
Article https://doi.org/10.1038/s41467-024-45652-x

A landscape of gene expression regulation
for synovium in arthritis

Feng Jiang 1,3, Shou-Ye Hu2,3, Wen Tian 1,3, Nai-Ning Wang1, Ning Yang1,
Shan-Shan Dong 1, Hui-Miao Song1, Da-Jin Zhang1, Hui-Wu Gao1, Chen Wang1,
Hao Wu1, Chang-Yi He1, Dong-Li Zhu1, Xiao-Feng Chen 1, Yan Guo 1,
Zhi Yang2 & Tie-Lin Yang 1

The synovium is an important component of any synovial joint and is themajor
target tissue of inflammatory arthritis. However, the multi-omics landscape of
synovium required for functional inference is absent from large-scale resour-
ces. Here we integrate genomics with transcriptomics and chromatin acces-
sibility features of human synovium in up to 245 arthritic patients, to
characterize the landscape of genetic regulation on gene expression and the
regulatory mechanisms mediating arthritic diseases predisposition. We iden-
tify 4765 independent primary and 616 secondary cis-expression quantitative
trait loci (cis-eQTLs) in the synovium and find that the eQTLs with multiple
independent signals have stronger effects and heritability than single inde-
pendent eQTLs. Integration of genome-wide association studies (GWASs) and
eQTLs identifies 84 arthritis related genes, revealing 38 novel genes which
have not been reported by previous studies using eQTL data from the GTEx
project or immune cells.We further develop amethod called eQTac to identify
variants that could affect gene expression by affecting chromatin accessibility
and identify 1517 regions with potential regulatory function of chromatin
accessibility. Altogether, our study provides a comprehensive synoviummulti-
omics resource for arthritic diseases and gains new insights into the regulation
of gene expression.

Synovium, composed of loose connective tissue, is the major site of
inflammation in arthritic diseases such as osteoarthritis (OA), rheu-
matoid arthritis (RA), and juvenile idiopathic arthritis (JIA)1. In inflam-
matory arthritis, activated synovial fibroblasts produce enzymes such
as MMPs that degrade joint structures and promote the inflammatory
process2.

Genome-wide association studies (GWASs) have identified hun-
dreds of loci for arthritic diseases3,4. Most of these variants are located
in noncoding regions, which affect diseases primarily through reg-
ulatory mechanisms on the transcriptome. Expression quantitative
trait loci (eQTL) have proven useful in addressing the regulatory

mechanisms of GWAS variants5–7. However, eQTL signals are generally
tissue-specific6,8,9, and the ability to detectmechanistically informative
expression effects depends on assaying expression data from suffi-
cient numbers of samples from disease-relevant tissues10. Synovium is
an essential tissue associated with many arthritic diseases, but the
largest human synovium sequencing dataset published to date
includes only 77 samples11. Therefore, it is necessary to conduct eQTL
analysis for synovium in a relatively large population.

Many eQTLs influence gene expression through effects on chro-
matin, such as altering regulatory element activity12–14. Some studies
have analyzed the effect of variants on chromatin state by measuring
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chromatin accessibility and gene expression at the population
level13–15. However, the exploration of this process is limited by the lack
of large panels of reference chromatin accessibility features from
relevant tissues.

In this work, we identify 5381 independent eQTLs and 4765 eQTL
genes based on the genomic and transcriptomic features of human
synovium in up to 245 OA patients. With much larger sample size than
the previous study (245 vs 77), ourwork provides an eQTL resource for
understanding the role of synovium in arthritis. We also integrate our
identified synovium eQTLs with GWAS summary data for multiple
arthritis diseases and uncovermany novel effect genes which have not
been reported before. Lastly, we develop the eQTac method, which
could identify variants that could affect gene expression by affecting
chromatin accessibility without population-scale ATAC-seq data.
Taken together, our work has significant implications for under-
standing how variants function in synovium and the development of
arthritic diseases.

Results
Synovium cis-eQTL identification and characterization
To identify genetic loci associated with transcript abundance in
synovial tissue, we generated gene expression and genotype data from
a population of 245 OA patients who underwent knee replacement
surgery (Fig. 1a, Supplementary Table 1). After quality control, we
obtained 4,260,261 single nucleotide polymorphisms (SNPs) and
19,381 expressed genes from 202 individuals with matched genomes
and transcriptomes.

Cis-eQTLs were calculated for all expressed genes in the cis region
(<1Mb) with additional covariates (sex, age, PEER factors, and geno-
type PCs) (see “Methods” section).We identified 429,021 SNPs (eSNPs)
significantly associated with expressions of 4765 genes (eGenes) at a
5% falsediscovery rate (FDR). There are27,013 commoneSNPs and462
common eGenes between our results and the previously published
synovium eQTL study in 77 individuals11, which identified 67,501 eSNPs
and 868 eGenes (Supplementary Fig. 1).

Most of the eSNPs were only associated with one eGene (Sup-
plementary Fig. 2). The eSNP hot spot region extended from 100 kb
upstreamof the transcriptional start site (TSS) to 50kb downstreamof
the transcriptional end site (TES). Themost significant eSNP for eGene
is named lead eSNP. Approximately 38% (1803/4765) and 28% (1339/
4765) of lead eSNPs were located upstream and downstream of the
target eGenes, respectively (Fig. 1b). Besides the known regulatory
regions, lead eSNPs were also located in the intergenic (35%) and
intronic regions (42%) (Fig. 1b), supporting the regulatory effects of
noncoding regions.

The effect sizes of lead SNPs on target genes were decreased
significantly with increasing distance to the target eGene TSS (Pearson
r = −0.14, P = 2.84 × 10−23, Fig. 1c, Supplementary Fig. 3). As the effect
sizes of lead SNPs were positively correlated with the coefficients of
variation (CVs) in target gene expressions even after adjusting gene
expression levels (Pearson r =0.22, P = 7.32 × 10−53, Fig. 1d and Sup-
plementary Fig. 4), genes located far from their lead SNPs should have
small variations among population. However, we found that some
genes furthest from their lead SNPs exhibited the largest variation
(Fig. 1e, see “Methods” section), indicating the presence of long-range
regulatory effects. A similar observation has been made in mouse
embryonic stem cells (mESCs), where the gene expression CVs among
cellswere positively correlatedwith the enhancer-promoter distance16.

Our analysis also revealed that eGenes and non-eGenes exhibited
different tolerance levels to loss-of-function mutations (Fig. 1f, see
“Methods” section). Highly expressedgeneswithout any eQTL effect in
synovium were less tolerant to loss-of-function mutations in their
coding region than eGenes. This phenomenon has also been observed
in blood eQTL7, suggesting that eQTLs may enhance the tolerance of
target genes to loss-of-function mutations.

EQTLs with multiple independent signals showed stronger
effects
To identify the independent signals for eQTLs, we conducted a step-
wised conditional analysis and characterized the independent eQTLs
(see “Methods” section). We defined the independent primary eQTLs
with the highest ranking for each eGene, and the remaining indepen-
dent signals were referred to as secondary eQTLs. In total, we identi-
fied 4765 primary eQTLs and 616 secondary eQTLs (Supplementary
Data 1). Of the 4765 eGenes with primary eQTLs, 4201 eGenes (88.2%)
contained only one independent eQTLs, while 564 eGenes exhibited
significant secondary eQTLs (Fig. 2a), and most of the secondary
eQTLs were in close proximity to the primary eQTLs (Fig. 2b). Speci-
fically, the secondary eQTLs were located further away from the TSS
than primary eQTLs (median = 34.7 kb vs 23.9 kb, two-sided Mann-
Whitney test, P = 1.12 × 10−6) (Fig. 2c). This pattern might be primarily
caused by eQTLs located outside the genes. The distance showed no
difference whether or not normalized by gene length for independent
eQTLs located on genes (Supplementary Fig. 5).

For eGenes with multiple independent eQTLs, the effects of pri-
mary eQTLs were stronger than single signal primary eQTLs (Fig. 2d),
and explained higher ratio of gene expression variance (Fig. 2e, see
“Methods” section). Furthermore, eGenes with multiple independent
eQTLs showed higher heritability (Fig. 2f, see “Methods” section) and
higher tolerance to loss-of-function mutations (Fig. 2g). Together,
these findings suggest that characterizing independent signals rather
than just the top SNP for each eQTL, could enhance the understanding
of gene regulation.

Functional properties of independent eQTLs
To assess the functional properties of independent eQTLs, we con-
ducted the assay for transposase-accessible chromatin with high-
throughput sequencing (ATAC-seq) and identified 154,649 accessible
chromatin peaks in synovium of 10 arthritis patients (see “Methods”
section, Supplementary Table 1). ATAC-seq signals of independent
eQTLs were significantly higher than background SNPs and adjacent
regions (Supplementary Fig. 6), and the independent eQTLs showed
significant enrichment in open chromatin regions (Fisher exact test,
P = 1.58 × 10−48, fold change = 2.98, Fig. 3a). Using public histone mod-
ification data in synovium (Supplementary Fig. 7, Supplementary
Table 2), we also observed significant enrichment of eQTLs in active
histone markers (H3K27ac, H3K4me1, H3K4me3, H3K36me3), and a
concomitant depletion in heterochromatin marker (H3K9me3). We
have also compared our results with previous eQTL studies in other
tissues. Similarly, eQTL SNPs are enriched in the regions of tran-
scriptionally active chromatin (e.g., H3K4me3, H3K27ac) and depleted
in the heterochromatin (e.g., H3K9me3)17,18. These results suggest that
most cis-eQTL effects might be driven by genetic perturbations in
regulatory elements in active chromatin regions. Moreover, indepen-
dent eQTLs were positively enriched in 84% (105/125, FDR <0.05)
transcription factors binding sites (TFBSs) from theGTRDdatabase19 in
ATAC peaks (Fig. 3b), indicating the importance of TF binding in the
regulation of eQTL variants and open chromatin. The top 10 TFs are
enriched in immune-related gene ontology (GO) terms (Fig. 3c, Sup-
plementary Table 3). Specifically, 7 of the 10 TFs have been reported to
be involved in the immune cell differentiation or immune response
process (Supplementary Table 3).

Tissue specificity of independent eQTLs
To explore the tissue specificity of synovium, we compared synovium-
independent eQTLs with 49 other tissues from the GTEx project6.
Therewere 41.6% of the independent eQTLs showed significant signals
(significant SNP-gene pairs, FDR <0.05) in synovium, but not in any
GTEx tissues. We further performed mashR analysis20 (see “Methods”
section) to estimate the tissue specificity more stringently. The results
showed that the proportion of synovium eQTLs not shared with other
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tissues was ranged from 0.19 to 0.53 (Fig. 3d, Supplementary Fig. 8),
indicating the presence of tissue-specific genetic regulation in syno-
vium. In addition, we compared our synovium eQTL data with immune
cell eQTLs from DICE21 and BLUEPRINT22. The results (Supplementary
Fig. 9) showed that our synovium shared over 40% with stimulated
CD4+ and CD8+ T cells, NK cells and B cells, supporting the immune
signatures we observed from the top enriched TFs (Fig. 3b, c). The
shared score was higher than that obtained using the previous syno-
vium eQTLs data11 (Supplementary Fig. 9).

Considering the genomic position of synovium-specificity eQTLs,
we found that local eQTLs aremore likely to be shared amongdifferent

tissues, while distal eQTLs showed more synovium-specific manner
(Fig. 3e). It may be because tissue-specific eQTLs are more likely
affected by tissue-specific factors such as distal regulatory elements.

Colocalization of eQTLs and synovium-related GWAS Loci
To investigate the relationships between synovium-specific regulation
of gene expression and arthritic diseases predisposition alleles, we
usedour eQTLdata to annotate disease variants related to synovium in
25 GWAS datasets (Supplementary Data 2). We identified significant
enrichment of heritability for eQTLs at OA and RA GWAS loci using
partitioned heritability analysis23 (Fig. 4a, see “Methods” section). In
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addition, we used mental disorder GWASs as negative control, which
should not share synovium-specific diseasemechanisms. Indeed, there
was no enrichment between synovium eQTLs and mental disorder
GWAS loci.

To further identify effector genes driving GWAS signals, we con-
ducted colocalization analysis in the 25 synovium-related GWAS
summary datasets, to ascertain whether the same variant was asso-
ciated with both disease and gene expression levels (see “Methods”
section).We detected evidence of colocalization for 42 genes in RA, 34
genes in OA, 10 genes in ankylosing spondylitis (AS), and 1 gene in
juvenile idiopathic arthritis (JIA), respectively (Fig. 4b, Supplementary
Data 3). We compared our results with previous studies using eQTL
data from the GTEx project24–28 or immune cells28–32 to identify colo-
calized genes (Supplementary Table 4). As shown in Fig. 4b, the
numbersof novel genes specifically identified by our synoviumdataset
for OA, RA, and AS were 18, 18, and 2, respectively. As for JIA, the only
one colocalized gene was also identified by previous studies. We fur-
ther constructed aprotein–protein interaction (PPI) network for the 84
colocalized genes using the STRING database33. As shown in Supple-
mentary Fig. 10, the hub genes with the highest degree in the network
(CCR6, CD40, IRF5, ERBB2, and LRRK2) mainly participate in the
immune-related process. CCR6, IRF5, and CD40 are all well-known
autoimmune disease genes associated with RA or AS34–37. Their eQTL
signals were colocalized with RA GWAS in high posterior probability
(Supplementary Fig. 11). Specifically, ERBB2 and LRRK2 are firstly
identified by our synoviumdataset as colocalized genes for RA and AS,
respectively. ERBB2 is a known oncogene with significant role in
mediating tumor immune response38,39. LRRK2 is highly expressed in
immune cells40–42. Mutant LRRK2 could exacerbate immune response
and neurodegeneration in a chronic model of experimental colitis43.

Moreover, 35.7% (30/84) of the colocalized genes showed differ-
ential expression between normal synovium and arthritis synovium
(Supplementary Data 3, Supplementary Table 5). Gene ontology (GO)
and disease ontology (DO) enrichment analysis showed that the genes
colocalized with RA are primarily involved in immune-related GO or
DO terms, particularly the immune cellular function such as B cell, T
cell, leukocyte, lymphocyte, and some autoimmune diseases (Sup-
plementary Fig. 12, and Supplementary Data 4). For the other three
diseases (OA, JIA, and AS), no significant GO/DO enrichment result was
obtained since the number of their colocalized genes was limited.

To validate the effect of SNPs on gene expression and cellular
phenotypes, we selected an RA-associated SNP rs142845557 to con-
duct functional experiment. eQTL analysis showed that the allele A of
rs142845557 was significantly associated with increased expression of
JAZF1 (P = 7.3 × 10−8, β =0.28, Supplementary Fig. 13) with high prob-
ability of colocalization (PP.H4 =0.92, Fig. 4c). Epigenomic annotation
analysis showed that rs142845557 is located in histone markers of
active enhancer (H3K27ac and H3k4me1, Supplementary Fig. 14). The
rs142845557 was homozygous AA associated with increased JAZF1
expression inMH7A cells (Supplementary Fig. 15a), hencewe deleted a

358-bp genomic region containing rs142845557-AA using CRISPR/Cas9
in MH7A cells (Fig. 4d). The deletion efficiency was confirmed by gel
electrophoresis experiments (Supplementary Fig. 15b). As shown in
Fig. 4d, significantly decreased JAZF1 expression (P <0.01) was detec-
ted in rs142845557-AA deleted cells (KO) compared with the normal
control cells, indicating the regulation role of this SNP on JAZF1
expression. We further conducted a series of functional experiments
to examine the cellular phenotypes in rs142845557-KO cells, including
migration, invasion, proliferation, and apoptosis. Compared with the
control cells, wound-healing and transwell assays showed that the
migration and invasion abilities of MH7A were significantly increased
in the KO cells (P <0.05) (Fig. 4e, f). TUNEL apoptosis experiment
revealed significantly reduced apoptosis in the KO cells (Fig. 4g). CCK-
8 assay showed significantly enhanced cell proliferation ability in the
KO cells (Fig. 4h). Taken together, our results reveal the regulatory
effect of the SNP rs142845557 on target gene JAZF1 expression and
cellular phenotypes, highlighting the importance of this GWAS SNP
involved in the pathogenesis of RA.

Identification of expression quantitative trait accessible chro-
matin (eQTac)
Since chromatin accessibility is a key factor influencing gene expres-
sion, we want to identify eQTLs that can regulate gene expression by
affecting chromatin accessibility. Due to the lack of large panels of
reference chromatin accessibility features from synovium, we devel-
oped amethod to predict the chromatin accessibility features for each
individual (see “Methods” section). To achieve this, we trained a gap-
ped k-mer support vector machine (gkm-SVM) model44,45 on 154,649
open chromatin sequences and negative sequences with matched
length, GC content, and repeat fraction (Fig. 5a). We used 3-fold cross-
validation to tested different combinations of hyper-parameters, and
chose the best-performing hyper-parameter to train the prediction
model (Supplementary Fig. 16, see “Methods” section). The bestmodel
achieved an area under the receiver operating characteristic curve
(AUC) of 0.92. (Supplementary Fig. 17a). We also tested the model in
another independent synovium dataset46, which contains ATAC-seq
data from 11 subjects. As shown in Supplementary Fig. 17b, the AUC
ranged from 0.82 to 0.85, supporting the robustness of the model.

We defined the potential regulatory elements (PREs) as the
±250 bp region surrounding each peak summit, following the enhan-
cer definition of the Activity byContact (ABC)model47.We alsofiltered
out PREs that contained only one independent SNPs (LD R2 = 0.3) or
SNPs less than 10 bp apart, to avoid collinearity or disturbance in
prediction. Finally, we obtained 10,241 PREs (Fig. 5a). Thenweused the
predictionmodel to calculated chromatin accessibility score for these
10,241 PREs for each individual (Fig. 5a; see “Methods” section). We
computed the correlation between accessibility score and expression
for each PRE-gene pair to identify the regulatory accessible chromatin,
which are named as expression quantitative trait accessible chromatin
(eQTac) (see “Methods” section). We validated the performance of the

Fig. 1 | Overview of synovium eQTLs. a Overview of the study design. eQTL,
expression quantitative trait loci; PRE, potential regulatory element; eQTac,
expression quantitative trait accessible chromatin. b Distribution of all lead SNPs
and significant (FDR<0.05) lead eSNPs relative to the target genes body. The
position of upstream SNPs was relative to target gene TSS, the position of down-
streamSNPswas relative to target geneTES, and thepositionof SNPs locatedon the
target gene was (distance to TSS) / (target gene length). Pie plot showed functional
annotation for all lead eSNPs by ANNOVAR. c The lead SNPs effect sizes in different
distances to target gene TSS. Distances to TSS were split into ten intervals
according to the quantiles, larger quantile number indicates larger distance values.
N = 4765 significant lead eQTLs. d The target gene expression coefficient of varia-
tions (CVs) in different lead SNP effect sizes. Lead SNP effect sizes were split into
ten intervals according to the quantiles, larger quantile number indicates larger
effect size values. Gene expression values were used as covariates for CVs.

N = 4765 significant lead eQTLs. The boxplots in (c) and (d) represent 25th, 50th,
and 75th percentiles, and whiskers extend to 1.5 times the interquartile range.
Orange rhombuses represent the mean of each box. The fitting line to the median
values is shown in blue. e The three-dimensional bar graph showed the target gene
expression CVs in different lead SNPs effect sizes and different distances to target
gene TSS, larger quantile number indicates larger distance/effect size values. The
widths of the bar represent the count of genes in this interval. Gene expression
values were used as covariates for CVs. f The tolerance to loss-of-function muta-
tions of eGene and non-eGene in different expression levels. The tolerance was
denoted by 1-pLI, in which pLI represent the probability of being loss-of-function
(LoF) intolerant. The red line and blue line represent themedian of each box. Panel
a was partly generated using Servier Medical Art, provided by Servier, licensed
under a Creative Commons Attribution 3.0 Unported License.
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eQTacmethod in another independent dataset14 containing genotype,
RNA-seq, and ATAC-seq data from 92 individuals (see “Methods” sec-
tion). As shown in Fig. 5b, the area under the ROC (receiver operating
characteristic) curve (AUC) was 0.81, supporting the robustness of our
method. The whole pipeline of eQTac calculation was integrated into

the package https://github.com/JFF1594032292/eQTac. Among the
164,378 PRE-gene pairs, 2047 pairs met the threshold of FDR <0.05
(Supplementary Data 5, Supplementary Fig. 18).

Compared with eQTLs, eQTacs are more frequently found in the
upstream and 5’UTR regions of genes (Fig. 5c). Using the chromatin
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gle vs. multi_primary and multi_primary vs. multi_secondary, respectively. Outliers

were not shown in the plot. e The ratio of explained expression variance for three
kinds of independent eQTLs (same as (d)). P = 6.43 × 10−35, 6.22 × 10−40 for single vs.
multi_primary and multi_primary vs. multi_secondary, respectively. f The herit-
ability of eGenes with single independent eQTLs and multiple independent eQTLs.
P = 3.60 × 10−9. g The tolerance to loss-of-function mutations of eGenes with single
independent eQTLs and multiple independent eQTLs. P = 4.20× 10−82. The toler-
ance was denoted by 1-pLI, in which pLI represent the probability of being loss-of-
function (LoF) intolerant.N = 5380 for independent eQTLs in (d)–(g). The boxplots
in (c)–(g) represent 25th, 50th (median), and 75th percentiles, and whiskers extend
to 1.5 times the interquartile range. The green rhombuses represent the mean of
each box. ns: p >0.05; *: p ≤0.05; **: p ≤0.01; ***: p ≤0.001; ****: p ≤0.0001. All the
statistical tests in (c)–(g) are two-sided Mann-Whitney test, no adjustments were
made for multiple comparisons.
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Fig. 3 | Tissue specificity of synovium-independent eQTLs. a Bar plot showed the
independent SNPs and background SNPs locate in synovium ATAC peaks. Y-axis
represents the ratio of SNPs locate in peaks. P = 1.58 × 10−48, enrichment FC = 2.98,
two-sided Fisher exact test. b The enrichment of 120 TFs binding sites for in
independent eQTLs. Top 10 enrichment TFs were labeled as red. Dash lines
represented the adjusted P =0.05 and log2(fold change) = 0, respectively (two-
sided Fisher exact test). c The Gene Ontology (GO) enrichment for the top 10
enriched TFs. Two-sided hypergeometric tests were conducted, and adjustments
were made for multiple comparisons. d Synovium-specific eQTLs in 49 GTEx tis-
sues. The independent eQTLs that not significant (red bar), or significant but with

opposite direction in the other tissue (blue bar) were defined as synovium-specific
independent eQTL. e Synovium-specificity in different locations relative to their
target gene. The synovium-specificity were defined as the count of not shared
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centiles, and whiskers extend to 1.5 times the interquartile range. Orange triangles
represent mean values.
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states annotation (HMM18) and synovium capture Hi-C (cHi-C) data
(Supplementary Table 7), we observed that eQTacs are significantly
enriched in promoter, enhancer and loop regions (Fig. 5d, Supple-
mentary Fig. 19). Additionally, the eQTac-gene pairs overlapped sig-
nificantly with enhancer-promoter pairs predicted by the ABCmodel47

and EpiMap project48 in all 131 and 31 tissues (Supplementary Table 7),
compared to the non-significant PRE regions (Fig. 5e, paired-samples
T-test, P = 1.08 × 10−127 and P = 2.12 × 10−14 respectively).Moreover, SNPs
located in eQTacs were more likely to be causal SNPs of target genes

identified by dap-g (Fisher exact test, Fig. 5f), compared with non-
significant PREs SNPs. These results demonstrated that eQTac could
reflect the regulatory relationship between the functional open chro-
matin and target genes.

We estimated the heritability for the eQTac regions compared to
non-significant PREs and found specifically enriched heritability forOA
and RA GWAS loci (Fig. 5g), indicating that a certain extent of GWAS
loci could be explained by eQTac. Over 30% of eQTac regions
(477/1517) didn’t contain significant eQTLs, suggesting that eQTac

a

b

c d

e

-25 0 25 50 75 100
Heritability Normalized coefficient

RA

OA

OCD

TS

PTSD

ADHD

AN

ASD

MDD

ANX

G
W

AS
 tr

ai
t

Independent eQTL
Background eQTL

sgRNA-NC

In
va

si
on

rs142845557-KO

f

g

h

TUNELDAPI MERGE

sg
R

N
A-

N
C

rs
14

28
45

55
7-

KO

0

2

4

6

8

0

20

40

60

80

100R
ecom

bination rate (cM
/M

b)

0.2

0.4

0.6

0.8

r2eQTL PPH4 = 0.92

lo
g 1

0(
p−

va
lu

e)
-

0

2

4

6

8

10

0

20

40

60

80

100

R
ecom

bination rate (cM
/M

b)

28.1 28.15 28.2 28.25
Position on chr7 (Mb)

JAZF1

GWAS

lo
g 1

0(
p−

va
lu

e)
-

RA

OA

AS

JIA

Known genes (coloc) Related functions

ABT1
ANXA3
ARAP1
BAK1*

BTN2A2*
BTN2A3P

CCR6
CD40

COG6
DGKQ

ERBB2*
FCRL3
IL2RA*

ILF3-AS1
INPP5B

IRF5
JAZF1
KAT8
KRI1

LEMD2
MANEAL

MMEL1
NUDT3
PLCL1
PNMT

PRSS16*
PSMD5-AS1

RNASET2
RP11-222K16.1

RPS26
SLC44A2

STAC2
STARD3

SUOX
SYNGR1

TCAP
TCTE1
TPCN2

UTP11L
ZKSCAN3*
ZNF192P1

ZSCAN12P1

LTBR

AC011526.1
AP003068.18

AQPEP
ARHGDIB*

CEP250
CTD-2311M21.2

DCP1A
DEF6*

EIF6
FAM53A
GDAP2

GNL3
ILF3-AS1

ITIH1
ITIH4

LMX1B
LTBP1

PARP10
PTCH1
RBM6

RNASEH2C*
RP11-20I20.4

RP11-21L23.2
RP11-392O17.1

RPL10A*
RPP25
SETD8

SLC44A2
TMEM91
TRIOBP

TSKU
UBL7*

UHRF1BP1
WNT3*

ADCY3
CD40

CENPO
CTSW

DNAJC27
DNMT3B

ERP29
LRRK2*

PPP2R3C
TNFRSF14

Coloc GTEx
Synovium

DisGeNET

MGI
PHGKB

Research

Coloc GTEx
Immune

DisGeNET

MGI
PHGKB

Research

sg
R

N
A-

N
C

rs
14

28
45

55
7-

KO

0h 24h 48h

0.0
0.5
1.0
1.5
2.0

16
18
20
22

In
va

si
on

ra
tio

(%
)

***

sgRNA-NC

rs142845557-KO

24h 48h
0

20

40

60

W
ou

nd
cl

os
ur

e
ra

te
(%

)

sgRNA-NC
rs142845557-KO

*
**

0h 24h 48h 72h 96h
0.0

0.5

1.0

1.5

2.0

A4
50

rs142845557-KO
sgRNA-NC

***
***

***

***

Proliferation time

0

20

40

60
Ap

op
to

si
s

ra
te

(%
)

**

sgRNA-NC

rs142845557-KO

0.0

0.5

1.0

1.5

***

m
R

N
A 

re
la

tiv
e 

ex
pr

es
si

on
 le

ve
l 

of
 J

A
ZF

1
(N

or
m

al
iz

ed
 to

 G
A

P
D

H
)

sgRNA-NC

rs142845557-KO

CRISPR/Cas9
rs142845557

358bp

918bp

Article https://doi.org/10.1038/s41467-024-45652-x

Nature Communications |         (2024) 15:1409 7



could capture some regulatory effects beyond those identified by
eQTLs. For example, the accessibility of an eQTac (chr6:33581434-
33581934) was positively associated with expression of BAK1
(P = 4.60 × 10−4, Fig. 5h), which is a RA colocalized gene (Fig. 4b) and
have been reported to be involved in immune-related process. Inter-
action between this region and the BAK1 promoter was also detected
both in ABC and EpiMap prediction analysis (Fig. 5i). However, all the
four SNPs located in this region were not significant eQTL (Supple-
mentary Fig. 20).

Taken together, these findings suggest that some GWAS SNPs
could regulate target gene expression through altering the accessi-
bility of local chromatin. Our prediction of eQTac with only genotype
and gene expression data could help identify regulatory chromatin
accessibility on target genes in population level at a low-cost and
convenient manner.

Discussion
In this study, we provided a comprehensive molecular profile for
synoviumbasedon the genomic and transcriptomic features of human
synovium in up to 245 OA patients. These data could facilitate future
studies pinpointing causal disease variants and discovering the reg-
ulatory mechanisms underlying arthritic diseases and related immune
diseases.

Withmuch larger sample size than theprevious study11 (245 vs 77),
our work provides an eQTL resource for understanding the role of
synovium in arthritis. We identified 5381 independent eQTLs and 4765
eGenes, which is much more than the previous study11. We found that
the eQTL variants are enriched in TF binding sites in open chromatin
regions, and the top 10 TFs are enriched in immune-related gene
ontology (GO) terms, such as immunoglobulin V(D)J recombination.
Specifically, 7 of the 10 TFs (including PAX549,50, TCF351–53, ELF154,55,
REL56–58, IRF459, YY160, andNFKB261,62) have been reported to be involved
in the immune cell differentiation or immune response process. For
example, IRF4 could promote CD8+ T cell exhaustion and limit the
development of memory-like T cells during chronic infection59. Con-
sistently, synovium indeed play important roles in immune-related
process in the pathology of arthritis diseases. For example, RA is
associated with the autoimmune process in synovium and the trans-
formation into invading pannus63, while OA pathogenesis implicates
the release of mediators from synovium that lead to activation of dif-
ferent inflammatory pathways that damage cartilage64–66.

We identified 84 colocalized genes by integrating our identified
synovium eQTLs with GWAS summary data for multiple arthritis dis-
eases. Functional experiments validated the effect of one eSNP
rs142845557 on its target colocalized gene JAZF1 expression and cel-
lular phenotypes. JAZF1 encodes a nuclear protein with three C2H2-
type zinc fingers, and it was reported that JAZF1 could limit chronic
inflammation by reducing macrophage and CD4+T cell populations,

and regulating the secretion of immune-related factors67. Notably, 38
colocalized genes are novel genes which have not been identified by
previous studies using eQTL datasets from GTEx or other immune
cells. In the PPI network constructed by the 84 colocalized genes,most
of the novel genes formed interactions with well-known genes, sug-
gesting that these genes might be closely related to influence the
development of diseases together. For example, two hub genes, ERBB2
and LRRK2 are novel genes specifically identified by our synovium
dataset. Although their roles in the pathogenesis of arthritis have not
been reported before, previous studies have reported their involve-
ment in immune-related process, such as cooperation with TGF-beta
pathway68–70, and immune response exacerbation43. In addition,
another novel gene, IL2RA interacts with the well-known autoimmune
disease genes CCR6, IRF5, and CD40, which are the hub genes in the
network. IL2RA encodes the receptor for interleukin 2 and is involved
in the regulation of immune tolerance by controlling regulatory T cells
(TREGs) activity71,72. Our results provide evidence for future studies
which aims to explore the potential mechanisms of these novel genes.

We developed the eQTac method, which could identify variants
that affect gene expression by affecting chromatin accessibility with-
out population-scale ATAC-seq data. The eQTac-gene pairs we
obtained showed significantly higher proportion of overlap with the
previous identified enhancer-genes or chromatin interactions. Valida-
tion analysis in another independent dataset supported the robustness
of ourmethod. Previous studies have shown that epigenomic state of a
DNA regulatory element is specified primarily by its sequence73. Non-
coding SNPs that disrupt open chromatin or enhancer function do so
directly through modulation of local transcription factor-DNA inter-
actions, leading to concomitant changes in chromatin state and gene
expression74. Therefore, our eQTac can capture the variants that could
affect gene expression by affecting chromatin state in a cost-effective
manner, facilitating future studies which aim to investigate the reg-
ulatory mechanisms of variants contributing to disease development.

In summary, our study integrated multi-omics data from a large
cohort of patients, and provided valuable insights into the regulation
of gene expression and the diverse roles of the synovial tissue in dis-
eases. We also developed a novel method, eQTac, for conveniently
predicting regulatory elements associated with target genes using
eQTL datasets, which has the potential to inspire further research. Our
findings contribute to a deeper understanding of synovial tissue biol-
ogy andprovide a framework for investigating gene regulation in other
contexts.

Methods
Ethics statement
The study was approved by the Ethics Committee of Xi’an Jiaotong
University Honghui Hospital. All patients were provided written,
informed consent before participating in the study.

Fig. 4 | Colocalization of eQTLs and synovium-related GWAS loci. a Enrichment
of independent eQTL variants in synovium-related andmental disorder GWAS loci.
OA and RA results were combined separately by meta-analysis. Coefficients from
LD score regression were normalized by the per-SNP heritability (h2/total SNPs per
GWAS), with points indicating the estimated coefficients and horizontal error bars
indicating standard error (SEM). N = 4794 for independent eQTLs, n = 14,308 for
background eQTLs. Background SNPswere generated fromSNPsnap databasewith
matchedMAF, LDbuddies, distance tonearest gene, and gene density. ANX anxiety
disorders, MDD major depressive disorder, ASD autism spectrum disorder, AN
anorexia nervosa, ADHD attention deficit hyperactivity disorder, PTSD post-
traumatic stress disorder, TS Tourette syndrome, OCD obsessive-compulsive dis-
order. The utilized GWASs are described in Supplementary Data 2. b The 84 genes
identified by colocalization analysis. Novel genes that didn’t identified by previous
eQTL colocalizations are shown in green. Novel genes that showed immune-related
functions are labeled “*”. DisGeNET, MGI, and PHGKB are the corresponding
databases that showed related functions for colocalized genes. Research showed

related functions from published articles. OA osteoarthritis, RA rheumatoid
arthritis, AS ankylosing spondylitis, JIA juvenile idiopathic arthritis. c JAZF1 eQTL
and GWAS locus plots. Red lines represent the corresponding threshold of eQTL or
GWAS association P-values. Points indicated the logistic (for GWAS) and linear
regression (for eQTL) P-values, and adjustments were not made for multiple
comparisons. d–h Effects of deletion of the region containing rs142845557 by
CRISPR-cas9 on JAZF1 mRNA expression levels (P = 1.10 × 10−4). d migration
(P = 1.86 × 10−2 for 24h, P = 9.39 × 10−3 for 48h), e invasion rate (P = 4.39 × 10−6),
f apoptosis (P = 4.70× 10−3), g proliferation (P = 1.28 × 10−7, P = 6.30× 10−7,
P = 1.03 × 10−5, P = 1.54 × 10−8 for 24h, 48 h, 72 h, 96 h, respectively), and h of MH7A
cells. Bars denoted mean values and error bars denoted SD from one experiment
performed in triplicate. P-values were determined with a two-tailed t-test. *P <0.05,
**P <0.01, ***P <0.001. Panel d was partly generated using Servier Medical Art,
provided by Servier, licensed under a Creative Commons Attribution 3.0 Unported
License.
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Study participants and samples collection
We collected synovium samples and corresponding blood samples
from 245 osteoarthritis patients undergoing knee joint replacement
surgery (77men, 168women, age 46–84 years,mean 67 years), with no
history of significant knee surgery, infection, or fracture, and no
malignancy within the previous 5 years at the Honghui Hospital (Xi’an,
China). All the patients were unrelated Chinese Han adults. Clinical

information, including age, sex, and past medical history, was col-
lected from the electronic medical records.

We obtained synovium samples from joint replacement and
removed the nearby adipose tissue, then the samples freeze imme-
diately with liquid nitrogen and stored under −80 °C. We also
obtained the blood sample to extract DNA for genotyping for all
patients.
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DNA extraction
The genomic DNA was isolated from the blood using FlexGen Blood
DNA Kit (KANGWEISHIJI Biotech, Jiangsu, China) according to the
manufacturer’s instructions.

Genotyping and quality control
We used Illumina Infinium Asian Screening Array-24+ v1.0 for geno-
typing 659,184 variants (Engage to Life Energy Co. Ltd., China). Gen-
otypes were called using GenomeStudio (Illumina) and transformed to
plink format. The quality control was carried out referring to the GTEx
project6 and eQTLQC75, which contained the following steps:
1. All variants were annotated to 1000 genome EAS data and

removed variants which not inconsistent with 1000 genome.
2. Filtering out variants and individuals with a missing rate greater

than 0.2, then filtered out variants and individuals with a missing
rate greater than 0.02. Variants filtering should be performed
before individual filtering. This was done in two steps to avoid too
strict filtering.

3. Removed wrong sex individuals by “--check-sex” in plink 1.9.
4. Removed variants with MAF <0.01 and Hardy-Weinberg equili-

brium exact test P-value < 1e-6 by “--hwe 1e-6 midp” in plink 1.9.
5. Removed individualswith heterozygosity rate deviatedmore than

3 standard deviations from the heterozygosity rate mean. The
heterozygosity rate was calculated by “--het” in plink 1.9, and this
calculation was performed on variants in approximate linkage
equilibrium (“--indep-pairwise 50 5 0.2” in plink 1.9).

6. For each pair of ‘related’ individuals with a pihat > 0.2, we
removed the individual with the lowest call rate.

The final datasets contained 243 patients and 485,437 variants.

Imputation
The imputation was conducted using Impute2 (v2.3.2_x86_64_static)76,77

with the 1000genomes haplotypes phase 3 data (https://mathgen.stats.
ox.ac.uk/impute/1000GP_Phase3.html) as the reference panel. To
increase the overall accuracy, we set -k 100 and -buffer 300, and other
parameters were set to default.

We also conducted quality control for imputed variants as above
(genotype missing rate, MAF, and Hardy-Weinberg equilibrium),
expected the threshold of MAF was 0.05. We excluded 2 patients due
to the high heterozygosity rate. The resulting dataset contained 243
patients and 4,499,337 variants.

RNA-seq sequencing and quality control
We performed a gene expression analysis on synovium samples from
210 patients. The RNA was extracted by TRIzol extraction method.
Total RNAwas used as inputmaterial for the RNA sample preparations.
Sequencing libraries were generated using NEBNext® UltraTM RNA

Library Prep Kit for Illumina® (NEB, USA) following the manufacturer’s
recommendations. The library preparations were sequenced on an
Illumina Novaseq 6000 platform and 150bp paired-end reads were
generated (Novogene Co. Ltd. Beijing, China).

We used Fastp78 (version 0.19.7) to perform basic statistics on the
quality of the raw reads. The steps of data processing were as follows:
(1) Discard a paired reads if either one read contains adapter

contamination.
(2) Discard a paired reads if more than 10% of bases are uncertain in

either one read.
(3) Discard a paired reads if the proportion of low-quality (Phred

quality < 5) bases is over 50% in either one read.

Quantification of RNA levels and gene expression
We applied FastQC to check samples quality and excluded the samples
with low Q20 and Q30. Clean RNA-seq reads were mapped to human
reference genome hg19 (contains only autosomes, sex chromosomes
and mitochondrial chromosomes) with STAR (v2.7.9a)79 aligner based
on the GENCODE v19 (July 2013 freeze) annotation, the parameters
setting was same as GTEx v8 project pipeline6. Gene-level expression
read counts and TPM values were generated by RNA-SeQC (v2.3.5)80

with default parameters. The read mapping rates and base mismatch
rates were calculated from the output of SAMtools (v1.9)81 stats sub-
command. The proportion of reads genomic origin were produced
with QualiMap (v.2.2.2-dev)82. Samples should meet the following
metrics as used for GTEx project: read mapping rate ≥0.2, base mis-
match rate ≤0.01, intergenic mapping rate ≤ 0.3, rRNA mapping
rate ≤ 0.3.

After removing samples that failed mapping quality control, we
conducted expressionoutlierfiltration. Briefly, thepairwise expression
correlation coefficients were calculated using the log-transformed
TPM values of all genes, assume the correlation coefficient between
sample i and sample j is expressed as rij, we calculated

�ri =
X

j

rij
n ð1Þ

The average correlation coefficient of sample i with all others of
the total n samples. Lower �ri represent a lower quality. Then we cal-
culated

Di =
�ri � ��r

median �ri � ��r
�� ��� � ð2Þ

to provide a sense of distance from the grand correlation mean �r.
Six samples with D < −5.0 were considered as outliers and removed.
The filtered gene expression dataset included 204 synovium samples.

Fig. 5 | Identification of expression quantitative trait accessible chromatin
(eQTac). a The flowchart of eQTac: (1) An SVM model is trained with the positive
sequences (ATAC-seq peaks) and matched negative sequences. (2) Potential reg-
ulatory elements (PRE) were selected and used trained SVMmodel to score the PRE
variants. (3)The accessibility score for each PREwas calculated by weighted sum all
variants scores. (4) eQTac (significant PRE-gene correlations) was identified
through linear regression analysis for each PRE and gene pairs. bThe ROC (receiver
operating characteristic) curve (AUC) of eQTac method. c Comparison of variants
annotations between eQTac SNPs and eQTL SNPs. d The enrichment of chromatin
interaction in eQTac. Five datasets were capture Hi-C (cHi-C) or chromatin loops
from synovium of OA patients (Supplementary Table 7). Two-sided Fisher exact
test, no adjustments were made for multiple comparisons. e The overlap ratio
between significant eQTac and enhancer-gene pairs which predicted in the ABC
model and EpiMap database. Each point represents one tissue (Supplementary
Table 7). Background pairs were non-significant eQTac-gene pairs. f The over-
lapped ratio betweeneQTac SNPs andfine-mappedSNPs in80%, 90%, 95%, and99%

credible sets, two-sided Fisher exact test. Significant eQTL SNPs were removed
from eQTac SNPs. Background SNPs were non-significant eQTac SNPs and filtered
by SNPsnap. g Enrichment of eQTac regions in synovium-related and mental dis-
order GWAS loci. Coefficients from LD score regression were normalized by the
per-SNP heritability (h2/total SNPs perGWAS), with points indicating the estimated
coefficients and horizontal error bars indicating standard error (SEM). Background
regions were non-significant eQTac regions. OA and RA results were combined
separately by meta-analysis. N = 1517 and 8351 for significant eQTac and back-
ground eQTac, respectively. Utilized GWASs are described in Supplementary
Data 2.h Scatter plot showed the correlation between chromatin accessibility score
of the PRE (chr6:33581434-33581934) and expression. Colors indicate the points
density. Orange line represents the best-fitting linear regression, translucent bands
around the regression linewas 95% confidence interval for the estimated regression
effect. Two-sided t-test for the regression effect. i Epigenetic annotation for BAK1
eQTac result.
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Finally, samples thatpassedbothgenotypedata andRNA-seqdata
quality control were used for the following analysis. Gene expression
values for all samples were normalized for eQTL analyses using the
following procedure: (1) read counts were normalized between sam-
ples using TMM83 implemented in edgeR;84 (2) genes were selected
based on expression thresholds of ≥ 0.1 TPM in ≥ 20% of samples and
≥ 6 reads (unnormalized) in≥ 20%of samples; (3) expression values for
each gene were inverse normal transformed across samples. Only
autosomal genes were used in the following eQTL analysis.

Covariates for eQTL analysis
To control for population effects on the discovery of QTLs, genotype
principal components (PCs) were used as covariates in QTL mapping.
The PCs were calculated by smartpca in EIGENSOFT85 in 243 indivi-
duals, then we calculated the statistical significance of each principal
component by twstats (Tracy–Widom statistics) and select the first
two PCs as covariates (P <0.05). To infer hidden factors associated
with the cohort, sequencing batch, or other technical differences, we
applied probabilistic estimation of expression residuals (PEER) for
normalized expression data (run_PEER.R in GTEx v8 pipeline).
According to the GTEx v8 method, 30 PEER factors were selected
(150≤ samples count <250). Finally, sex and age were also used as
covariates.

Identification of cis-eQTLs
For eQTL analysis, we got 202 synovium samples with matched gen-
otype and gene expression datasets. For each gene, we considered
genetic variants within 1Mb of the transcription start site (TSS) as cis-
eQTL and followed a similarmethodwithGTEx project6. All variants on
autosome with MAF ≥0.05 across the 202 individuals were included,
except the MHC region (chr6:28477797-33448354).

We used the GTEx modified version of FastQTL86 (https://github.
com/francois-a/fastqtl; gtex_v6p version) to calculate cis-eQTL, and the
adaptive permutationmode was used with the setting --permute 1000
10000. Nominal P-values for each gene-variant pair were calculated
based on linear regression, including all covariates. The gene-level q-
values87 were calculated based on the beta distribution-extrapolated
empirical P-values from FastQTL. A false discovery rate (FDR) thresh-
old of ≤0.05 was applied to identify genes with at least one significant
cis-eQTL (“eGenes”).

To identify all significant variant-gene pairs associated with cis-
eGenes, the nominal P-value threshold was calculated as F−1(pt), where
F−1 is the inverse cumulative distribution of the beta distribution and pt
was the empirical P-value of the gene closest to the 0.05 FDR thresh-
old. For each eGene, significant eQTLs were defined as variants with a
nominal P-value below the nominal P-value threshold for that gene.

Annotation of variants
The annotation of SNPs was performed by ANNOVAR88 (version 2020
Jun 08), with annotation datasets wgEncodeGencodeBasicV19.

Comparison of pLI over gene expression bins
This analysis was performed referring to eQTLGen7 project. All genes
weredivided into 10bins according to the average expressionquantile.
The pLI of each gene were downloaded from https://static-content.
springer.com/esm/art%3A10.1038%2Fnature19057/MediaObjects/
41586_2016_BFnature19057_MOESM241_ESM.zip89.

Identification of independent eQTL
We identified the conditionally independent eQTL signals using the
forward stepwise regression followed by a backward selection step
stepwise procedure described in GTEx v86, which was calculated by
tensorQTL v1.0.690. The primary eQTLs were defined as independent
eQTLs with the highest ranking of each eGene, and the rest of the
independent eQTLs were secondary independent signals.

Estimation the variance explained by independent eQTLs in
gene expression
We used GCTA91 --make-grm to calculate the genetic relationship
matrix for our samples, and then used --reml to calculate the variance
explained by each independent eQTLs.

Heritability estimation of eGenes
We compared the heritability of eGenes with single and multiple
independent signals. We used GCTA91 --reml to estimate the variance
explained by the SNPs for each eGenes as the estimated heritability,
which following the method of FUSION pipeline92.

ATAC-seq sequencing and peak calling
ATAC-seq libraries were constructed for synovium from following the
original protocol93. In brief, two hundred thousand cells were lysed
with cold lysis buffer (10mM Tris-HCl, pH 7.4, 10mM NaCl, 3mM
MgCl2, and 0.03% Tween20), and centrifuged at 500 × g for 8min at
4 °C. The supernatant was carefully removed, and the nuclei was
resuspended with Tn5 transposase reaction mix (25μl 2 × TD buffer,
2.5μl Tn5 transposase, and 22.5μl nuclease-free water) (Illumina) at
37 °C for 30min. Immediately after the transposition reaction, DNA
was purified using a Qiagen MinElute kit. Libraries were sequenced on
an Illumina HiSeq X Ten sequencer. The ATAC-seq experiment and
library sequencing were performed by Frasergen Bioinformatics Co.,
Ltd, Wuhan, China.

Adapters were trimmed from ATAC-seq reads sequences using
custom Python scripts. Pair-end reads were aligned to hg19 using
Bowtie294. Duplicate reads and reads with MAPQ< 30 were discarded.
After filtering, the qualified reads were subjected to MACS295 to call
peaks for each sample with parameters (-q 0.05 --nomodel --shift -100
--extsize 200 --keep-dup all). In total, we identified 154,649 ATAC-seq
peaks from synovium.

Tissue specificity analysis
Synovium eQTLs were compared with 49 tissues from the GTEx v8
project (https://console.cloud.google.com/storage/browser/gtex-
resources). The mashR (version 0.2.73)20 method was used to assess
sharing of significant signals among each tissue. Specifically, we ran-
domly selected 1million eQTL pairs from each tissue as the null signal.
Then we fitted the model using the mash() function and used get_-
pairwise_sharing() function to assess sharing of significant signals
among each pair of tissues.

Epigenetic markers enrichment for independent signals
The epigenetic datasets were downloaded from the GEO database. We
downloaded 15 histone peak data for 6 histone markers (H3K4me1,
H3K4me3, H3K27ac, H3K36me3, H3K27me3, and H3K9me3) from
GSE163548 and GSE11265596, 3 histone markers (H3K27ac, H3K4me1,
H3K4me3) from NBDC database ID hum0207.v197. All epigenetic data
were generated from knee OA patients’ synovium tissues.

The enrichment analysis was performed by chi-square test, com-
pared with background SNPs from SNPsnap98 with matched MAF, LD
buddies, distance to nearest gene, and gene density.

Estimated heritability enrichment for arthritis and mental
disorders
The heritability enrichment analysis was performed following the
method of Kosoy et al.13. Briefly, we used the partitioned heritability
analysis of LDSC23 to calculate the heritability enrichment, and the
estimated coefficients from LD score regression are normalized by the
per-SNP heritability (h2/total SNPs per GWAS). To enable comparisons
of the regression coefficients across traits with a wide range of herit-
abilities, we chose to normalize by the per-SNP heritability and named
this adjusted metric the “normalized heritability coefficient”. The
normalized heritability coefficients of mental disorders were from

Article https://doi.org/10.1038/s41467-024-45652-x

Nature Communications |         (2024) 15:1409 11

https://github.com/francois-a/fastqtl
https://github.com/francois-a/fastqtl
https://static-content.springer.com/esm/art%3A10.1038%2Fnature19057/MediaObjects/41586_2016_BFnature19057_MOESM241_ESM.zip
https://static-content.springer.com/esm/art%3A10.1038%2Fnature19057/MediaObjects/41586_2016_BFnature19057_MOESM241_ESM.zip
https://static-content.springer.com/esm/art%3A10.1038%2Fnature19057/MediaObjects/41586_2016_BFnature19057_MOESM241_ESM.zip
https://console.cloud.google.com/storage/browser/gtex-resources
https://console.cloud.google.com/storage/browser/gtex-resources
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE163548
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE112655
https://humandbs.biosciencedbc.jp/en/hum0207-v1


single GWAS summarydata, and the normalized heritability coefficient
of OA and RAwere combined separately bymeta-analysis (METASOFT
v2.0.0)99.

For enrichment analysis in independent eQTL, background SNPs
were selected from SNPsnap database withmatchedMAF, LD buddies,
distance to nearest gene, and gene density. For enrichment analysis in
eQTac regions, background regions were non-significant eQTac
regions.

Colocalization analysis between synovium eQTLs and related
traits GWAS
Bayesian colocalization analysis. We searched synovium-related
traits in the NHGRI-EBI GWAS Catalog (version e105_r2022-03-08)100,
and downloaded 25 GWAS datasets that had full summary statistics
available (Supplementary Data 2). To examine colocalization between
eQTLs and GWAS associations, we analyzed all 25 genome-wide sig-
nificant signals by using coloc v5.2.0101.

Specifically, for each genome-wide significant signal (P < 5×10−8),
we considered the region spanning 100 kb on either side of the index
variants andmerged the overlapped region. Correlations (LD) between
SNPs were calculated in the UK Biobank or 1000 genomes EAS popu-
lation, depending on the GWAS population. We also harmonized the
allele orders between SNP summary statistics and reference popula-
tion, to avoid conflict. TheMHC region (chr6:28477797-33448354)was
excluded from GWAS summary data.

Firstly, we used runsusie() function to distinguish multiple causal
variants and obtained the posterior probability for each variant, the
coverage of credible sets was set to 0.3 to capture moderate signals.
Then for each GWAS signal that overlapped with any eQTL signals, we
conducted the colocalization analysis. We considered a 60% posterior
probability of GWAS and eQTL shared association in the region
(PPH4 ≥0.6) to indicate evidence of colocalization.

LD-based colocalization analysis. For genes that couldn’t well fine-
mapped by coloc5, we used previously described methods by con-
ducting LD and conditional analysis102 to perform colocalization. We
performedan initial colocalization analysis basedonLDbetween a lead
GWAS variant and a lead-independent eQTL variant.

To get the lead GWAS SNPs, we extracted all SNPs that met the
threshold of genome-wide significance (P = 5 × 10−8) from both 25
GWAS summary datasets and GWAS catalog database. The GWAS
catalog SNPs were searched as “arthritis” and “synovium”, and down-
loaded all associations except the tendon rupture phenotype. Then
manually selected the trait for “rheumatoid arthritis”, “osteoarthritis”,
“juvenile idiopathic arthritis”, “synovitis”, and “ankylosing spondylitis”.
To reduce redundancy, we next pruned the GWAS SNPs by plink
--clump with an LD threshold r2 = 0.7.

We then performed the conditional analysis in the eQTL data by
providing genotypes for the lead GWAS variant to regressionmodel as
a covariate. We considered signals to be colocalized if (1) the pairwise
LD was high between the GWAS variant and eQTL variants (r2 ≥0.7 in
both in eQTL population and GWAS population) and (2) after con-
ditioningon theGWASvariant, the leadeQTL variant no longermet the
eQTL mapping threshold of eGene.

Comparison of colocalized genes in different eQTL datasets
For the colocalized genes, we compared our results with genes from
previous representative studies to identify novel genes specifically
identified by our synovium dataset. For OA, the GWAS data were col-
lected from Boer et al.24, Zengini et al.26, and Tachmazidou et al.27

(n = 826,690, 327,918, and 455,221, respectively). The colocalized
genes were identified by using eQTL data from 48 GTEx tissues, and
the synovium eQTL study11 from 77 individuals, respectively. The RA
GWASs data were collected from Ishigaki et al.25,28, Ha et al.32, and

Okada et al.29 (n = 212,453, 276,020, 311,292, and 103,638 respectively).
The colocalized genes were identified by using eQTL data from 48
GTEx tissues, DICE immune cells eQTLs, and BlurPrint immune cells
eQTLs (monocyte, neutrophils, and T cells), respectively. The AS
GWASs data were collected from Ellinghaus et al.31 (n = 42,939). The
colocalized genes were identified by using eQTL data from peripheral
blood. The JIA GWASs data were collected from Hinks et al.30

(n = 15,872). The colocalized genes were identified by using eQTL data
from LCLs, T cells, and fibroblast. For AS and JIA, we also conducted
LD-based colocalization analysis for the GWAS tag SNPs with 48 GTEx
tissues and BlurPrint immune cells eQTLs (monocytes, neutrophils,
and T cells) to get the colocalized genes. All used GWAS studies are
listed in Supplementary Data 2. We annotated the related functions of
colocalized genes in three databases: DisGeNET103, MGI104, PHGKB105,
and previously published articles.

Protein–protein (PPI) analysis for colocalized genes
We conducted PPI analysis for the colocalized gene using the online
version of STRING database v11.5 with an interaction threshold of 0.3.
We used Cytoscape to visualize the obtained PPI network and identi-
fied hub genes with highest degree in the network.

Cell culture
The rheumatoidfibroblast-like synoviocyte lineMH7Awere cultured in
DMEM medium (HyClone, USA) supplemented with 10% fetal bovine
serum (Biological Industries, Israel), 100 units/mL penicillin, and
0.1mg/mL streptomycin at 37 °C incubator with 5% CO2. The MH7A
cell linewas obtained fromShanghaiGuan&DaoBiological Engineering
Co., Ltd and was authenticated using short tandem repeat (STR) pro-
filing by scientific service at Beijing Tsingke Biotech (Beijing, China).

Fragment deletion by CRISPR-Cas9
Genotyping of rs142845557 was conducted by PCR in MH7A cells. A
918 bp sequence centered on rs142845557 was PCR-amplified from
MH7A genomic DNA using primers in Supplementary Table 6. To
efficiently eliminate the fragment containing rs142845557, CRISPR-
associated RNA-guided endonuclease Cas9 cleavage technology
(CRISPR-Cas9) was used106. In brief, we first designed a set of single-
guided RNAs (sgRNAs) targeting upstream and downstream of the
enhancer fragment by using the CRISPR design platform maintained
by the CRISPick (https://portals.broadinstitute.org/gppx/crispick/
public). One pair of sgRNA was designed for this SNP (Supplemen-
tary Table 6). Oligonucleotides containing these sgRNAs were cloned
into lentiCRISPR v2 plasmid (Addgene#52961).

DNA and RNA isolation and real-time qPCR (qRT-PCR)
DNA was isolated using the TIANGEN Genomic DNA Extraction Kit
(catalog no. DP304; TIANGEN Biotech, Beijing, China). Total RNA was
isolated from theMH7A cells using fast 200 (Fastagen, China) and was
reverse-transcribed into cDNAbyusing the PrimeScript RT Reagent kit
(TakaRa, Japan). The qRT-PCR reaction was performed using the
QuantiTect SYBRGreen PCR Kit (QIAGEN, USA). We used GAPDH as an
endogenous control to normalize the differences in samples. Primers
of qRT-PCR are shown in Supplementary Table 6.

Scratch wound-healing assay
1 × 105 cells/well MH7A cells undergoing different treatments were
cultured in a 24-well tissue culture plate. The straight wound in the
middle of the culture was subsequently created by a sterile pipette tip
after cells reached 100% confluence. After being washed with
phosphate-buffered saline (PBS) twice to smooth the edge of scratch
and to remove the floating cells, the cells were cultured in DMEM
medium supplemented with 1% fetal bovine serum at 37 °C with
5% CO2.
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Transwell assay
Transwell assay was performed to test the invasion ability of MH7A
cells. 8-μm-pore transwell chambers (Corning, USA) with 20 µL Matri-
gel precoated on the upper transwell chamber were put on a 24-well
plate. The MH7A cells undergoing different treatments were trans-
ferred to the serum-free medium of the upper transwell chamber,
600 µL medium with 15% fetal bovine serum was added to the lower
chamber as a chemoattractant. After 48 h, the upper chamber was
washed with PBS multiple times. Cells in the upper layer that had not
migrated were removed with cotton swabs gently. Moreover, the
transwell chamber was fixed in 4% paraformaldehyde solution for
15min and stained by 0.1% crystal violet for 20min. The cells were
counted by an inverted optical microscope (NOVEL, China) and
photographed.

Cell proliferation assay by using Cell-Counting Kit-8 (CCK-8)
The MH7A cells undergoing different treatments (5 × 103 cells/well)
were seeded in 96-well plates. And then, the CCK-8 solution was added
to eachwell at 24, 48, 72, and 96 h, and incubated for another 3 h in the
incubator. After the incubation, we used a microplate reader (MUL-
TISKAN FC, Thermo Scientific, USA) to detect the optical density (OD)
value at 450nm. There were 5 replicates in each group.

Cell apoptosis assay using one-step TUNEL apoptosis assay kit
The MH7A cells undergoing different treatments (2 × 104 cells/well)
were seeded in 96-well plates. TUNEL-reaction was performed by using
the one-step TUNEL apoptosis assay kit (Beyotime, China) according to
the manufacturer’s instructions. Each well was fixed with paraf-
ormaldehyde for 30min and permeabilized with 0.1% Triton® X-100 for
15min. Thewells were thenwashedwith PBS and incubatedwith TUNEL
test solution for 1 h at 37 °C. Afterwashedby PBS twice, we usedDAPI to
counterstain cell nuclei for 10min at room temperature. Randomly
chosen fields were captured by using microscope (NOVEL, China).

Quantify the accessibility of potential regulatory elements
Firstly, we trained a gkm-SVM73 model to predict the chromatin
accessibility for different alleles of variants located on the potential
regulatory elements. The gkm-SVM produced a scoring function
characterized by a set of weights quantifying the contribution of each
possible 10-mer to a region’s chromatin accessibility in synovium tis-
sue. All 154,649 peaks of ATAC-seq were further trimmed, and 100-bp
sequences of summits were used as the positive training set to max-
imize the open chromatin signals. We then generated a negative
training set by randomly sampling from the genome of regions that
matched the length, GC content, and repeat fraction of the positive
training set (gkm-SVM v0.8.0). To remove false negative regions as
much as possible, we excluded any regions with P <0.2 from the
sampling. We then trained a gkm-SVM model by LS-GKM44 to accel-
erate computation, with default parameters in the gkm-SVM model
(word length l = 10, informative columns k = 6, and truncated filter
d = 3) and measured the classification performance using ROC curves.

Then we applied this model to predict the scores of sequences
which 9 bp surrounding all SNPs by “gkmpredict” in the LS-GKM44. The
chromatin accessibility score (CAS) for each PRE was defined as the
weighted sum of genotype dosage of sequences around SNPs located
on this PRE, with the predict the scores as weight:

CAS=
Xn

i= 1

Xm

j = 1

ðSij ×GijÞ ð3Þ

Then represent the SNP counts in the PRE region,m is the number
of alleles for SNP i,G is the genotype dosage for allele j, S is the score of
j allele predicted by the SVM model.

The potential regulatory elements (PRE) were defined as the
±250 bp region of summits of each peak, which referred to the

enhancer definition of Activity by Contact (ABC)model47.We excluded
the PREs that contained any indel or insert mutations to keep the
consistent length of sequences. We also removed PREs for those
containing SNPs less than 10 bp apart, as these SNPs genotypes would
disturb the prediction of each other. Considering that if a PRE only
contained a single variant or multiple variants in stronger LD, the
variation of this PRE across the population would be highly collinear
with this variant (or haplotype), which was not expected in the fol-
lowing analysis. So, we only retained PREs containing more than one
independent SNP (LD R2 < 0.3).

Validation of the eQTacmethod in another independent dataset
We used the dataset from dbGap phs00081514 (https://www.ncbi.nlm.
nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000815.v2.p1)
containing genotype, RNA-seq, and ATAC-seq data from 92 individuals
to validate our eQTac method. For the genotype data, we performed
imputation analysis and then SNPswithMAF<0.1 were removed due to
the small sample size. For the ATAC-seq data, we usedmacs2 to call the
peaks andextract the 100bp sequences around the summits of peaks as
the positive training set. The gene expression data were processed
using the same pipeline as our eQTL calculation. The actual open
chromatin scores of PRE regionsweredefined as the inverse normalized
transformed reads counts from ATAC-seq data. Significant eQTL genes
were subjected to subsequent analysis. The correlation results using
linear regression analysis for theopen chromatin scores and target gene
expression values were used to define the ground truth. That’s, PRE-
gene pairs with P<0.05 were defined as true correlation. Then we used
our eQTac method to identify the significant PRE-gene pairs.

Identification of eQTac
The cis-eQTac was calculated for each gene calculated in cis-eQTL
mapping, with the same cis region and covariates as eQTL mapping:

expression∼β1 ×CAS+Covariates ð4Þ

The CAS was the chromatin accessibility score for each PRE, with
β1 as the effect of this open chromatin region to the target gene. To
identify the significant eQTac and controlled FDR (false discovery
rates), we generated the null distribution of P-values for all PRE-gene
pairs by randomly permuting the individual labels of gene expression
100 times. The FDR was determined as the proportion of permuted P-
values over the proportion of non-permuted P-values under a specific
P-value threshold. The threshold of P-values was set as 6.36 × 10−4

under FDR =0.05.

Estimated causal SNPs for synovium eQTL
Dap-g107 methods were applied to the cis-eQTL data to produce esti-
mates of the causal SNPs. Dap-g is designed for multi-SNP genetic
association analysis which employs a spike-and-slab prior model to
select potential multiple independent cis-eQTLs in eQTL mapping.
Briefly, the fine-mapping was conducted in the following steps:
(1) Calculated single-SNP Bayes factor for each SNP-gene pair.
(2) Calculated the priors probability for each SNP-gene pair by

torus108, which includes the distance of each SNP to gene TSS and
the chromatin accessibility annotation as prior information.

(3) Conducted multi-SNP fine-mapping by dap-g, with -ld_control 0.5
and --no_size_limit.

The 80%, 90%, 95%, and 99% credible set for each cis-eQTL con-
sists of variants that include the causal variant with 80%, 90%, 95%, and
99% probability, respectively.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.
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Data availability
All relevant data support the key findings of this study are available
within the article and its Supplementary Information files. The RNA
sequencing data and ATAC-seq data generated in this study have been
deposited in the Genome Sequence Archive (GSA-Human)109 in
National Genomics Data Center110, China National Center for Bioin-
formation / Beijing Institute of Genomics, Chinese Academy of Sci-
ences under accession code HRA004624, which are available under
restricted access as they contain identifying participant information.
Access can be obtained by request via the GSA-Human database.
Requests including a formal research proposal indicating the use of
data and planned analyses will be processed within two weeks. The
data is only allowed for academic use. The raw genotype data are
protected and are not available as they contain identifying participant
information and the key genetic information of individuals. The pro-
cessed independent eQTLs, colocalization results, and significant
eQTac data are available at Supplementary Data. Other public data
used in the study are listed in Supplementary Tables and Supple-
mentary Data.

Code availability
Scripts to eQTac method are available at https://github.com/
JFF1594032292/eQTac and https://zenodo.org/records/10254586.
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