zenodo.
10531851)53. The source code of the applet (Shiny DT) is also avail-
able in the same Github and Zenodo repository.
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