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Neural network enabled nanoplasmonic
hydrogen sensors with 100 ppm limit of
detection in humid air

David Tomeček1,4, Henrik Klein Moberg1,4, Sara Nilsson 1,
Athanasios Theodoridis 1, Iwan Darmadi1, Daniel Midtvedt 2,
Giovanni Volpe 2, Olof Andersson3 & Christoph Langhammer 1

Environmental humidity variations are ubiquitous and high humidity char-
acterizes fuel cell and electrolyzer operation conditions. Since hydrogen-air
mixtures are highly flammable, humidity tolerant H2 sensors are important
from safety and process monitoring perspectives. Here, we report an optical
nanoplasmonic hydrogen sensor operated at elevated temperature that
combined with Deep Dense Neural Network or Transformer data treatment
involving the entire spectral response of the sensor enables a 100 ppmH2 limit
of detection in synthetic air at 80% relative humidity. This significantly exceeds
the <1000 ppm US Department of Energy performance target. Furthermore,
the sensors pass the ISO 26142:2010 stability requirement in 80% relative
humidity in air down to 0.06% H2 and show no signs of performance loss after
140 h continuous operation. Our results thus demonstrate the potential of
plasmonic hydrogen sensors for use in highhumidity andhowneural-network-
based data treatment can significantly boost their performance.

To reduce greenhouse gas emissions, large investments in H2 tech-
nologies are currently under way. This creates a new arena that
includes H2-powered vehicles, ships, airplanes, refueling stations,
pipelines, electrolyzers, domestic heating, gas turbines and steel
making. All these applications have in common that H2 either is used in
confined space with limited venting possibilities, and/or close to or
even in themiddleof public spaces andpeople’s homes. Therefore, the
risk for H2-related accidents due to its high flammability when mixed
with air increases substantially, and the consequences of such acci-
dents are dramatic both economically and with respect to human life.
Consequently, to safely implementH2 technologies at a large scale and
minimize the accident-related risk for delays of this implementation,
mitigating these risks is imperative and underpins the central impor-
tance of H2 safety sensors that are able to detect H2 in air1,2. Further-
more, H2 sensors are also important for processmonitoring in, e.g., H2

combustion for domestic heating in a mix with natural gas, electro-
lyzers, electricity production or in airplane engines, as well as for the

optimal operation of fuel cell systems. Accordingly, already to-date,
numerousH2 sensors basedondifferent sensing principles exist on the
market, with resistive, electrochemical, catalytic, and thermal
conductivity-based transduction principles being the most well-
established ones3.

More recently, optical nanoplasmonic sensors have been intro-
duced and successfully exploited for the remote detection of H2 by
means of light3,4. Their signal transducing principle is based on loca-
lized surface plasmon resonance (LSPR) in Pd or Pd-alloy
nanoparticles3 or other types of nanostructures, such as plasmonic
perfect absorbers5, and their strong interaction with H2

3. All these
systems have in common that H2 readily dissociates on the nano-
particle or nanostructure surface at ambient conditions and is subse-
quently absorbed interstitially into the nanoparticle atomic lattice
where it at low concentrations forms a solid solution and at high
concentrations a hydride. This hydrogen absorption,which isperfectly
reversible, mediates the optical/plasmonic properties of the system
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and is reflected in a distinct spectral shift of the LSPR peak, as well as
change in its overall shape, and in extinction or scattering intensity3,6.
Importantly, the spectral shift of the LSPRpeak, aswell asof other peak
descriptors, scales linearly with the amount of the absorbed
hydrogen7–9, and plasmonic hydrogen sensors based on hydride-
forming metals are inherently insensitive to CO2 and hydrocarbon
species9. Notably, also other metals including Mg10 and Y11 have been
used in the context of active plasmonics usingH2 to control the optical
properties of the plasmonic system. In the current state of the art for
nanoplasmonic H2 sensors, limits of detection (LoD) as low as few
hundred ppb12, sub-second response time at concentrations as low as
1000 ppm13, high selectivity, and deactivation resistance towards O2,
CO2, CH4, CO and NO2, have been demonstrated, the latter using both
suitable alloy compositions and protective polymer coatings3,13,14. This
means that such sensors on most performance metrics meet or even
exceed the targets defined by US Department of Energy (DoE) and
other stakeholders3.

However, and as the key motivation for this work, to date, nano-
plasmonic H2 sensors lack the ability to operate at high humidity
conditions3. This is a severe limitation since both in process monitor-
ing and in safety sensor systems deployed in the environment, highly
humidity-tolerant sensors are urgently required, for example, since
weather fluctuations constantly alter the relative humidity (RH) in air
or because the hydrogen gas feed in proton-exchangemembrane fuels
cells is highly humidified. Nevertheless, to the best of our knowledge,
this remains an important challenge in the hydrogen sensor field in
general, and for plasmonic hydrogen sensors in particular, since to
date it has only been demonstrated that plasmonic Pd80Co20 sensors
lose 32% of their response magnitude to 2% H2 already at low RH of
40% at 25 °C, and that a PMMA coatingmight prevent this loss to some
extent15. Other investigations of plasmonic hydrogen sensor humidity
tolerance above 40% RH, or attempts to improve it, are lacking in the
literature. However, according to, e.g., the ISO 26142:2010 standard16,
practically viable hydrogen sensors must provide robust and reliable
response across a range of RH = 20–80% across a wide range of tem-
peratures. Furthermore, a LoD of 0.1% or 1000 ppm H2 in these high
humidity conditions is required according to the USDoE targets for H2

sensors17, to ensuredetection at concentrations significantly below the
4% H2 lower explosive limit in air.

Therefore, in this work, we first present a systematic mapping of
Pd70Au30 alloy plasmonic hydrogen sensor performance in a wide
range of RH =0–80% in synthetic air for H2 concentrations ranging
from 0.06–1.3%, and for sensor operation temperatures of 30–130 °C.
Based on this map, we deduce and discuss the chemical processes
occurring on the Pd70Au30 sensor surface and devise the optimal
sensor operation temperature for application in humid conditions.
Subsequently, using machine learning based data analysis employing
Deep Dense Neural Networks (DDNN) or a Transformer that take the
entire LSPR peak spectrum into account, we characterize the sensor
limit of detection and sensor robustness in up to 80% RH in synthetic
air, and rigorously evaluate sensor long-term stability at high humidity
conditions during constant operation for 142 h. Finally, we also discuss
the limitations and potential of machine-learning based sensor read-
out beyond its original train-test data distributions, thereby pushing
the limit of detection to 0.01% or 100 ppm H2 in humid synthetic air
at 80% RH.

Results
For our study,we chose toworkwith the Pd70Au30 alloy system thatwe
have investigated in detail earlier and for which we have identified
excellent sensing performance at dry conditions13,18,19. Alloying Pdwith
30% Au effectively eliminates the intrinsic hysteresis characteristic for
pure Pd by lowering the critical temperature of the system, and it is the
best compromise between eliminating hysteresis, establishing linear
optical response toH2 andmaximizing optical contrast per unit sorbed

hydrogen. Specifically, we nanofabricated quasi-random arrays of
Pd70Au30 nanodisks with amean diameter of 198 nm and 25 nm height
onto fused silica substrates using Hole-Mask Lithography (Fig. 1a–c),
following the procedures described in detail in our earlier work and in
the Methods section20,21. Mechanistically, Pd-alloy nanoparticle based
plasmonic H2 sensors function on the basis that a H2 partial pressure
change in the environment induces a change in the optical contrast of
these nanoparticles, which is measured as a change in the plasmonic
peak in an optical extinction or scattering spectrum (Fig. 1c, d). The
optical contrast is the consequence of hydrogen absorption into
interstitial lattice sites of the particles, enabled by the dissociation of
H2 molecules on the Pd-alloy surface. This absorption induces both a
volume expansion and distinct change in electronic structure that, in
turn, generally alters and spectrally shifts the LSPR peak4,22. Here, as
our standard sensor redout method, we use the so-called peak cen-
troid shift of the LSPR peak introduced by Dahlin et al.23, Δλpeak, in the
first part of our study, due to its superior signal-to-noise characteristics
and because it is widely established in the field. In the second part of
our study, we then introducemachine learning-based readout scheme
that takes the entire peak into account and thereby significantly boosts
the performance of our sensors.

Sensor deactivation by H2O
The fundamental limitation with the H2 sensing mechanism at hand
here, which is basedonhydrogen absorption into a host, aswell aswith
most other alternatives, is that it is prone to deactivation bymolecular
species, such as H2O, CO, NOx or SOx, that bind strongly to the sensor
nanoparticles’ surfaces and thereby effectively block them towards H2

adsorption and dissociation3. Consequently, in the presence of these
species no, or very little, hydrogen is absorbed into the Pd-alloy
nanoparticles and at slow rate, which means that the sensor either
does not respond at all, or only very slowly and to a different saturation
level, which leads to false readings. To demonstrate this deactivation
effect induced by H2O, we developed a test protocol according to ISO
26412:2010 (the only difference being a 29 °C basis for the humidifi-
cation instead of 40 °C), which is comprised of a sensor initialization
sequence at 80 °C in dry synthetic air and six 10% H2 pulses in Ar,
followed by six 1.3% H2 pulses in air (Fig. 2a). This sequence is followed
by a first set of increasing and decreasing H2 concentration pulses
ranging from0.06 to 1.3% at 30 °C in dry synthetic air, to set the sensor
baseline in dry conditions. Subsequently, the same H2 pulse sequence
is repeated at 30 °C in humidified air at 20% RH, 50% RH and 80% RH,
followed by a pulse sequence executed in dry synthetic air at 30 °C. In
the last part of the sequence, the sensor temperature is transiently
increased to 80 °C in dry synthetic air before again executing a H2

pulse sequence, once the sensor had cooled back to 30 °C.
Along this test sequence, wemake the following key observations

(Fig. 2b). Initially, when exposing the Pd70Au30 sensor toH2 pulseswith
concentrations ranging from0.06–1.3% at 30 °C indry synthetic air,we
observe a distinct and rapid response that accurately reproduces the
set H2 pulses. Furthermore, the response is in good agreement with
Sieverts’ law (Supplementary Fig. 1), as expected for a solid solution of
hydrogen in a metal, and with our earlier results for the same alloy
system13,18. Subsequently, as the synthetic air background is humidi-
fied, we witness a dramatic deterioration of the sensor response
manifested as: i) signal baseline elevation compared to dry conditions,
(ii) negative Δλpeak in the low H2 concentration regime, (iii) signal
amplitude decrease for a given H2 pulse and (iv) significantly decel-
erated response, which (v) is essentially completely suppressed at the
highest considered humidity of 80% RH.

Starting our discussion of these observations with the sensor
baseline signal (no H2) elevation with increasing RH, more detailed
inspectionofour data (Fig. 2c,d) reveals that the baseline level elevates
linearly as the humidity level increases (Supplementary Fig. 2). This
corresponds to a spectral red shift of Δλpeak for increasing RH, which
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can be attributed to the adsorbed H2O and OH species on the surface,
where the latter are created from adsorbed H2O and dissociated O2,
according to

H2Oads +Oads ! 2OHads,

and where the equilibrium coverage of these species on the nano-
particle surface depends on RH24–26. Accordingly, the higher equili-
brium coverage at high RH blocks the sensor surface more efficiently
and thus reduces the number of sites where H2 can be chemisorbed,
dissociated and finally absorbed into the alloy nanoparticles. This is
the reason for the dramatically reduced and eventually completely
suppressed response to H2 at high RH. Simultaneously, the increasing
H2O and OH coverage is responsible for the observed baseline eleva-
tion of λpeak (spectral red-shift) that is linear in RH27–29. Finally, we also
note that the baseline shift by H2O and OH is not reversible upon
simple elimination of humidity at 30 °C, that is, only after an 360min
long temperature increase to 80 °C in dry synthetic air the sensor
baseline can be shifted back to its initial value and the sensor response
to the H2 pulse sequence is fully recovered (Fig. 2b, Supplementary
Fig. 3). This is in good agreement with the above mechanistic con-
siderations, since only elevated temperature will induce significant
H2O desorption from the surface, even in dry conditions30.

Turning our focus now to the sensor response to H2 pulses in
humid conditions at 30°C, we see that for low H2 concentrations,
negative λpeak occurs with respect to the humidity-induced sensor
baseline at each RH, that is, we observe a spectral blue-shift, rather
than red-shift (Fig. 2c, d). Mechanistically, this can be attributed to the
reaction between adsorbed Hads with OHads on the surface, since late
transition metal surfaces like Pd and Pt catalyze this reaction even at

ambient conditions as26:

OHads +Hads ! H2Oads ! H2Og :

Hence, at each H2 pulse this reaction reduces the equilibrium
surface coverage of OH and H2O, which in turn slightly shifts λpeak to
the blue (shorter wavelengths). At the same time, this reaction con-
sumes all available dissociated hydrogen species, whichmeans that no
H is absorbed into the nanoparticles to generate the corresponding
optical contrast, i.e., red shift of λpeak. Hence, it is only above a certain
threshold H2 concentration in the gas, cH2

, whose absolute value
depends on RH, where the amount of H available on the surface
exceeds the amount required to reduce all the adsorbed OH species
andwhere thusH-species are available to occupy interstitial sites in the
PdAu alloy nanoparticles and induce the spectral red-shift of λpeak.
Consistently with the logic of two competing processes, i.e., surface
reaction vs. absorption that also has been observed elsewhere31, the H2

concentration threshold in the gas required to induce a sensor
response increases with RH (Supplementary Fig. 8) and explains why
the sensor signal amplitude to each H2 pulse, i.e. the relative shift of
λpeak =Δλpeak, is reduced in humid conditions, with the absoluteΔλpeak
values depending onRH (Fig. 2e). It also explainswhy theΔλpeak (which
is ∝H/Pd9) vs. cH2

trend strongly deviates from Sieverts’ law as soon as
humidity is introduced (Fig. 2e). Discussing these results from the
perspective of hydrogen sensor performance, it is clear that a humid
sensor environment substantially increases the LoD from 0.005% in
dry conditions to 1.1% in a relative humidity of 80% (Fig. 2f), as calcu-
lated by signal interpolation at 3 times the noise level (σ) according to
the corresponding standard IUPAC definition32 (details in Supple-
mentary Figs. 5–7).

Fig. 1 | Plasmonic hydrogen sensor principle. a Scanning electron microscopy
(SEM) image of a Pd70Au30 nanoparticle quasi randomarray plotted togetherwith a
histogram of particle diameters obtained from quantitative analysis of multiple
SEM images. b Scanning transmission electron microscope (STEM) image of a
Pd70Au30 nanoparticle plotted togetherwith (left image) an elemental composition
linescan take along the cyan dashed lines and (right image) the corresponding
integrated count areas under the Au(L) and Pd(L) EDS peaks normalized to the

count area sum at the nanodisk center. Both corroborate the uniform alloy com-
position across the particle. c Schematic depiction of a Pd-alloy nanodisk LSPR
sensor where H2 is selectively absorbed into interstitial lattice sites after dissocia-
tion on the nanoparticle surface. This process changes the particles’ optical prop-
erties as depicted in d) where the characteristic spectral red-shift, Δλpeak, intensity
decrease and broadening of the LSPR peak is schematically illustrated. The span
parameter, S, that was used to extract Δλpeak is also indicated.
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Introducing humidity resistance by sensor operation at elevated
temperature
Having in detail analyzed and mechanistically discussed the detri-
mental impact of humidity on PdAu alloy plasmonic hydrogen sensors,
as the next step, we develop a mitigation strategy based on this fun-
damental understanding. It is based on sensor operation at elevated
temperature, with the goal to shift the equilibrium coverage of the
species present on the surface in humid conditions in favor of
hydrogen, thereby enabling efficientH2 dissociation and subsequentH
absorption into the nanoparticles, and generation of a strong and
reliable sensor signal. For this purpose, we used the same test protocol
as above, with the only difference being the sensor temperature in the
core section that we set to 30 °C, 55 °C, 80 °C, 105 °C and 130 °C,
respectively, to evaluate sensor performance to H2 pulses in 0%, 20%,
50% and 80% RH (Fig. 3a). Here, we make the following key
observations.

At 30 °C, the sensor response to the highest applied H2 con-
centration of 1.3% is reduced from Δλpeak = 6.4 nm at RH =0% to
Δλpeak = 0.2 nm for RH = 80% (Fig. 3b, c and Supplementary Fig. 9). In
other words, the response amplitude is reduced by 97%. Already at
80 °C, however, the situation improves significantly and theRH=0and
80% responses are2.4 and 1.8 nm, respectively, whichcorresponds to a

signal amplitude reductionof 15%only, in goodagreementwith a study
of a Pd-Si nanowire resistive sensor at RH up to 40%33. Accordingly,
further increasing sensor temperature further reduces and eventually
eliminates the detrimental impact of humidity and renders sensor
response in dry and humid conditions essentially identical for 105 °C
and 130 °C (Fig. 3b, c).

A second positive effect of increasing sensor operation tem-
perature is that it effectively eliminates the negative response valley at
low H2 concentrations observed at low temperature and induces a
linear correlation between Δλpeak and logarithmically scaled-cH2

all the
way toRH= 80% for sensor temperatures of 105 °C and above (Fig. 3b,c
and Supplementary Fig. 9). However, we also note that in the low cH2

regime, a spectral blue-shift is still observed at 80% RH even at
T = 130 °C and that the threshold cH2

value above which the sensor
responds with a spectral red-shift at 80% RH is reduced from 0.9 vol.%
at 30 °C to 0.13 vol.% at 105 °C and above.

Finally, and as the main drawback of an increased sensor opera-
tion temperature, we see that the absolute amplitude of sensor
response to a specific cH2

decreases with increasing temperature, as a
consequence of the temperature dependent solubility of hydrogen in
Pd and its alloys (Fig. 3b,c and Supplementary Fig. 9)18,34. Accordingly,
this drop in signal amplitude also decreases the signal to noise ratio

Fig. 2 | Pd70Au30 alloy sensor deactivationby humidity in synthetic air at 30 °C.
a The ISO 26412:2010 hydrogen safety sensor test protocol in synthetic air at dif-
ferent relativehumidities (RH).b Experimentallymeasured sensor λpeak response to
the ISO 26412:2010 hydrogen safety sensor test protocol depicted in a). c Zoom-in
on the core section of the ISO 26412:2010 hydrogen safety sensor test protocol.
d Zoom-in on the corresponding sensor response in 0, 20, 50 and 80% RH at 30 °C
to different H2 concentration pulses ranging from 0.06 to 1.3%. e Δλpeak as a

function of H2 concentration, cH2
, for different RH values, revealing distinct

deviation from Sieverts’ law for RH >0. Error bars correspond to three times the
standard data deviation, 3σ, containing both repetition and signal noise compo-
nents – details in Supplementary Section 11; f LoD as a function of the relative
humidity levels. LoD was calculated by signal interpolation at 3 times the noise
level, as detailed in Supplementary Figs. 5–7.
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(S/N) of the system, and hence – undesirably – increases its LoD, since
the baseline noise floor is neither temperature, nor humidity, nor cH2

dependent (σ =0.027 ± 0.015 nm, Supplementary Fig. 10).

Improving the limit of detection (LoD)
As a consequence of our strategy to improve the humidity tolerance of
Pd-based H2 sensors by increasing their operating temperature, we
have above identified that the LoD in dry conditions increases with
increasing temperature due to the reduced sensor signal amplitude to
a given cH2

, and thus a reduced S/N (inset Fig. 4a and Fig. 3). At the
same time, we also find that the LoD increases for increasing RH for all
sensor operating temperatures but that it is less severe the higher the
operation temperature is (Fig. 4a). Taken all together, this means that
based on the Δλpeak readout even at the highest sensor operation
temperature the LoD lies above the target level of 0.1% H2 defined by
US DoE17, for RH > 20%. Specifically, even our champion system of
105 °C sensor operation temperature features a Δλpeak-based LoD =
0.04%H2 in dry conditions and of 0.15%H2 at 80%RH, and thus indeed
falls slightly short of the target value of 0.1% H2.

The key reason for this shortcoming is the observation (cf. Fig. 3b,
c) that a spectral blue-shift ofΔλpeak is observed in the low cH2

region at
80% RH even at the highest sensor operation temperature. In other
words, due to the readout ambiguity in the blue-shift regime, we must
exclude this regime from our LoD analysis, as described in detail in
Supplementary Figs. 5–7. This is unfortunate because also this range of
sensor response contains potentially relevant and statistically sig-
nificant information (Δλpeak > 3σ) that cannot be utilized when ana-
lyzing the sensor response in traditional ways, that is by using Δλpeak.

At a more fundamental level, this situation is the consequence of
the fact that in nanoplasmonic sensing in general35, and in plasmonic
hydrogen sensors in particular3, sensor readout is traditionally defined
as a single descriptor of the peak, such as the Δλpeak we use here, or
other descriptors like the peak intensity or full-width-at-half-max-
imum.While this is convenient andhasproven to be highly efficient by,
for example, enabling the detection of single molecules36, the study of
single nanoparticles6, and even the refractometric sensing of noble
gases and molecular chemisorption27,29, it omits a potentially vast
amount of information that is hidden in the finer details of changes

Fig. 3 | Impact of sensor temperature on sensing performance in humid
synthetic air. a The ISO 26412:2010 hydrogen safety sensor test protocol in syn-
thetic air run at five different temperatures 30 °C, 55 °C, 80 °C, 105 °C and 130 °C
and for RH=0, 20, 50 and 80% in the core section. b Correspondingly obtained
Δλpeak for the five different sensor operation temperatures. c Detailed analysis of
Δλpeak vs. H2 concentration for different sensor operation temperatures and RH,
revealing the reduced and eventually eliminated impact of H2O for elevated sensor

temperatures that ismanifested by reestablishing a linearΔλpeak vs. logarithmically
scaled-cH2

response across the entire H2 concentration range above 80 °C. Note
that this comes at the cost of a reducedΔλpeak response to H2 as a consequence the
Pd70Au30Hx phase diagram18,34. The red dashed line depicts the H2 concentration
forwhichΔλpeak attains a positive value at RH = 80%. Error bars correspond to three
times the standard data deviation, 3σ, containing both repetition and signal noise
components – details in the Supplementary Section 11.
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that occur to the whole plasmonic peak during a sensing event, since
they are not captured by a single descriptor.

To overcome this limitation and to further push the LoD of our
sensors in high humidity conditions, we apply a neural network to
incorporate the full set of information present in the measured
extinction spectra in the sensor readout and thereby also account for
the inverse relationship between spectral shift and hydrogen con-
centration in the low and high cH2

regimes. Specifically, we chose to
implement aDDNN-based architecture – see Supplementary Fig. 11 and
corresponding text, as well as Methods for details). We chose this
specific DDNN algorithmic technique because it offers comparative
advantages over traditional data analysis methods, most notably
through its capacity to autonomously recognize complex patterns
within the sensor data, even under complex variable environmental
influences. This approach allows for more nuanced sensor perfor-
mance characterization, particularly in challenging conditions that
involve non-linear interactions between multiple variables, as in the
present case. Furthermore, its robustness to noise and ambiguous
signals renders it especially suitable for real-world applications, suchas
H2 sensors.

In its implementation here, the DDNN learned to map the indivi-
dual extinction spectra produced by the sensor to their corresponding
cH2

in each time-step by training it in a supervised manner with input-
label pairs as depicted inSupplementaryFig. 12. Subsequently,weused
the trained network to predict cH2

in a test dataset not included in the
training process and successfully reclaimed the ambiguous readout
region in the low cH2

regime, thereby producing an unambiguous
response of the sensor to all cH2

pulses, as illustrated for 80 °C
operation temperature in Fig. 4b.

This becomes possible because, as illustrated in Fig. 3, even the
single parameter Δλpeak readout in the low cH2

regime elicits a
response that is distinctly separate from baseline noise, even though it
is negative compared toΔλpeakmeasured for higher cH2

. Therefore, the

measured spectra do indeed contain information about cH2
in the

sensor environment also in this low cH2
regime, but since this readout

is both small in magnitude and inversely correlated to increasing cH2

compared to the high cH2
regime, the standard Δλpeak readout fails to

convert the measured optical spectra into quantitatively accurate
hydrogen concentration. By instead incorporating the full spectra and
employing a direct transformation between said spectra and H2 con-
centration, and by training theDDNN architecture on regimes inwhich
the peak begins to shift in the opposite direction, this DDNN-based
readout has fundamentally access to more information with which to
correlate the optical readout to cH2

without any inductive bias on
expected wavelength shifts, as is the case in the standard Δλpeak ana-
lysis. As the key consequence, the DDNN-based data analysis of the
entire plasmonic peak reduces the sensors’ LoD to 0.02 – 0.06% H2

(200-600 ppm) in 80% RH for operating temperatures of 80 – 130°C
(Fig. 4c). Thereby, it enables a plasmonic hydrogen sensor that for the
first time meets and significantly exceeds the US DoE performance
target of a LoD <0.1% or 1000 ppm H2 in high humidity in air. To
estimate the LoD below the lowest experimentally applied H2 con-
centration pulse of 0.06%, we modelled the DDNN-prediction’s stan-
dard deviation (σ (cH2

)) as a logarithmic function of concentration and
then identified the lowest cH2

that can be predicted with a precision of
3σ (cH2

) (see Supplementary Fig. 16 for details about this procedure).

Sensor signal robustness according to ISO 26142:2010
As the next aspect of our performance evaluation, we investigate
sensor response robustness, which refers to its ability to produce the
same response to a change in analyte concentration despite a sig-
nificant variation in its operating conditions, such a variation in RH in
the sensor environment. For hydrogen sensors, the corresponding
performance target is defined by the ISO 26142:2010 standard16, which
states that the response should not vary bymore than ± 30%within RH
20 – 80%, referenced to RH 50%. (Fig. 5a). Replotting our data

Fig. 4 | Pushing the LoD below 0.1% (1000 ppm) H2 in air at 80% RH using
machine learning based on a DDNN architecture. a Sensor LoD as obtained by
the standard Δλpeak readout for different sensor operating temperatures and RH.
Note that above 20% RH all sensors fall short on the USDoE target of LoD <0.1% H2.
b Comparison of sensor response to cH2

pulses at dry and 20% RH conditions at
80 °C operating temperature, as obtained by the standard Δλpeak readout and the
DDNN-based readout, cH2 ,NN

. The corresponding comparison for higher humidity
levels can be found in Supplementary Fig. 13. The full data set including all sensor

operating temperatures and RH conditions is presented in Supplementary Fig. 14.
The full data set calculated using the standard centroid method is depicted in
Supplementary Fig. 15. c Sensor LoDs obtained by the DDNN-based readout
revealing that an essentially RH-independent LoD that lies significantly below the
DoE target of 0.1% H2 is obtained for sensor operating temperatures of 80 °C and
above. The inset is a zoom-in on the 0–0.3% H2 LoD region. The LoD estimation
procedure is described in Supplementary Fig. 16.
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extracted from the standard analysis based on the Δλpeak readout
accordingly (Fig. 5b), i.e., normalizing Δλpeak obtained for different RH
and sensor temperature to the value obtained for RH = 50%, for
cH2

= 0.13%, cH2
= 0.28%, cH2

= 0.6% and cH2
= 1.3%, reveals that for a

sensor operating temperature of 105 °C, we meet the ISO
26142:2010 standard all the way down to cH2

= 0.28%. At cH2
= 0.13%,

however, no sensor operation mode satisfies the standard. For oper-
ating temperatures 55 °C, 80 °C or 130 °C, the robustness requirement
is met for cH2

= 0.6%.
Performing the same analysis instead on the basis of the DDNN-

based sensor readout yields significant improvement (Fig. 5c). Starting
at the highest cH2

= 1.3%, we see that all sensor operation temperatures
pass the ISO 26142:2010 standard with impressive margin and hardly
any mutual difference. At cH2

= 0.6% the situation is very similar, with
the only exception being 30 °C operation temperature that now
deviates significantly from the rest, but still complies with the ISO
26142:2010 standard. At cH2

= 0.28% the mutual differences between
different sensor operation temperatures starts to increase and 30 °C
does not comply with the standard anymore. cH2

= 0.13% sees the same
result with 30 °C sensor operating temperature not meeting the
standard and for the other temperatures further increasing mutual
spread. At the lowest considered cH2

= 0.06%, 80 °C operating tem-
perature still meets the ISO 26142:2010 standard and 55 °C is very
close. This is an important result because it demonstrates that the
DDNN-based readout not only pushes the LoD in high humidity in air

below the 0.1% DoE target but also enables a sensor robustness in that
limit that complies with the corresponding ISO 26142:2010 standard
for H2 safety sensors.

Long-term sensor stability in 80% RH in air
As the next aspect of sensor performance evaluation, we implemented
a long-term stability test protocol comprised of the standard initi-
alization sequence in dry conditions introduced above, followed by a
first dry (RH =0%) section of stepwise in/decreasing H2 concentra-
tions, also here identical to the ISO 26412:2010 sensor test protocol
(Fig. 6a). This initial dry section sets the baseline for sensor perfor-
mance. It is followed by the long-term humidity section where the
sensor is operated at 80°C at RH= 80% and exposed to 190 H2 pulses
organized in ten regular and nine randomized subsets. This test sec-
tion was then followed by two dry sections, whereof the first one was
executed directly after termination of the humidity and the second
one after a transient temperature increase to 100 °C to enhance H2O
desorption from the sensor surface. The corresponding standard λpeak
readout for the entire 142 h longmeasurement sequence is depicted in
Fig. 6b and reveals distinct response from the sensor that does not
deteriorate over time (Supplementary Figs. 20 and 21). However, the
signal is also characterized by temporal variations of its baseline,
caused mostly by intensity fluctuations of the light source. Again
performing the same analysis instead on the basis of a neural network-
based sensor readout yields significant improvement in this respect

Fig. 5 | Signal robustness according to ISO 26412:2010 at different sensor
operating temperatures in humid conditions in synthetic air. a Illustration of
the ISO 26412:2010 requirements on sensor signal robustness. The gray box
denotes the ±30% tolerance from the signal obtained in 50% RH. To meet the ISO
requirement, the sensor signal at other RH than 50%must fall within the gray-box.

b StandardΔλpeak readout sensor signal robustness evaluation according to the ISO
26142:2010 standard for 0.13, 0.28, 0.6, and 1.3% H2 concentrations in humid syn-
thetic air. c DDNN-based sensor signal robustness evaluation according to the ISO
26142:2010 standard for 0.06, 0.13, 0.28, 0.6, and 1.3% H2 concentrations in humid
synthetic air.
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and provides highly reproducible and stable sensor readout both to
regular and randomized pulse sequences (Fig. 6c).

Importantly, here, we replaced the DDNN with a Transformer to
take the longer data sequences into account, as elaborated upon in the
Methods section and the SI. In more detail, the DDNN is adept at
managing shorter, fixed-length sequences, but the Transformer’s
architecture allows for better handling of longer sequence depen-
dencies. This makes a Transformer architecture an ideal replacement
for the DDNN when analyzing complex time-series over extended
periods, as required in our long-term stability tests. Furthermore, the
Transformer offers higher stability and consistency overall when
inferring beyond its original training distribution, as we attempt as the
last step of our analysis below.

The improved performance is further corroborated by extracting
the Δλpeak signals from the standard analysis for both regular and
random pulse sequences (Fig. 6d) and by comparing them to the
corresponding Transformer-based readout (Fig. 6e). Specifically, the
standard analysis yields highly reproducible signal amplitudes for the
different pulse sequences but also in this case with distinct negative
response for the lowest two H2 concentrations. The Transformer-

based readout eliminates the negative response and yields highly
reproducible linear dependence between measured and set H2 con-
centration, both for regular and randomized pulse sequences. Finally
extracting the LoD, which we here simply define as lowest detected H2

pulse, from 5 pulse groups (PGs) selected from the initial dry, the first
and last humid, and the last two dry regular pulse sequences, reveals
stable and reproducible values of 0.06% H2 (which corresponds to the
lowest concentration pulse applied) along the entire 142h test
sequence, without any indication for deterioration (Fig. 6f). Notably,
looking at the actual pulses (Supplementary Fig. 21), it is clear that the
strong response at 0.06% H2 that even lower concentrations likely can
bedetected, in linewith the extrapolation-based0.02% (200ppm) LoD
identified above in the short-term sensor tests (cf. Fig. 4).

As the last aspect, we note that the sensor used throughout this
work has spent a total of 844 hours on stream in high humidity
experiments during a period of more than 1.5 years, where it was
intermittently stored at ambient conditions. Yet, its response is
unchanged, and performance prevails, which corroborates both its
structural and surface chemical integrity over time. This is in line with
the sensor operation temperature of 80 °C being significantly lower

Fig. 6 | Long-term stability of sensing performance in humid synthetic air.
a Long-term stability test protocol run at 80 °C sensor temperature and comprised
of (i) the standard initialization section, (ii) a first dry section of H2 pulses, (iii) the
humidity test sequence comprised of 10 regular and 9 randomized H2 concentra-
tion pulse groups (PGs) executed at 80%RHand (iv) a dry control section at the end
of the entire protocol. b Correspondingly obtained λpeak sensor readout.
c Correspondingly obtained Transformer-based readout, cH2,NN

. d Extracted Δλpeak
as a function cH2

for the 10 regular and 9 random pulse groups, respectively.

e Transformer-based readout, cH2,NN
, as a function cH2

, for the 10 regular and 9
random pulse groups, respectively. f LoD evolution along the entire long-term
stability test, assessed as a comparison of the LoD values for the initial regular pulse
groups in dry (PG1) and humid (PG2) conditions, the last regular pulse group in
humid conditions (PG3) and the two final pulse groups in dry conditions (PG4 and
PG5). All values are close to an LoD of 0.06% H2 and show no sign of sensor
degradation along the entire measurement sequence.
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than the ≈ 200 – 250 °C °C necessary to induce sizable bulk oxidation
of Pd reported in literature37,38.Taken all together, these results indi-
cate that our system is able to meet or even exceed the DoE perfor-
mance target for H2 sensor operation in humid air also during long-
term operation in highly humid conditions in air.

Transformer response in (untrained) intermediate RH and down
to 0.01% (100 ppm) H2

The performance ofmachine learningmethods in general, and of both
the DDNN and Transformer models we use in this study, is inherently
strongly depending on the quality of the data used for training. Fur-
thermore, it is intuitive that the performance of a deep learningmodel
to make predictions at conditions that are significantly different from
the training conditions will be worse than if data to be analyzed are
generated within the range of the training conditions. It is therefore
important to address this aspect and discuss its implications for neural
network enabled plasmonic H2 sensors. Here, we do this in two steps

by first assessing sensor performance at RH-levels intermediate to the
ones the Transformer was trained on, and by in the second step
expanding our sensing range to H2 concentrations below the lowest
value explored so far, i.e., down to 0.01% H2 and across the full
humidity range up to 80% RH.

To assess the ability of the Transformer to handle a sensor
environment characterized by RH-levels intermediate to the ones used
for its initial training, we executed again the ISO 26412:2010 H2 con-
centration pulse sequence introduced above at 80 °C, but with inter-
mediate RH values of 0, 20, 35, 50, 75, 85% (Fig. 7a). Plotting first the
standard λpeak readout reveals the expected behavior with increasing
magnitude of negative response as RH increases and fully recovered
sensor response when returning to dry operation conditions (Fig. 7b).
Applying the old Transformer model, that is, the model trained at the
original (and thus different) RH values, reveals that it can reasonably
predict the high concentration H2 pulses but that it falls short on
identifying the lowest concentrations (Fig. 7c). This is not surprising

Fig. 7 | Transformer robustness and LoD in intermediate humidities. a The ISO
26412:2010 hydrogen safety sensor test protocol in synthetic air run at 80 °C for
intermediate RH=0, 20, 35, 50, 75 and 85%. b Correspondingly obtained λpeak
response. c Correspondingly obtained Transformer-based readout, cH2,NN

,
obtained by directly applying the old Transformer model trained at 0, 20, 50 and
80% RH. d Correspondingly obtained Transformer-based readout from a retrained
model that thus also has seen sensor response at the intermediateRH-values during
training. e Sensor LoD as obtained by the standard λpeak readout for the different
RH, as defined by signal extrapolation (orange) and the smallest directly measured
H2 pulse that could be discerned within 3 standard deviations (red). Note that
above 20%RH, consistent with results in Fig. 4, the sensor falls short on the USDoE

target of LoD <0.1% H2. f Sensor LoD as obtained by Transformer-based readout,
cH2,NN

, using the original training at different RH as used in themeasurements here.
Note that while the prediction accuracy at the smallest H2 concentrations is lower
than at the original RH tests (cf. Fig. 4c), the precision remains very high, effectively
retaining a low estimated LoD. However, the results are dependent on precise noise
characteristics at inference time and thus lead to an inconsistent measurement of
low H2 concentration pulses. g Sensor LoD as obtained by the Transformer-based
readout after re-training on the enriched dataset including also the intermediate
RH-values, revealing again an essentially RH-independent LoD that lies significantly
below the DoE target of 0.1% (grey shaded area). The LoD estimation procedure is
explained in Supplementary Fig. 16.
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because themodel’s predictive accuracy is contingent on the diversity
of the training dataset, i.e., for predicting low H2 concentrations the
model will be sensitive to the particular noise-characteristics at infer-
ence time. Simultaneously, this reduced performance is easily miti-
gated by re-training the Transformer on a dataset enriched with the
new RH levels and relevant noise conditions to enable full recovery of
its predictive performance also at the intermediate RH-values, all the
way down to the smallest pulse of 0.06% H2 (Fig. 7d). The new data
were incorporated into the training of themodel with input-label pairs
analogously as for the original datasets above (Supplementary Fig. 12),
consisting of the sequence of on-ramps of increasing H2 concentration
and off-ramps of decreasing H2 concentration.

To further investigate the Transformer performance at inter-
mediate RH, we extract the LoD of the sensor obtained in three
different ways, i.e., using the standard λpeak readout (Fig. 7e), the old
Transformer model (Fig. 7f) and the re-trained Transformer model
(Fig. 7g). Furthermore, we apply two distinct ways to define the LoD.
The first one is to simply extract the discrete smallest H2 con-
centration that could be directly measured (λpeak readout) or pre-
dicted (Transformer) within 3 standard deviations of certainty. The
second one is obtained by extrapolation, i.e., by fitting themeasured
λpeak readout or the Transformer-prediction’s standard deviation
(σ (cH2

)) as a logarithmic function of concentration and then iden-
tifying the lowest cH2

that can be extrapolated with a precision of
3σ (cH2

), as described in Supplementary Fig. 16. For the λpeak read-
out, as already seen above (cf. Fig. 4a), we find that the LoD increases
with humidity, failing to meet the DoE target at higher RH levels
for both LoD definitions, as the sensor’s response to low H2

concentrations becomes less distinguishable from the baseline
noise (Fig. 7e).

For the old Transformer model, we find that it retains high pre-
cision but its accuracy in predicting the lowest H2 concentrations
declines with increasing RH, reflecting the model’s constraints when
extrapolating beyond its training conditions (Fig. 7f). Here, the highest
H2 concentration that cannot be discerned from noise at all (i.e., the
model predicts cH2

=0 within 3σ) defines the smallest possible esti-
mated LoD. This leads to an identical extrapolated (fit) and measured
discrete LoD for the old Transformer model. For the re-trainedmodel,
we find a consistent and RH-independent LoD that is well below the
DoE target across all humidity levels for the discrete values and even
lower for the extrapolated LoDs based on the logarithmic fit. This
corroborates the model’s improved robustness and predictive power
after incorporating the intermediate RH values into its training data-
set (Fig. 7g).

As thefinal step to test theperformanceof theTransformermodel
outside its initial training regime, we executed a pulse sequence in
synthetic air at 80 °Cwith cH2

pulses ranging from0.01% H2 to 0.2% H2

for RH=0, 20, 50 and 80% (Fig. 8a). In other words, we extend the
lower concentration limit in the pulses from the originally lowest value
of 0.06% H2 to 0.01% H2. Applying the standard λpeak readout reveals
small but distinct blue-shifts for small cH2

pulses and red-shifts for the
largest pulses, as expected (Fig. 8b).

Applying the old Transformermodel only trained ondata with cH2

pulses down to 0.06% H2, improves the response significantly but also
clearly shows that the model falls short on distinctly predicting the
new lowest concentration pulses (Fig. 8c). This is not surprising
because these concentrations are belowwhat was included in training,
and again the noise characteristics are typically different. Accordingly,
the poor response provided by the Transformer to the lowest cH2

pulses is easily alleviated by re-training of the old model to also
encompass data obtained in this low cH2

range, which enables the
reliable detection of H2 also at the lowest pulse cH2

= 0.01% or 100 ppm
H2 for all RH (Fig. 8d). These new data were incorporated into the
training of the model with input-label pairs analogously as for
the original datasets above (Supplementary Fig. 12), consisting of the

sequence of on-ramps of increasingH2 concentration and off-ramps of
decreasing H2 concentration.

To finalize our analysis, also for this scenario, we extract the LoD
of the sensor based on the standard λpeak readout (Fig. 8e), the old
Transformer model (Fig. 8f) and the re-trained Transformer (Fig. 8g),
and again distinguish between the discrete LoD values, that is, the
smallest measured H2 pulse which could be predicted within 3 stan-
dard deviations of certainty, and the ones obtained by extrapolation
based on a logarithmic fit, as described in Supplementary Fig. 16. For
the λpeak readout, we find that the LoD again quickly increases with the
level of humidity, indicating a loss of sensitivity in more humid con-
ditions, which is especially pronounced for lower H2 concentra-
tions (Fig. 8e).

For the old Transformer model, we find that it provides high
precision across all RH levels but is less accurate for lower H2 con-
centrations, due to the lack of training data in these specific conditions
(Fig. 8f). This means that the estimated LoD, which is based on a
continuous fit to the model’s prediction precision in each H2 pulse
discernible from noise, still reaches values comparable with the ori-
ginal estimates (cf. Fig. 4c). The reason for the seen discrepancy
between some of the discrete and fitted LoD values is the result of the
underspecified training data, i.e., the consequence of applying the
model to data obtained outside its training conditions.

For the re-trained Transformer model, however, we find a con-
sistent LoD across the full range of RH levels, maintaining high preci-
sion and accuracy even at the lowest H2 concentrations (Fig. 8g). This
demonstrates the benefits of including a wider range of H2 con-
centrations in the training data. Further, if the noise characteristics at
inference time can be calibrated by re-training, the actual LoD can
reach far below the DoE target of 0.1% and here reaches a record low
LoD of 0.01% or 100 ppm H2 in humid air at 80% RH. The higher (fit)
LoD at RH=0% is due to less precise predictions for all H2 levels
included in the logarithmic fit, resulting in an extrapolated LoD that
exceeds the lowest observable (discrete) H2 concentration, likely
because the smallest H2 pulses induce a smaller spectral shift (Δλpeak)
in dry conditions (cf. Fig. 8b).

Taken all together, the results of this section highlight two
important and generic aspects of using deep learning to enhance
sensor response, notably neither limited to plasmonic and hydrogen-
targeting ones, nor to the specific type of deep learning model used.
The first aspect is that any model will perform worse in its predictions
if the data it is to analyzewere obtained at conditions that are different
from the ones used to generate the training data. Obviously, the
decrease in performance will be larger, the larger the difference
between training and measurement conditions. The second aspect is
that this apparent shortcoming is easily mitigated by re-training of the
model used.

We argue that this importance of training the used model at the
right conditions is not a problem from a technical sensor application
perspective, since it is easily implemented in case the conditions of a
targeted sensor application environment is known prior to sensor
hardware deployment. A scenario that seems realistic for most cases.
Specifically, the same model trained on a single sensor device for a
specified range of conditions can then be used for a large number of
nominally identical sensor devices, provided they are all deployed
within this range of conditions. If one or several sensor devices are to
be used at different conditions than themodel initially was trained for,
it needs to be retrained at these new conditions at which this sub-
fraction of sensors is to be used. This approach, in fact, may even
provide new opportunities to significantly enhance the applicability of
one and the same sensor hardware to widely different application
conditions since no changes to the hardware have to be made when
adaptation to a specific sensing environment can be implemented on
the basis of the output data treatment only, enabled by training con-
ditions tailored for specific application environments. An alternative
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solution is to train a larger model on a (very) wide range of conditions
and then use one and the same model for sensor devices operating in
widely different conditions – provided that these different conditions
still are within the range of conditions used for training the
large model.

Discussion
We have investigated the influence of high humidity on the sensing
performance of optical nanoplasmonic hydrogen sensors based on
Pd70Au30 alloy nanoparticles in synthetic air. As the first key result, we
have found that at ambient sensor operation temperatures already
20%RH significantly and detrimentally affects performance and that at
80% RH the sensors become completely deactivated. Based on the
generated fundamental understandingof thedeactivationmechanism,
as the second key result, we found that increasing sensor operation
temperature shifts the surface equilibrium coverage of the molecular
species present on the surface in humid conditions in favor of

hydrogen and thus again enables efficient H2 dissociation and sub-
sequent H absorption into the nanoparticles, which in turn restores
robust sensor response even at 80% RH for operating temperatures
between 80 and 130 °C. As the main drawback of increasing sensor
operation temperature, we found that the absolute amplitude of sen-
sor response to a specific cH2

decreases due to the temperature
dependent solubility of hydrogen in Pd and its alloys. As a con-
sequence, using the standard plasmonic sensor readout, Δλpeak, the
LoD of sensors operated at temperatures thatmitigate deactivation by
H2O fall slightly short on meeting the DoE target of LoD <0.1% H2 in
humid air. To overcome this limitation, and as the third key result, we
first applied a DDNN-based architecture to incorporate the full set of
information present in the entire measured extinction spectra (rather
than only the spectral shift of the LSPR peak maximum, Δλpeak) in the
sensor readout. In this way, we were able to achieve LoDs ranging
between 0.02 – 0.06% H2 (200 – 600 ppm) in 80% RH in synthetic air
for operating temperatures of 80–130 °C using only limited inductive

Fig. 8 | Transformer response to H2 concentrations down to 0.01% or 100 ppm
H2. a The ISO 26412:2010 hydrogen safety sensor test protocol in synthetic air run
at 80 °Cwith cH2

pulses ranging from0.01%H2 to 0.2%H2, andmeasured at RH=0,
20, 50 and 80%. b Correspondingly obtained λpeak response, characterized by
distinct blue-shifts for small cH2

pulses and red-shifts for the largest pulses.
c Correspondingly obtained Transformer-based readout, cH2 ,NN

, obtained by
directly applying the old Transformer model trained in the 0.06 –1.2% H2 con-
centration range for RH=0, 20, 50, 80%.dCorrespondingly obtainedTransformer-
based readout from a re-trained model that thus also has seen sensor response to
the lowest cH2

pulses during training. Note that now also the lowest 0.01% H2

concentration pulse is predicted with high accuracy. e Sensor LoD as obtained by

the standard λpeak readout for the different RH, as defined by signal extrapolation
(orange) and the smallest measured H2 pulse which could be discerned within
3 standard deviations (red). f Sensor LoD as obtained by Transformer-based
readout, cH2 ,NN

. Note again here that while the accuracy of the predictions of the
smallest H2 concentrations is lower, the precision remains very high, effectively
retaining a low estimated LoD. g Sensor LoD as obtained by the Transformer-based
readout after re-training on the given dataset, revealing again an essentially RH-
independent LoD that lies significantly below the DoE target of 0.1% and now
extends down to 0.01% or 100 ppm as the lowest directly measured H2 con-
centration. The LoD estimation procedure is described in Supplementary Fig. 16.
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bias, even in the regime of relatively low signal to noise ratio. Thereby
the presented sensors meet the US DoE performance target of LoD
<0.1% H2 in humidity in air with significant margin. Similarly, using the
DDNN-based readout, the ISO 26412:2010 sensor signal robustness
standard for operation in humid air can be met down to 0.06% H2

concentration for a sensor operation temperature of 80 °C.
As a fourth key conclusion, we have demonstrated a long-term

stability test of the sensor operating in 80% RH for almost a full week,
without it showing any signs of degradation and continuously main-
taining a directly measured LoD of 0.06%H2. For this test, we replaced
the DDNN with a Transformer architecture due to its excellent ability
to handle complex time-series analysis over extended periods.

As the last key conclusion, we have shown that sensor perfor-
mancebasedon theTransformer readout (and anyother deep learning
model) deteriorates when the sensing environment, here in terms of
RH or H2 concentration range, is different from the conditions used to
generate the training data. As the key point, however, we demon-
strated how this is easily mitigated by re-training the model by also
including these new conditions. In this way were able to achieve a
record LoD of 0.01% or 100 ppm H2 at RH= 80% in air, and therefore
exceed the DoE target by one order of magnitude – notably with the
potential for further improvement by further optimized training.

Looking forward, with respect to sensor response time not
explicitly addressed in this work, yet being another key performance
metric for H2 sensors, we note that the DDNN model we used in the
first part of this work is structured to require only a single time-step,
that is a single spectrum, for H2 concentration prediction. The Trans-
formermodel used in the secondpart requires a continuous readout of
4 time-steps for its prediction, which with a sampling rate of roughly
3 seconds considered here, results in the Transformer delivering fully
real-time results after an initial on-lining period of roughly 9 seconds.
Hence, both types of models are essentially limited only by the
acquisition hardware and thus designed to ensure fast response times,
provided that the sensor itself can deliver those. To this end, we have
recently demonstrated that plasmonic H2 sensors based on the
Pd70Au30 alloy system indeed can provide sub-second response, as
required by the correspondingUSDoE performance target13, at least at
idealized vacuum/pure H2 conditions.

In a wider perspective, our results demonstrate a generic
solution for Pd(alloy)-based plasmonic hydrogen sensors, as well as
sensors based on other sensing materials that use Pd as a capping
layer for oxidation protection and/or H2 dissociation, that makes
them compatible with operation at high humidity conditions. We
therefore predict that similar reasoning based on shifting the
equilibrium surface coverage of deactivating species by increasing
sensor operating temperature can be applied to other molecules
than H2O. Furthermore, we argue that the neural network-based
data treatment concepts that we have introduced and that, as key
point, take the entire optical spectrum into account, constitute a
generic strategy for the improvement of the LoD of essentially any
type of nanoplasmonic sensor. Furthermore, we highlight that one
of the biggest benefits of using deep learning, such as a DDNN or
Transformer, to improve the performance of a sensor is that this
approach, in principle, does not require strict assumptions or prior
knowledge about the underlying sensing mechanism. This ensures
that the same approach is generally usable in different sensing
conditions if appropriate data for training in these conditions is
provided. This, in turn, means that deep learning approaches may
provide new opportunities for the use of the same sensor hardware
in widely different application conditions since necessary adapta-
tions to a specific sensing environment can be implemented on the
basis of data treatment only.

Taken all together, our work and its implications advertise more
focused machine learning studies with more advanced models and
curated datasets optimized for the purposes of training and deploying

deep learning algorithms for enabling real-time H2 sensing in chemi-
cally challenging and fluctuating environments.

Methods
Sample nanofabrication and characterization
Pd70Au30 alloy nanodisk arrayswere fabricated onto0.9×0.9×0.05 cm3

fused silica substrates (Schott Scandinavia AB) and silicon nitride TEM
windows for TEM/EDS analysis using hole-mask colloidal
lithography20,21. Nominal nanodisk proportions were set to 200 ×
25 nm (diameter × height). After the deposition, the arrays were
annealed at 500 °C for 18 h under the flow of 4% H2 in Ar to promote
the alloy formation. A more detailed description of the nanofabrica-
tion and alloy formation procedure is available in our earlier work20,21.
The arrays on silicon nitride TEM membranes were characterized by a
FEI Titan 80-300 microscope (STEM) equipped with INCA X-sight
detector from Oxford Instruments (EDS). The microscope operated at
300 kV. The disk diameters were found to be 198 ± 10 nm (Fig. 1a) and
the composition Pd73±8Au27±9 (Fig. 1b, Supplementary Fig. 17).

Hydrogen sensor performance measurements and setup
Sensor performance tests were carried out in a quartz tube flow
reactor with optical access for transmittance measurements (X1,
Insplorion AB) following ameasurement protocol described in Figs. 2a
and 3a, and in the SI. The tests were conducted at atmospheric pres-
sure in synthetic air carrier gas (80% N2, 20% O2, Strandmøllen). The
gas flow rate was kept constant at 200mLmin−1 and gas composition
was controlled by mass flow controllers maintaining atmospheric
pressure (Bronkhorst ΔP). The gas stream was humidified in a con-
trolled evaporation mixing system (Bronkhorst CEM) in the range
between 0 – 80% RH at 29 °C, which corresponds to approx. 0 –

23.1 gm−3. Note that the humidifying temperature of 29 °C was chosen
to be slightly below the lowest investigated sensor operation tem-
perature to minimize the risk of water condensation due to flow fluc-
tuations. The humidity level was measured by a calibrated relative
humidity and temperature probe (HMP7, Vaisala). The samples
mounted in the flow reactor were illuminated by polychromatic light
(AvaLight-Hal, Avantes) that was guided by optical fibers equipped
with a collimating lens. The transmitted lightwas then analyzedusing a
fiber-coupled fixed-grating spectrometer (AvaSpec-1024, Avantes or
SensLine AvaSpec-2048XL) using the same type of optical fiber and
collimating lens. The measurement temperature was controlled using
a closed-loop temperature control system (Eurotherm 3216) in the
range of 30 – 130 °C. Optical absorption and desorption isotherms in a
wide range of hydrogen partial pressures (1 – 1000 mbar, Supple-
mentary Fig. 18) were measured in a custom vacuum chamber set-up
with optical windows equipped with fiber-coupled halogen lamp illu-
mination (AvaLight-Hal, Avantes) and a fiber-coupled fixed grating
spectrometer (SensLineAvaSpec-2048XL, Avantes) for optical readout
at systematically varied absolute pure H2 pressures

18,21.

ISO 26412:2010 sensor test protocol
The test protocol contains three key sections: (i) initialization, (ii) core,
and (iii) control (Fig. 2a, Fig. 3a). The initialization (i) lasts 6 hours and
consists of 6×10% H2 pulses in Ar followed by 6×1.3% H2 pulses in
synthetic air at 80 °C. The aim of the initialization is to obtain a stable
sensor baseline. Subsequently, the sensor temperature is adjusted to
the targeted test operation temperature in the range of 30 – 130 °C.
The core (ii) of theprotocol consists of 4×10pulses ofH2– synthetic air
mixtures for the mapping of the sensor response in four different
humidity backgrounds, i.e., RH =0, 20, 50, and 80%. Each 10-pulse
subsets consists of 5 pulses of (de)increasingH2 concentration in a log-
spaced distribution of 0.06%, 0.13%,…, 1.3%. The control section (iii)
completes the protocol by repeating twice the 10-pulse subset in dry
conditions, i.e., at RH =0%.We note that as the only deviation from the
ISO 26412:2010 standard we use 29 °C as humidification reference
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temperature, rather than 40 °C, due to technical limitations of our
experimental setup.

Long-term stability test protocol
The test protocol is comprised of four sections: (i) initialization, (ii)
dry, (iii) long term humidity, and (iv) dry control (Fig. 6a). The entire
test is conducted at 80 °C except for a 3 h drying step at 100 °C within
the dry control section. The initialization (i) is identical as in the ISO
26412:2010 sensor test protocol. The dry section (ii) contains 10 pulses
of H2– synthetic air mixtures (RH=0%) with the same concentrations
and order as in the ISO protocol. The dry section captures the initial
state of the sensor for later performance comparison. The long-term
humidity section contains 190 pulses of H2–synthetic air mixtures at
RH 80% organized in ten regular and nine randomized subsets. The
regular subsets are identical to the 10-pulse subsets withing the ISO
protocol. The randomized ones contain the same concentrations but
in a random order. This section simulates the operational stress of
operating the sensor for a long time (114 h) in highly humid conditions.
Finally, the dry control section repeats two regular 10-pulse subsets
separated by an additional heating step at 100 °C and RH 0%. The dry
control section captures the final state of the sensor for the evaluation
of the changes in its performance across the long-term humidity test.
The protocol is 142.5 h long in total.

Intermediate humidity test protocol
The test protocol contains three key sections: (i) initialization, (ii) core,
and (iii) control (Fig. 7a – the initialization part (i) is not shown but
identical to the one included in Fig. 2) and is conducted at 80 °C. The
core (ii) of theprotocol consists of a set of 7×10pulses ofH2– synthetic
air mixtures for the mapping of the sensor response in 6 different
humidity backgrounds RH=0, 20, 35, 50, 75, and 85%. The con-
centrations of H2 are identical to the ones used in the ISO 26412:2010
test protocol described above. The control section (iii) completes the
protocol by repeating the 10-pulse subset in dry conditions, i.e., at
RH =0%, after dwelling for 8 h in dry synthetic air flow. As in the earlier
test protocols, we use 29 °C as humidification reference temperature.

Low H2 concentration test protocol
The test protocol contains three key sections: (i) initialization, (ii) core,
and (iii) control (Fig. 8a, initialization (i) is not shown but identical to
the one included in Fig. 2). The entire test is conducted at 80 °C. The
initialization (i) consists of 6×10% H2 pulses in Ar followed by 6×0.22%
H2 pulses in synthetic air, which is the highestH2 concentration used in
this protocol. The core (ii) of the protocol consists of 5×10 pulses of H2

– synthetic air mixtures for mapping of the sensor response in
humidity and lowH2 concentrations, i.e., RH =0, 20, 50, and 80%. Each
10-pulse subsets consists of 5 pulses of (de)increasing H2 concentra-
tion in a log-spaced distribution of 0.01%, 0.023%,…, 0.22%. The con-
trol section (iii) ends the protocol by repeating the low concentration
10-pulse subset in dry conditions, i.e., at RH=0%, after dwelling for 8 h
in dry synthetic air flow. As in the earlier test protocols, we use 29 °C as
humidification reference temperature.

Δλpeak standard readout
As the standard sensor readout, we measured optical spectra in the
range of 400 – 1000 nm and evaluated them using an interpolated
centroid tracking algorithm as introduced in ref. 23, acquiring the
centroid shift, Δλpeak, as a primary spectral descriptor of the sensor
response (Fig. 1d). To extract it, the peak centroid spectral position,
λpeak, was defined as the center of mass of the LSPR peak with a
certain base span, S (Fig. 1d)23. The span parameter, S, was optimized
to get a maximum S/N ratio for the 0→ 1.3% H2 signal transition at
30 °C and then kept constant at S = 140 nm for all measurements
except for the long term stability test in humid conditions. Within
the stability test, the span of 125 nm was used to mitigate optical

drifts of the experimental setup. To cancel most of the baseline drift
effects in response magnitude evaluations, we used a repetitive self-
referencing approach detailed in Supplementary Fig. 19. As themain
cause for this drift, we identify long term intensity variations of the
used halogen light source.

Deep dense neural network-based readout
As an alternative spectral descriptor, we used the output of a DDNN-
based architecture that processes the whole time series of optical
spectra recorded in the range of 400 – 1000nm as input. The network
consisted of a recurring sequence, batch normalization, dense and
dropout layers connected through skip connections (Supplementary
Fig. 11) culminating in a single multi-head attention module and was
trained to return an estimate of hydrogen concentration for each time
point. Detailed description of the architecture and its output is pro-
vided in the SI.

Transformer-based readout
To improve the representational ability of our architecture, and enable
it to consistently process longer sequences, we implemented an NLP-
inspired transformer neural network architecture.While theDDNNcan
learn a direct mapping between spectrum and H2 concentration, it
cannot learn how different parts of a spectrum relate to each other or
to past spectral output of the sensor. Since this is crucial for ensuring
long-term of the sensor readout, we employ self-attention on a posi-
tionally encoded sequenceof nanoplasmonic spectra before sending it
into themain computational base of theDDNN.Detailed descriptionof
the architecture and its output is provided in the SI.

Data availability
The data that supports the findings of the study are included in the
main text and supplementary information files. Source data files have
been deposited on Figshare (https://doi.org/10.6084/m9.figshare.
24607668).

Code availability
The analysis codes used in this work are freely available from https://
gitlab.com/langhammerlab/nn_h2sensing.
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