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Enhancing the fairness of AI prediction
models by Quasi-Pareto improvement
among heterogeneous thyroid nodule
population

Siqiong Yao1,2,5, Fang Dai1,5, Peng Sun1, Weituo Zhang3 , Biyun Qian 3 &
Hui Lu 1,2,4

Artificial Intelligence (AI) models for medical diagnosis often face challenges
of generalizability and fairness. We highlighted the algorithmic unfairness in a
large thyroid ultrasound dataset with significant diagnostic performance dis-
parities across subgroups linked causally to sample size imbalances. To
address this, we introduced the Quasi-Pareto Improvement (QPI) approach
and a deep learning implementation (QP-Net) combining multi-task learning
and domain adaptation to improvemodel performance among disadvantaged
subgroups without compromising overall population performance. On the
thyroid ultrasound dataset, our method significantly mitigated the area under
curve (AUC) disparity for three less-prevalent subgroups by 0.213, 0.112, and
0.173 while maintaining the AUC for dominant subgroups; we also further
confirmed the generalizability of our approach on two public datasets: the
ISIC2019 skin disease dataset and theCheXpert chest radiographdataset. Here
we show the QPI approach to be widely applicable in promoting AI for equi-
table healthcare outcomes.

AI has made substantial progress as a clinical diagnostic tool for a
variety of diseases1–3. Previous studies primarily reported results on the
overall population, but there is a growing concern regarding the het-
erogeneity and fairness of AI models across different subgroups4–8.
Researchers often evaluate model performance based on the general
population or prevalent disease subtypes, neglecting rare or specific
subgroups9. For instance, in lung cancer research, a typical deep
learning study might categorize lung cancer into the predominant
LUAD and LUSC subtypes and normal lung tissue, neglecting the

identification of rare subtypes10. This oversight is also evident in
ultrasound image diagnoses of breast cancer, leading to a high rate of
false negatives and consequently, missed detections11. Specifically,
among the 48 papers published on thyroid nodule benign-malignant
diagnosis with AI models in the past 5 years, 44 reported only the
prediction AUC for the overall population or the most common sub-
type Papillary Thyroid Carcinoma (PTC, 85–95% of incidence)12–16,
whereas only four papers discussed the diagnostic outcomes for less-
prevalent subtypes, including Follicular Thyroid Carcinoma (FTC,
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3–5% of incidence), Medullary Thyroid Carcinoma (MTC, 1–3% of
incidence), andAnaplastic ThyroidCarcinoma (ATC, <1%of incidence),
etc. Given sample size imbalance, AI models might be subject to
unfairness by omitting features of the less-prevalent subgroups. This
may lead tomisdiagnosis that negatively impacts the health outcomes
of patients from these groups17–19. Current medical AI research, how-
ever, doesn’t provide ample quantitative evaluations of these biases.
While some investigations have noted these biases, causality-based
unfairness analyses and exploration of potential mitigation strategies
leave much to be desired20,21.

As illustrated in Fig. 1, existing common approaches in handling
less-prevalent subtypes include Mixed training, also known as
standard empirical risk minimization (standard ERM), and Divide-
and-conquer, also known as stratified ERM22. Mixed training
approaches combine data from all subtypes to train an AI model,
with the potential risk that the model might overlook less-prevalent
subgroup features. In contrast, Divide-and-conquer approaches
utilize data from different subtypes as distinct training sets and
train models separately for each subtype. However, less-prevalent
subgroups are typically of insufficient sample sizes, that may not be
able to support the training of AI models. Conversely, many algo-
rithms are designed to prioritize prediction accuracy for under-
performing subgroups, often without adequately considering the
implications for the overall model’s performance23,24. This oversight
can lead to complications in real-world clinical applications25. Cor-
respondingly, we empirically highlighted the algorithmic unfairness
of AI model on thyroid cancer diagnosis in minorities (Fig. 2). We
observed that regardless of whether we used Mixed training or
divide-and-conquer strategies on our thyroid nodule ultrasound
image dataset, models generally performed worse in less-prevalent
subgroups compared to the dominant subgroup. Particularly, when
considering histological subtypes, we observed significant model
performance disparity in FTC and MTC (less-prevalent subgroup),
compared with PTC (dominant subgroup). Furthermore, we
demonstrated that the observed disparity is attributed to the sam-
ple size imbalance via Pareto criterion, a learning curve-based
experiment (Methods section: Measurement of Fairness in Medical
AI Diagnosis).

To address the shortcomings of Mixed training and Divide-and-
conquer approaches in terms of fairness, we propose a Quasi-Pareto
Improvement (QPI) approach (Fig. 1c), aiming to enhance the pre-
diction performance of less-prevalent subgroups to help them
achieve equitable benefits while retaining the model’s prediction
performance on the overall population. We designed a deep learn-
ing framework Quasi-Pareto Net (QP-Net) to implement the

proposed QPI approach by employing state-of-the-art multi-task
learning techniques (e.g., adaptive-weight26) and transfer learning
techniques including adversarial structures27, Maximum Mean Dis-
crepancy (MMD)28, and Batch Spectral Shrinkage (BSS)
regularization29. The effectiveness of the devised QP-Net was vali-
dated on our thyroid dataset and illustrated using Centered Kernel
Alignment (CKA) method. From a broader perspective, sample
imbalance is prevalent in medical datasets, either due to medical
limitations or data collection bias23,30–32. Previous research has
identified that assessment of model unfairness is critical in any
machine learning deployment for medical imaging33. Consequently,
we evaluated the effectiveness of the devised QP-Net on two large
public datasets, including ISIC201934 and CheXpert35, where we
observed undergeneralization and prediction unfairness of imbal-
anced samples in several subgrouping schemes, to support the
generalizability of our QPI approach. In both public datasets, the
QPI and QP-Net have demonstrated significant effectiveness. Quasi-
Pareto Improvement can be applied broadly to address the insuffi-
ciency and inequity of prediction generalization in imbalanced
medical subgroups, thereby aiding in the understanding of sub-
group disease mechanisms and accelerating the application of
medical AI.

Results
Clinical data of subgroups unfairness
We collected 360,455 thyroid ultrasound images from 123,301 patients
over the course of nearly a decade at nine top-tier hospitals and one
community hospital in China for model training and validation. All
ultrasound data were annotated by specialists with more than 5 years
of experience and included comprehensive ultrasound reports and
aspiration biopsy pathology reports. Various subgrouping schemes
can be applied to our dataset. For histological subtypes, PTC accoun-
ted for 95.9%, FTC for 3.3%, and MTC for 0.8%; for age, patient age
ranged from 0 to 85 years, with the 35–60 age group being the largest
at 48%; for gender, themale-to-female ratiowas 0.49; for nodule sizes,
they ranged from 0.3 cm to 1.3 cm, with the <1 cm group accounting
for 58%. For hospitals, the tertiary-to-community ratio was 4.2.

The results of Mixed training (resp. Divide-and-conquer) are illu-
strated in Fig. 2a, c (resp. Fig. 2b). Figure 2a showed significant AUC
disparity across histological subtypes and hospitals. In particular, the
AUC of PTC was over 46% and 30% higher than that of FTC and MTC,
and the AUC of tertiary hospitals was over 42% higher than that of
community hospitals. Figure 2c shows learning curves of Mixed
training approaches. With the increase in sample size for PTC and
tertiary hospitals (dominant subgroup), the prediction performanceof
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Fig. 1 | Approaches to handle less-prevalent subgroup. a Mixed training.
Training on the mixed data with multiple subgroups. b Divide-and-conquer.
Separate training within subgroups. c QPI approach. Improving the prediction

performance of imbalanced subgroups while maintaining model prediction per-
formance on the overall population.
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FTC, MTC, and community hospitals (less-prevalent subgroup)
exhibited an initial improvement followed by a significant decline. This
indicated that the dataset of the dominant subgroup has both positive
and negative effects on the model prediction of less-prevalent sub-
group, but crossing certain threshold severe unfairness manifests and
less-prevalent subgroup prediction performance declines. The
“Divide-and-conquer” methods, as depicted in Fig. 2b, are notably
superior to Mixed training methods, yet disparities persist between
dominant subgroup and less-prevalent subgroups. The low predictive
AUC for less-prevalent subgroups in Fig. 2b suggests a lack of
sufficient data.

Quasi-Pareto improvement approach
We propose a QPI approach and designed QP-Net as an implementa-
tion of QPI. As shown in Fig. 3, the QP-Net incorporates a two-module
structure: a multi-task learning module and a domain adaptation
module. The multi-task learning module maintains model perfor-
mance on general population during training, while the domain
adaptationmodule aligns thedistributions of extracted features across
two subgroups to improve the network’s less-prevalent subgroup
feature fitting in which different subgroups are treated as different
domains. The training procedureminimized the loss of both class label
(benign-malignant) and subgroup (dominant subgroup - less-prevalent
subgroup) predictors within themselves, ensuring their own effec-
tiveness while attempting to learn a feature extractor that generates

subgroup-invariant features. The overall loss function is represented
by the following equation:

Lðωz ,ωy,ωdÞ=Lyðωz ,ωyÞ+LDAðωz ,ωdÞ ð1Þ

Lyðωz ,ωyÞ= δLdomiðωz ,ωyÞ+ ð1� δÞLlessðωz ,ωyÞ ð2Þ

LDAðωz ,ωdÞ= � γdLdðωz ,ωdÞ+ γMMDLMMDðωzÞ+ γBSSLBSSðωz Þ ð3Þ

Where, Ly denotes the multi-task learning loss, including the benign-
malignant class prediction loss for dominant subgroup (Ldomi) and
less-prevalent subgroup (Lless) respectively, and δ, adaptively deter-
mined through the learning session, adjusts the proportion of
dominant subgroup loss to less-prevalent subgroup loss in the overall
loss function.LDA represents the domain adaptation module which is
used to enhance model performance on the less-prevalent subgroup.
Ld

27 andLMMD
28 are two domain adaptation approaches, andLBSS is

a domain adaptation regularization term, which enables the model to
focus more on transferable features29. Implementation details are
provided in Methods section: QP-Net to implement QPI.

Figure 4 provides a comprehensive comparison of the QPI
approach and Mixed training approach, verifying the effectiveness of
QPI approach on maintaining medical AI fairness. The experiments
were performed for 3 (dominant subgroup, less-prevalent subgroup)

Thyroid cancer patients Patient Num Train Set Valid Set Test Set AUROC Estimate (95% CI)
All 123301 217749 71353 71353 0.838 (0.811 – 0.871)
Subgroup
Age

0-20 18480 35487 11829 11829 0.828 (0.773 – 0.890)
21-35 26380 41750 13917 13917 0.835 (0.802 – 0.887)
35-60 59420 93937 31312 31312 0.867 (0.811 – 0.924)
>60 19021 46575 14295 14295 0.858 (0.833 – 0.897)

Sex
Female 62401 126125 48708 46708 0.856 (0.833 – 0.902)
Male 60900 91624 22645 22645 0.846 (0.814 – 0.899)

Nodule Size (mm)
<10 71081 127562 49187 49187 0.845 (0.811 – 0.898)
>10 52220 90187 22166 22166 0.823 (0.788 – 0.887)

Histological Subtypes*
Papillary Thyroid Cancer 85572 153063 51021 51021 0.870 (0.848 – 0.903)
Follicular Thyroid Cancer 4102 19035 6345 6345 0.597 (0.562 – 0.647)
Medullary Thyroid Cancer 997 9222 1844 1844 0.671 (0.638 – 0.724)

Hospitals**
Tertiary Hospital 85572 153063 51021 51021 0.863 (0.832 – 0.897)
Community Hospital 32630 36429 12143 12143 0.606 (0.548 – 0.658)

0.5 0.6 0.7 0.8 0.9 1.0*    only use Tertiary Hospital data
**   only use Papillary Thyroid Cancer data

a c

b
Model Name Dataset Initial Parameters Model Framework AUROC (95% CI)

Divide – PTC Papillary Thyroid Cancer

ImageNet Resnet18

0.861 (0.837 – 0.897)

Divide – FTC Follicular Thyroid Cancer 0.774 (0.755 – 0.811)

Divide – MTC Medullary Thyroid Cancer 0.742 (0.693 – 0.769)

Divide – TH Tertiary Hospital 0.833 (0.778 – 0.851)

Divide – CH Community Hospital 0.743 (0.740 – 0.809)
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Fig. 2 | Benign-malignant prediction performances of Mixed training and
Divide-and-conquer. a Prediction performance of Mixed training model on dif-
ferent subgroups. Note that ‘Patient Num’ column refers to the number of patients
while ‘Train Set’, ‘Valid Set’ and ‘Test Set’ columns refer to number of image sam-
ples used in experiments. The error bars represent the 95% confidence interval
(95% CI) of the AUROC estimate, centered around the mean value. Notably, there
were significant differences in prediction performance between histological

subtypes and data source subgroups. b Performance of Divide-and-conquer
models which is performance, with lower prediction performance for the less-
prevalent subgroup. c Learning curve of Mixed training strategy. For imbalanced
subgroups, increasing the sample size of the dominant subgroup resulted in an
initial increase followed by a consequential decrease in the prediction perfor-
mance on the sample-size-fixed less-prevalent subgroup (star), which contravenes
the Pareto fairness criterion. Source data are provided as a Source Data file.
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Fig. 3 | Quasi-Pareto Net diagram. A typical input includes an image x, its cor-
responding class label y and subgroup d. A feature extractor (with parametersωz)
and a class predictor (with parameters ωy) form a feedforward network. A multi-
task learning structure is incorporated in the class predictor, which retains model
performance on the general population. Ly represents its corresponding loss,
including prediction loss for dominant subgroup (Ldomi) and less-prevalent sub-
group (Lless), weighted by δ which is determined by model performance on the
two subgroups (Adomi and Aless) through the training session. The domain

adaptation module is utilized during the training process to enhance model gen-
eralizability, including an adversarial structure (the subgroup classifier with para-
meters ωd whose loss is denoted asLd), a Maximum Mean Discrepancy loss
(denoted asLMMD) which enhances model performance on less-prevalent sub-
groups, and a regularization term (Batch Spectral Shrinkage loss, denoted asLBSS)
which effectively enhances the adaptive ability of themodel to address imbalanced
sample features while maintaining overall model stability and performance. Ly,
Ld , LMMD and LBSS form the overall loss L.

Thyroid cancer patients Patient Num Train Set Valid Set Test Set AUROC Estimate (95% CI)
All 123301 217749 71353 71353

Mixed training 0.838 (0.811 – 0.871)
Quasi-Pareto 0.878 (0.852 – 0.923)

Histological Subtypes*
Papillary Thyroid Cancer 85572 153063 51021 51021

Mixed training 0.870 (0.848 – 0.903)
Quasi-Pareto 0.880 (0.842 – 0.902)

Follicular Thyroid Cancer 4102 19035 6345 6345
Mixed training 0.597 (0.562 – 0.647)
Quasi-Pareto 0.810 (0.781 – 0.850)

Medullary Thyroid Cancer 997 9222 1844 1844
Mixed training 0.671 (0.638 – 0.724)
Quasi-Pareto 0.783 (0.753 – 0.797)

Hospitals**
Tertiary Hospital 85572 153063 51021 51021

Mixed training
Quasi-Pareto

Community Hospital 32630 36429 12143 12143
Mixed training 0.606 (0.548 – 0.658)
Quasi-Pareto 0.779 (0.748 – 0.809)

0.5 0.6 0.7 0.8 0.9 1.0*    only use Tertiary Hospital data
**   only use Papillary Thyroid Cancer data

AUROC Disparity Mixed training Divide-and-conquer Quasi-Pareto
|PTC - FTC| 0.087
|PTC - MTC| 0.119

|Tertiary - Community| 0.090

Binary classification Models
Brier Score (95% CI)

Train Validation Test 
Dominant 

Test  
Less-prevalent 

PTC - FTC
Mix training 0.1425 (0.12-0.42) 0.2209 (0.20-0.24) 0.1974 (0.14-0.23) 0.4514 (0.24-0.48)

Quasi Pareto 0.1959 (0.13-0.23) 0.2325 (0.18-0.24) 0.2060 (0.16-0.21) 0.2618 (0.24-0.32)

PTC - MTC
Mix training 0.2312 (0.17-0.24) 0.2016 (0.15-0.25) 0.1481 (0.10-0.15) 0.4770 (0.31-0.48)

Quasi Pareto 0.1946 (0.18-0.23) 0.1479 (0.12-0.15) 0.1664 (0.15-0.17) 0.3770 (0.34-0.40)

Tertiary - Community
Mix training 0.2012 (0.15-0.23) 0.2194 (0.16-0.22) 0.2030 (0.18-0.23) 0.3362 (0.32-0.35)

Quasi Pareto 0.2473 (0.18-0.28) 0.2374 (0.23-0.24) 0.2274 (0.15-0.24) 0.2946 (0.24-0.32)
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Fig. 4 | Benign-malignant prediction performances of the QPI approach. a QPI
approach effectively enhances the AUCofmodel among histological subtypes and
source hospital subgroups. Note that the error bars represent the 95% confidence
interval (95% CI) of the AUROC estimate, centered around the mean value. b QPI
approach effectively reduced the model performance disparity in Brier Score

among the histological subtypes and source hospital subgroups. c QPI approach
effectively reduces the model performance disparity in AUC among subgroups.
d The QPI approach prediction performance for the less-prevalent subgroup
continues to rise as the dominant subgroup increases. Source data are provided as
a Source Data file.
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pairs respectively: PTC vs. FTC, PTC vs. MTC within histological sub-
types and Tertiary Hospital vs. Community Hospital within hospitals.
Figure 4a showcases the performance of the QPI approach on imbal-
anced subgroup pairs compared to the Mixed training approach. In
particular, the AUCof FTC andMTCwere increased by 21.3% and 11.2%,
respectively, while that of community hospitals increased by 17.3%. In
addition, weobserved that the improvement in the performance of the
less-prevalent subgroups did not lead to decreases in the prediction
performance of the dominant subgroups. Figure 4b displays the Brier
Score results for models trained on each subgroup pair. The results
indicate that the QPI method notably enhances model calibration for
less-prevalent subgroups, with only a marginal increase for dominant
subgroups. Figure 4c displays a comparison of the prediction AUC
disparity for imbalanced data within histological subtypes and within
hospitals, suggesting that the QPI approach mitigates the AUC dis-
parity among imbalanced subgroups. Figure 4d presents the results of
learning curve experiments validating whether the prediction perfor-
mance aligns with the Pareto fairness criterion. It can be readily
observed that with QPI approach, the prediction performance of less-
prevalent subgroup exhibits consistent improvement as the size of the
dominant subgroup increases. In contrast to Mixed training, the per-
formance of QPI approach satisfies the proposed Pareto fairness cri-
terion (Methods section: Measurement of Fairness in Medical AI
Diagnosis). It is demonstrated that with QPI approach, the model has
the potential to mitigate discrimination against less-prevalent sub-
groups stemming from conflicting objectives within various sub-
groups, while simultaneously capitalizing on the transfer of knowledge
between these subgroups.

Layer-wise examination of fairness in neural networks
The learning curve experiment of Mixed training approach revealed
both positive and negative effects of the dominant subgroup dataset
on less-prevalent subgroup prediction.We employed the CKAmethod
to further locate the dual effect within the deep neural network,
especially where the unfairness took place. Following Neyshabur et al.
(2020), CKAmeasures the degree of feature reuse in transfer learning.
Comparing two transfer learning strategies (Fig. 5a), ΔCKA can mea-
sure the additional contribution of model features learned from the
dominant subgroup dataset to less-prevalent subgroup prediction
performance. Detailed calculation explanations are located in the
Methods section: Centered Kernel Alignment (CKA).

Figure 5b depictsΔCKAMixed andΔCKAQPI, illustrating the impact of
feature reuse on less-prevalent subgroup prediction when employing
Mixed training and QPI approach respectively. According to Fig. 5b,
ΔCKAMixed is positive in middle network layers (roughly layer 7–14) but
negative in higher layers (layer 15–17). This illustrates that with Mixed
training approach, dominant subgroup dataset has positive effect on
less-prevalent subgroupprediction via feature reuse. However, in higher
layers of network, the benefit of feature reuse was completely over-
ridden by the negative effect from conflicting features of different
populations which significantly discriminated against less-prevalent
subgroups under Mixed training. For ΔCKAQPI, The CKA value is non-
negative and higher than that of ΔCKAMixed in most layers, indicating
that QPI approach kept the benefit of knowledge transfer between dif-
ferent populations (feature reuse) till the final layer of neural network.

External evaluation of QPI approach on public datasets
Weobserved significant subgroup prediction performance disparity in
the following two public datasets and effectively improved model
generalization and inequalities using our QPI approach.

CheXpert dataset35, a large chest radiograph dataset with uncer-
tainty labels and expert comparison. This dataset includes 224,316
chest X-ray images, covering 14 types of chest diseases in 65,240
patients. A DenseNet121 model36 was trained on CheXpert dataset
which was divided into ratios of 60%, 20%, and 20% for training,

validation and testing. Wherein the samples without training labels
were excluded. The experiments were performed for 2 (dominant
subgroup, less-prevalent subgroup) pairs (delineated based on the
discrepancy in sample sizes) respectively: “18–80” vs. “>80”within age
groups, and {White, Asian, Other} vs. {Black} within race groups. Fig-
ure 6a shows significant prediction performance differences in
both the age and the racial subgroups37 of female patients. Specifically,
the “over 80” age subgroup and the “Female: Black” subgroup contain
the fewest observations and theses corresponding prediction AUCs
are generally the lowest. After using QPI approach, we can observe
varying degrees of AUCdevelopment in the prediction performanceof
these fewest subgroup38 as shown in Fig. 6b and Fig. 6c.

International Skin Imaging Collaboration 2019 dataset34. This
dataset includes 25,331 dermoscopic images of nine types of skin dis-
eases (eight diseases and none of the others). An EfficientNets model39

was trained on this dataset which is divided into the ratio of 60%, 20%,
and 20% for training, validation and testing setting. Wherein the
samples without training labels were excluded. The experiments were
performed for 2 (dominant subgroup, less-prevalent subgroup) pairs
respectively: 0–59 vs. 60–85 within age groups, and female vs. male
within sex groups. The training set consists of 10,173 male and 5014
female patient samples and Fig. 7a shows significant prediction dif-
ferences in both the age and the gender subgroups: The prediction
AUCs are generally lower in the 60–85 age and the female group. After
utilizing QPI approach, we can observe varying degrees of AUC
development in the prediction performance of these two fewer sub-
group as shown in Fig. 7b and Fig. 7c.

Discussion
In this study, we address the challenge of fairness in AI models applied
to clinical diagnoses. Performance disparity and learning curve
experiments highlighted pronounced model bias when using pre-
valent methods such as Mixed training and Divide-and-conquer
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Fig. 5 | CKAmethod assesses the effect of dominant subgroup dataset on less-
prevalent subgroupprediction. aCKA1 (resp. CKA2)measures the level of feature
reuse in transfer learning from ImageNetpretrained (resp.Mixed training)model to
less-prevalent subgroup; ΔCKA measures the additional contribution of dominant
subgroup features to less-prevalent subgroup prediction compared with that of
ImageNet features. b Comparison of ΔCKAMixed and ΔCKAQPI at different neural
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Compared with ΔCKAMixed, ΔCKAQPI is higher and non-negative which demon-
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higher layers. Source data are provided as a Source Data file.
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approaches, across our thyroid dataset and two comprehensive public
datasets spanning multiple subgrouping strategies. In response, we
introduced the Quasi-Pareto Improvement approach, designed to
enhance prediction accuracy in imbalanced subgroups without com-
promising overall model performance. Our implementation, termed
QP-Net, seamlessly integrates a multi-task learning structure with
domain adaptation components, bolstering the network’s capability to
discern features in imbalanced subgroups.

The QP-Net is adept at minimizing disparities caused by contra-
dictory objectives across subgroups, while simultaneously, leveraging
knowledge transfer between subgroups. The effectiveness of the QP-
Net has been validated under various subgrouping schemes across
multiple datasets. On our thyroid dataset, for example, Fig. 4a shows

that QP-Net reduced the average AUC disparity between PTC and FTC
from 0.273 (Mixed training) to 0.070, and Fig. 4c shows that QP-Net
can effectively educe prediction differences introduced by Mixed
training. Similar results have alsobeenobserved in twopublic datasets,
further validating the effectiveness and generalizability of QP-Net.
Moreover, we use CKA to demonstrate that the proposed QP-Net
effectively retains more dominant subgroup features that contribute
to both dominant subgroup and less-prevalent subgroup prediction
during training. This supports that the QPI approach ensures the sta-
bility of the predictive performance for the overall population, while
also adapting the features of dominant subgroups to a greater extent,
thereby enhancing the prediction performance for less-prevalent
subgroups.

CheXpert Dataset

Method
Train Valid Test (AUROC)

(AUROC) (AUROC) Subgroup Average NoFind EnlargC Cardio LungO LungL Edema Csolid Pneum Atelect Pmotho PleuralEPleuralO FracT SupD

Mixed training

0.985 0.816

18~40
0.819 (0.798 ~ 0.886) 0.884 0.642 0.863 0.791 0.746 0.862 0.715 0.731 0.718 0.858 0.890 0.871 0.783 0.888

Quasi-Pareto 0.814 (0.792 ~ 0.872) 0.876 0.686 0.879 0.792 0.756 0.869 0.755 0.723 0.720 0.869 0.900 0.871 0.787 0.872
Mixed training

40~60
0.841 (0.828 ~ 0.886) 0.877 0.705 0.864 0.737 0.766 0.831 0.758 0.758 0.704 0.868 0.884 0.788 0.799 0.874

Quasi-Pareto 0.847 (0.824 ~ 0.886) 0.876 0.715 0.864 0.788 0.768 0.837 0.756 0.760 0.736 0.851 0.882 0.778 0.773 0.873
Mixed training

60~80
0.835 (0.765 ~ 0.857) 0.874 0.686 0.845 0.714 0.780 0.812 0.740 0.745 0.691 0.870 0.865 0.823 0.722 0.877

Quasi-Pareto 0.831 (0.805 ~ 0.873) 0.869 0.672 0.831 0.744 0.799 0.822 0.712 0.753 0.668 0.869 0.863 0.854 0.743 0.897
Mixed training

>80
0.765 (0.742 ~ 0.819) 0.830 0.655 0.789 0.684 0.743 0.813 0.668 0.700 0.634 0.837 0.872 0.770 0.731 0.884

Quasi-Pareto 0.801 (0.756 ~ 0.842) 0.847 0.689 0.834 0.682 0.772 0.823 0.683 0.751 0.665 0.890 0.851 0.814 0.765 0.897
Mixed training

0.994 0.799

Asian
0.795 (0.741 ~ 0.842) 0.878 0.714 0.868 0.731 0.728 0.833 0.783 0.693 0.679 0.888 0.887 0.704 0.729 0.891

Quasi-Pareto 0.805 (0.769 ~ 0.861) 0.893 0.708 0.884 0.743 0.758 0.863 0.793 0.793 0.706 0.888 0.793 0.757 0.793 0.793
Mixed training

Black
0.786 (0.750 ~ 0.853) 0.833 0.663 0.810 0.760 0.738 0.835 0.724 0.678 0.685 0.876 0.846 0.737 0.716 0.855

Quasi-Pareto 0.815 (0.789 ~ 0.860) 0.873 0.683 0.847 0.722 0.776 0.857 0.745 0.717 0.749 0.898 0.892 0.805 0.747 0.907
Mixed training

White
0.830 (0.787 ~ 0.853) 0.880 0.682 0.842 0.729 0.787 0.826 0.735 0.799 0.754 0.865 0.870 0.810 0.786 0.870

Quasi-Pareto 0.836 (0.780 ~ 0.882) 0.891 0.695 0.851 0.743 0.795 0.841 0.741 0.742 0.697 0.882 0.885 0.822 0.801 0.889
Mixed training

Other
0.802 (0.763 ~ 0.863) 0.869 0.688 0.864 0.764 0.720 0.826 0.728 0.757 0.698 0.868 0.883 0.794 0.721 0.885

Quasi-Pareto 0.806 (0.775 ~ 0.850) 0.891 0.648 0.870 0.745 0.740 0.824 0.728 0.773 0.738 0.864 0.888 0.765 0.715 0.876

b

0.85

0.90

0.95

C
O

R
UA

CheXpert Dataset subgroups: Female 18-40, 40-60, 60-80, >80
Validation
AUROC development

CheXpert Dataset subgroups: Female Asian, Black, White, Other
Validation
AUROC development

a

0.70

0.75

0.80

0.60

0.65

0.85

0.90

0.95

AU
R

O
C

0.70

0.75

0.80

0.60

0.65

c

Mixed
training

Female Age Group
Average

0.614

0.789

0.753

0.803

0.713

0.819

0.739

0.841

0.765

0.774

0 12317 24634 36951 49269
CXP female 18-80

0.45

0.55

0.65

0.85

AU
RO

C 0.75

0.95

CXP female 18-80
0.45

0.55

0.65

0.85

AU
RO

C 0.75

0.95

Quasi
Pareto

Female Age Group
Pneumonia

Female Age Group
Cardiomegaly

0 12317 24634 36951 49269

0.674

0.7270.759

0.753

0.793

0.771 0.799

0.872

0.834

0.867

CXP female 18-80
0.45

0.55

0.65

0.85

0.75

0.95

0 12317 24634 36951 49269

0.644

0.764

0.743

0.799

0.693

0.842

0.749

0.863

0.789

0.803

CXP female 18-80
0.45

0.55

0.65

0.85

0.75

0.95

0 12317 24634 36951 49269

0.604
0.633

0.739

0.731

0.759

0.7590.674

CXP female 18-80
0.45

0.55

0.65

0.85

0.75

0.95

0.743 0.762

0.751

0 12317 24634 36951 49269

0.524

0.734

0.693

0.743

0.723

0.769

0.700

0.699

CXP female 18-80
0.45

0.55

0.65

0.85

0.75

0.95

0.762

0.719

0 12317 24634 36951 49269 0 3897 7794 11691 15589
CXP female Asian/White/Other

0.45

0.55

0.65

0.85

0.75

0.95

0.534

0.724
0.779

0.768

0.803

0.743

0.819

0.759

0.841

0.786

0.674

0.730

0.653

0.743 0.759

0.844

0.815

0.843 0.830

0.693

0 3897 7794 11691 15589
CXP female Asian/White/Other

0.45

0.55

0.65

0.85

0.75

0.95

0.544

0.774 0.759

0.743

0.793

0.771

0.832

0.799

0.883

0.847

0 3897 7794 11691 15589
CXP female Asian/White/Other

0.45

0.55

0.65

0.85

0.75

0.95

0 3897 7794 11691 15589
CXP female Asian/White/Other

0.45

0.55

0.65

0.85

0.75

0.95

0.524

0.728

0.778

0.717
0.729 0.733

0.733 0.7430.743

0.545

Female Race Group
Average

0 3897 7794 11691 15589
CXP female Asian/White/Other

0.45

0.55

0.65

0.85

0.95

0.424

0.754

0.665 0.653
0.629

0.767

0.678

0.673

0.798
0.758

Female Race Group
Pneumonia

0.564

0.864

0.699

0.813
0.803

0.791 0.769

0.862

0.810

0.870

0 3897 7794 11691 15589
CXP female Asian/White/Other

0.45

0.55

0.65

0.85

0.75

0.95

Female Race Group
Cardiomegaly

Female18-80
Female>80 (7804) Femaleexcept Black

FemaleBlack (973)
Femaleexcept Black
FemaleBlack (973)

Femaleexcept Black
FemaleBlack (973)

Femaleexcept Black
FemaleBlack (973)

Femaleexcept Black
FemaleBlack (973)

Femaleexcept Black
FemaleBlack (973)

Female:Asian (2398)
Female:Black (973)

Female:White (9499)
Female:Other (3692)

Female:18-40 (9997) Female:60-80 (21908)
Female:40-60 (17364) Female:>80 (7840)

Female18-80
Female>80 (7804)

Female18-80
Female>80 (7804)

Female18-80
Female>80 (7804)

Female18-80
Female>80 (7804)

Female18-80
Female>80 (7804)

0.644

0.764
0.789

0.723
0.743 0.759

0.801

0.8470.847 0.843

Fig. 6 | Evaluation performance of QPI approach on CheXpert dataset.
a Significant prediction differences are observed in age and racial subgroups of
female patients, respectively. The training dataset size for each group are anno-
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c Learning curves of different subgroups proves effectiveness of QPI approach.
Source data are provided as a Source Data file.
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This article employs both AUC disparity and Pareto fairness cri-
terion as fairness criteria.Within the academic discourse, fairness in AI
models is commonly viewed from two vantage points. One of these
perspectives categorizes existing fairness definitions into two subsets:
fairness related to model calibration and discrimination capability.
Fairness regarding calibration addresses instances where certain sub-
groups are disproportionately likely to receive positive predictions,
deeming such outcomes as unfair4,23,37,40. Fairness regarding dis-
crimination, on the other hand, ensures equal model predictability
across all subgroups41–43. The AUC disparity used in this study falls into
the second category. Another perspective bifurcates fairness defini-
tions into causality-based and observational fairness44. While the

former delves into the roots of unfairness, the latter concentrates on
manifest unfair phenomena. In this study, AUCdisparity falls under the
category of observational fairness, while Pareto fairness criterion
belongs to causality-based fairness. Ethically, it’s important to note
that not all forms of inequity are necessarily considered unfairness.
The fairness delineated by Pareto fairness criterion, particularly when
stemming from imbalanced samples, holds distinct ethical implica-
tions in certain contexts.

In this study, the QPI approach was introduced to mitigate
unfairness attributed to imbalanced samples. In previous literature,
various methods have also been proposed to tackle similar issues,
primarily including sample balancing and domain adaptation
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Fig. 7 | Evaluation performance of QPI approach on the International Skin
Imaging Collaboration 2019 dataset. a Significant prediction differences are
observed in the age and the gender subgroups. AUC development using QPI
approach is highlighted on top of each bar. The training dataset size for each age
group is annotated in the figure legend. Specifically, the dataset of the 60–85 age
and the female groups are much smaller than the 0–59 age and the male groups,

and the lower AUC performance are shown in these two groups. b After using QPI
approach, we can observe varying degrees of AUC improvement in the prediction
performance of the 60–85 age and the female groups. c Learning curves of dif-
ferent subgroups proves effectiveness of QPI approach. Source data are provided
as a Source Data file.
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approaches. Based on Stratified batch sampling and Fairmeta-learning
for segmentation methods, Puyol-Antón et al. has improved the pre-
dictive accuracy for Black and Mixed-race subgroups in the segmen-
tation of cardiac MR slices across different ethnicities. Zhang et al.
compared several data sampling baselinemethods on chestX-rays and
concluded that using simple sampling could lead to a decrease in
performance for the dominant subgroup population22. Idrissi et al.
observed that simple group balancing is effective for worst-group-
accuracy optimization45. Fernando and Tsokos proposed the dynami-
cally weighted Balanced loss to address class imbalance issues in
training samples46. Compared to the QPI approach proposed in this
study, these methods also focus on fairness issues, but they approach
fairness from different perspectives to those outlined in Pareto fair-
ness criterion. Supplementary Table 2 showcases the performance of
thesemethods on our thyroid ultrasound dataset. Domain Adaptation
approaches are frequently employed to enhance the fairness level of
models by transferring them from a source domain to a target domain.
This process aims to improve the algorithm’s performance on target
subgroups.Mukherjee et al. explored the relationshipbetweendomain
adaptation and individual fairness47. Mukhoti et al. used focal loss for
model calibration40. However, these studies do not explicitly require
the models to maintain performance levels within the dominant sub-
group population.

Furthermore, this investigation underscores a conundrum: the
dominant subgroup dataset exerts both facilitative and detrimental
impacts on less-prevalent subgroup model predictions. Our learning
curve experiment vividly encapsulates this predicament; as the less-
prevalent subgroup’s sample size expands, their prediction perfor-
mance first witnesses an uptick before eventually tapering off. At a
fundamental level, the beneficial influence arises from knowledge
transfer (i.e., feature reuse) across diverse populations. Conversely,
the detrimental effects stem from disparate optimization objectives
for varied groups. The CKA experiments further pinpoint this dual
influenceoperative atdifferent tiers of the deepneural networkmodel.
Mixed training approach falters due to the unchecked negative influ-
ence, while the Divide-and conquer approach underperforms due to
the absence of positive effect. The QPI, however, melding both multi-
task learning and domain adaptation facets, adeptly curtails the
unfavorable influences against minorities while fully harnessing the
propitious ones.

There are strengths as well as limitations to this study. We discuss
the general issues of medical AI and propose a method in a degree of
universality, but future validation is still needed for a broader range of
diseases. Also, more complicated scenarios might occur in real-world
settingswhere, given amodel trainedon a certain dataset, unfairness is
observed undermultiple different subgrouppartitioning schemes that
are all applicable to the dataset. While our design of the proposed QPI
approach allows for respective utilization under each scheme, further
investigation is needed to clarify underlying mechanisms. Further-
more, this study adopts BSS loss as the domain adaptation regular-
ization term within the framework; and its effectiveness compared
against other alternatives requires further investigation in futurework.

The QPI approach can be broadly applied to address general-
ization and fairness of AI in clinical practice. To avoid unfairness
among subgroups in real-world clinical scenarios, a comprehensive
subgroup analysis is always recommended. If unfairness for specific
less-prevalent subgroup were to be observed, the QPI approach pro-
posed in this study can be utilized to mitigate unfairness issues. The
fairness ofmedical AI is a highly complex issue, and our understanding
of its underlying mechanisms and consequences is still in its infancy.
Diverse experts and stakeholders can help gain a deeper under-
standing of AI applications in medicine and develop appropriate
research standards and public policies by engaging in in-depth
discussions.

Methods
Ethical issues
This study was approved by the institutional review board (IRB) of
Shanghai Tong Ren Hospital and undertaken according to the
Declaration of Helsinki. Informed consent from patients with thyroid
cancer and controls was exempted by the IRB because of the retro-
spective nature of this study.

Data source and data pre-processing
We gathered a 10-year dataset of thyroid ultrasound images (from
January 2013 to January 2023) and conducted a retrospective study at
nine top-tier hospitals and one community hospital in China
(see Supplementary methods for the full name list). Each image is
evaluated by a physician with more than 5 years of thyroid ultrasound
experience. The authors had access to anonymized data only. We
initially screened all patients with thyroid nodule in electronic medical
record. 148,289 patients who met one of the following criteria were
included: (1) Had thyroid cancer or benign diagnosis confirmed by
pathology after surgery; (2) had benign diagnosis confirmed by at least
1-year follow-up from experienced radiologists. After inclusion,
patients who met one of the following criteria were excluded: (1)
comorbidity of other life-threatening condition; (2) lack of or incom-
plete preoperative ultrasound report; (3) poor ultrasound image
quality; (4) controversial pathological diagnosis; (5) history of thyr-
oidectomy or other head-and-neck cancers. After exclusion, 123,301
patients were identified as study participants.

To prevent the interference of textual information at the edges of
ultrasound images with the predictive performance of the model, we
utilized nnU-net48 to automatically crop each image, preserving the
main image portion while removing the textual information at the
edges.While nnU-net achieves a high success rate in image cropping, a
commondrawback is the frequent occurrenceof irregular edges in the
cropped images. In our case, we augmented those images with a
backgroundwith pixel values set to 0. Each image is scaled to 512 × 512
pixels and saved using the PNG file format. Implementation details are
provided in Supplementary Materials section: Supplementary details.

It should be noted that although some patients may have more
than one corresponding ultrasound image, during the partitioning of
the training, validation, and testing datasets, weensured that therewas
no patient leakage between the train, valid and test sets.

Measurement of fairness in medical AI diagnosis
This study is conducted to address a diagnostic problem that aligns
with clinical practice, which we have described as follows. Given a
datasetD∷ X × Y, where X is the instance set and Y is the corresponding
class label (diagnosis) space, we denote by Ddomi and Dless the domi-
nant subgroup and less-prevalent subgroup set under a specific sub-
grouping scheme on D, with |Ddomi | > |Dless |. Ddomi and Dless share the
same Y.

For our thyroid ultrasound image dataset, we have Y = {Benign,
Malignant}. In order to detect potential unfairness on our dataset,
subgroup analyses were performed for various subgrouping schemes:
age, sex, nodule size, histological subtype and hospital, which utilized
two measures of fairness: model performance disparity and Pareto
fairness criterion. The analyses results were presented in Fig. 2,
revealing potential unfairness in each of the two subgrouping
schemes: histological subtype and hospital, in which the term ‘less-
prevalent subgroup’ refers to rare subtypes and minority population.
Experiments were then performed within each of these two sub-
grouping schemes.

We perform experiments under these two subgrouping schemes.
Under the histological subtype subgrouping scheme, two sets of
experiments were performed. Both consider the PTC samples asDdomi,
while the FTC and MTC samples were considered as Dless. Under the
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Hospitals subgrouping scheme, the tertiary hospital (resp. community
hospital) samples were considered as Ddomi (resp. Dless).

Test performance disparity. The performance disparity is often used
to indicatemodel unfairness49–51. If a datasetD is divided intoD1 andD2

under an underlying subgrouping scheme, the test performance dis-
parity of model M on D is given by:

ΔA=A M,D1

� �� A M,D2

� � ð4Þ

where A(M, D) represents the prediction performance indicator (e.g.,
AUC) of model M on test set D.

Without loss of generality, we also consider a certain subgrouping
scheme that divides D intomore than 2 subgroup sets. Tomeasure the
test performance disparity of M on the entire D, D1 (resp. D2) should
represent the subgroup on which M has the best (resp. worst) test
performance among all the subgroups under the specific subgrouping
scheme.

Pareto fairness criterion. Performance disparity alone does not
encompass the entirety of Pareto fairness. Existing literature presents
multiple definitions of Pareto fairness50. Most studies on Pareto fair-
ness aim to address fairness concerns within a fixed-resource envir-
onment, typically focusing on the ‘Pareto frontier’. This represents an
optimal state where it’s not feasible to benefit some individuals with-
out causing detriment to others52–54. Nonetheless, there are phenom-
ena that manifest specifically due to variations in resources, as
depicted in Fig. 2c. Such occurrences should also be identified as
unfairness. Moreover, the significance of causal-based fairness cannot
be overstated when devising fair decision-making algorithms52,55,56.
From an ethical standpoint, “fairness” recognizes how the unequal
outcome is attributable to some systemic disadvantages or dis-
crimination. In the scenarios of medical diagnosis less-prevalent sub-
group, a critical concern is whether performance disparities are
attributable to sample size imbalances. However, few studies approach
this fairness issue from a causal perspective.

To address these limitations, we proposed the “Pareto fairness
criterion”measured by experiments based on learning curves. The key
idea of “Pareto fairness criterion” is to observe how model perfor-
mance of less-prevalent subgroup is affected by the sample size of
dominant subgroup, which is a causality-based fairness definition dif-
fering from existing observational fairness definitions in literature. As
depicted in Fig. 2c, the decline in model performance on the less-
prevalent subgroup following an initial upward trend can be inter-
preted as an indicationof algorithmic unfairness. This is due to the fact
that such inequality arises under the condition of a consistent less-
prevalent subgroup sample size, coupled with an increase in the
dominant subgroup sample size.

Formally, the Pareto fairness criterion requires a learning curve
experiment. Given dataset D=D1,train ∪D1,test ∪D2,train ∪D2,test con-
taining the training and test set of subgroups 1 and 2. Keep all dataset
constant except that |D1,train| the training sample size of subgroup 1
increases. An algorithm is said to exhibit Pareto fairness criterion onD,
if: as |D1,train| increases, its test performance does not decrease for
either subgroup 1 (A(M, D1,test)) or 2 (A(M, D2,test)).

With Pareto fairness criterion, it can be easily observed that in
Fig. 2c, the unfairness phenomenon present in Mixed training is
ameliorated in Fig. 4c following the utilization of the QPI approach.
Specifically, in Fig. 2c, the reduction in less-prevalent subgroup per-
formance is attributed to the increase of the dominant subgroup
training sample size, thereby contravening the second criterion of
Pareto fairness criterion and consequently representing a form of
unfairness. Conversely, in Fig. 4c, the concurrent augmentation of

dominant subgroup and less-prevalent subgroup performance due to
the identical size increase aligns with the Pareto fairness criterion, thus
signifying a more equitable phenomenon.

Approaches to handle unfairness of medical AI diagnosis
As illustrated in Fig. 1, we compared three approaches to handle sub-
groups for AI model, with two common practices as baseline: Mixed
training and divide and conquer. The third approach is proposed by
this study, named the Quasi-Pareto Improvement approach. Given a
datasetD = Ddomi∪Dless anddenote the loss function asL, we provide
detailed explanation for the above-mentioned approaches.

Mixed training. Mixed training approaches try to train a model with
training set combining Ddomi and Dless. The general training objective
ofMixed training approaches is to find a commonmodel M̂mix for both
dominant subgroup and less-prevalent subgroup, so that:

M̂mix = argmin
M

E x,yð Þ2D½L� ð5Þ

Divide and conquer. In the context of divide and conquer approaches,
Ddomi andDless are employed as distinct training sets to separately train
models, with the objective of identifying an optimum model for the
dominant subgroup and the less-prevalent subgroup, respectively. The
general training objectives are as follows:

M̂domi = argmin
M

E x,yð Þ2Ddomi
½L� ð6Þ

M̂ less = argmin
M

E x,yð Þ2Dless
½L� ð7Þ

Quasi-Pareto Improvement (QPI). The proposed QPI approach is to
perform additional transfer learning on M̂mix to further enhance the
model’s performance on the less-prevalent subgroup, while endea-
voring to maintain its performance on the dominant subgroup. Pre-
vious investigations into Pareto improvement mandate that a method
shouldn’t disadvantage some subgroups while benefiting
others52,54,57,58. Our QPI approach doesn’t rigidly constrain the perfor-
mance of the dominant subgroup. However, empirical findings from
our learning curve experiments, shown in Fig. 4d, indicate that our
technique can ameliorate fairness concerns, especially those that
emerge with changes in resources, such as increases in sample size.

The QPI approach necessitates the completion of the following
two tasks, which inherently form a multi-task learning problem.

Formally, based on M̂mix and D=Ddomi ∪Dless, the QPI approach
aims to find M̂QPI that:

a. Maximize A M̂QPI,Dless

� �
;

b. Maintain ϵ=A M̂mix,Ddomi

� �
� A M̂QPI,Ddomi

� �
at a low level.

QP-Net to implement Quasi-Pareto improvement
We designed a QP-Net which combined SOTA multi-task learning and
domain adaptation techniques to implement Quasi-Pareto Improve-
ment approach, as illustrated in Fig. 3. Denote as (x, y, d) an input
image x with its corresponding class label y and subgroup d, Fz is a
feature extractor that extracts features ẑ fromthe imagex.Fy is a class
predictor that provides a class prediction ŷ for x based on ẑ. The
combination of Fz and Fy is the general architecture of medical
image diagnostic models.Fd is an additional subgroup predictor that
we incorporate in our QP-Net following Ganin et al. which generates a
subgroup prediction d̂ for x based on ẑ.

Formally, we denote asωz, ωy and ωd the parameters of Fz , Fy,
and Fd respectively. The forward process of our devised QP-Net is
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shown as follows:

ẑ =Fz x;ωz

� � ð8Þ

ŷ =Fy ẑ;ωy

� �
ð9Þ

d̂ =Fd ẑ;ωd

� � ð10Þ

It should be noted that although Fz , Fy, and Fd were trained
concurrently, only the original model structure (Fz and Fy) were
utilized to predict the data class labels during testing.

As illustrated in Fig. 3, we designed the final loss function as fol-
lows:

L ωz ,ωy,ωd

� �
=Ly ωz ,ωy

� �
+LDA ωz ,ωd

� � ð11Þ

WhereLy refers to the multi-task learning loss, andLDA refers to the
domain adaptation loss.

The multi-task learning loss. For Ly, we form a multi-task
learning structure, treating data from different subgroups (dominant
subgroup or less-prevalent subgroup) as distinct tasks, and reweight
their losses:

Ly = δLdomi + 1� δð ÞLless ð12Þ

Where Ldomi =
P

xi ,yið Þ∼Ddomi
ly xi,yi
� �

, Lless =
P

xj ,yjð Þ∼Dless
ly xj,yj
� �

.

The value of δ is varied and determined through the training process.
Adomi (resp. Amix) is the test performance of the current model (resp.
original Mixed training model) on the dominant subgroup dataset. δ
satisfies the following requirement: when the gap between Adomi and
Amix is narrow, the value of δ would be relatively low; as training pro-
gresses, ifAdomi becomesmuch lower thanAmix, δwould be adjusted to
ahigher value. In experiment,we adaptively determined δbasedon the
following equations:

δðAdomi,AmixÞ=
1

1 + ehðAdomi,AmixÞ
ð13Þ

h Adomi,Amix

� �
=
Adomi � Amix

σ
ð14Þ

whereσ controls the level of ϵ allowedduring training, according to the
definition of QPI. In experiments we choose σ to 0.05 through com-
parison experiments (Supplementary Fig. 1). It should be noted that in
different real-world settings, the optimal choice of σ can vary due to
different underlying subgroup feature distributions.

The domain adaptation loss.

LDA ωz ,ωd

� �
= � γdLd ωz ,ωd

� �
+ γMMDLMMD ωz

� �
+ γBSSLBSSðωz Þ

ð15Þ
There are three components within the domain adaptation loss,

namelyLd the adversarial structure loss27,LMMD the MMD loss28, and
LBSS the BSS loss29.

For Ld ωz ,ωd

� �
=
P
i
Ld xi,di;ωz ,ωd

� �
, cross-entropy is used

to calculate Ld, which is defined according to the following expression:

Ld xi,di;ωz ,ωd

� �
= ldðd̂i,diÞ=

� log d̂i,di = 1

� log 1� d̂i

� �
,di =0

8<
: ð16Þ

LMMD (Maximum Mean Discrepancy)28 measures the distance of
features from domains using the distance of the mean of the two
domains after mapping each sample to a Reproducing Kernel Hilbert
Space (RKHS). In our case, we defined the MMD loss as:

LMMD =
XDdomij j

i = 1

ϕ ẑdomi
i

� �

Ddomi

�� �� �
XDlessj j

j = 1

ϕ ẑlessj

� �

Dless

�� ��

������

������

������

������

2

ð17Þ

where,ϕ is themapping function toRKHS,which is usually unknown in
practice. Additionally, we defined functionMD1ΔD2

on samples from D1

and D2 as follows:

MD1ΔD2
=

X
xi ∼D1

X
xj ∼D2

kðFz xi;ωz

� �
,Fz xj;ωz

� �
Þ

N1N2

ð18Þ

where,Ni is the number of samples drawn fromDi, and k(·,·) is a kernel
function, so thatLMMD can be rewritten as follows:

LMMD =MDdomiΔDdomi
� 2MDdomiΔDless

+MDlessΔDless
ð19Þ

During experiments, we designed k(·,·) as k z1,z2
� �

= e� z1�z2j jj j2 ,
and computing LMMD in this way is proven to be effective.

For LBSS, we apply the BSS loss which suppresses the small sin-
gular values of the feature matrices during each training batch to
mitigate negative transfer29. Within a training batch, we construct a
featurematrixZ fromabatch size bof feature vectors ẑ, and apply SVD
onZ asZ=UΣV*. In this case, Σ is the singular valuematrix, of which the
main diagonal elements [σ1, σ2,…, σb] are the singular values ofZ.LBSS

in this training batch is defined as the squared sum of the smallest k
singular values:

LBSS =
Xk
i = 1

σ2
�i ð20Þ

where, σ-i is the i-th smallest singular value of Z.
Training details are provided in Supplementary materials section:

Supplementary details.

Centered Kernel Alignment (CKA)
To quantitatively compare network features before and after transfer
learning, we utilized CKA which can reliably identify similarities
between layer representations across networks as per Kornblith et al.
(2019). Within architecturally identical networks M1 and M2, each pair
of corresponding layers possessingmatrix of activations of j1 (fromM1)
and j2 (from M2) neurons for certain i examples are subsequently
denoted as W1 2 Ri × j1 and W2 2 Ri× j2 respectively59. CKA was then
calculated using the following formula:

CKA W1,W2

� �
=

HSICðK,LÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
HSICðK,KÞHSICðL,LÞ

p ð21Þ

where, K=W1W1
T and L=W2W2

T , and HSIC (Hilbert-Schmidt inde-
pendence criterion) calculates the statistical independence of the two
distributions by normalization. We refer to Kornblith et al. (2019) for
detailed calculation.

Built upon this foundation, Neyshabur et al. (2020) designed
experiments employing CKA to quantify the degree of feature reuse in
transfer learning60. The CKA experiments we conducted in Fig. 5 are
based on similar design. In our CKA experiments, we primarily
employed two ResNet-18 models: The ImageNet pretrained network
M1, and the networkM2 trained on dominant subgroup dataset withM1

as initial state.
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In Fig. 5a, CKA1 (resp. CKA2) represents the similarity between
network representations before and after transfer learning on the less-
prevalent subgroup dataset when using ImageNet pretrained model
(resp. Mixed training model) as the initial state, quantifying howmany
features are retained from the respective model after the transfer
learning process.

Subsequently, we calculate ΔCKA =CKA2−CKA1, which measures
additional features reused from Mixed training model compared with
ImageNet pretrained model. Due to the influence of different transfer
learning strategies on the retaining of initial features,ΔCKA can reflect
whether the additional contribution of the Mixed training model to
less-prevalent subgroup prediction at various layers of the network is
positive or negative under certain transfer learning strategies.

Experimental variables control
All experiments for Mixed training, divide and conquer, and QPI
approach utilize ResNet18 as the primary neural network.

Data loading section. The process of data extraction is set to ran-
domly extract without repetition. Data is grouped into batches of the
same size (248) and fed into the model. Class balance is implemented
prior to the training session, ensuring an equal benign-malignant ratio
among the subgroups.

Training section. The initial learning rate for all experiments is set to
0.0001. All threemodels use the sameoptimizer,with the learning rate
reduced by 0.5 every 20 epochs. For binary and multi-class classifica-
tion problems, Cross-Entropy Loss (CE Loss) is used, and for CheXpert
task with multiple binary classifications, Binary Cross-Entropy Loss
(BCE Loss) is employed. Early stopping is applied to allmodels; training
is halted on the next epoch if the change in validation AUC over the
past ten epochs is less than 0.01.

Result selection. Each model’s final results are obtained by averaging
the outcomes from five repeated experiments. The confidence interval
for the AUC is calculated by resampling from the test set five times,
each time 1000 images with replacement.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Data supporting the findings described in this manuscript are have
either been made available online or could be obtained from the cor-
responding author upon request. Anonymized MICCAI 2020 TN-SCUI
ultrasound imagesof thyroidnodules used in this study canbeaccessed
at https://github.com/fangdai-dear/QuasiParetoImprovement. Anon-
ymized partial thyroid ultrasonography data used in this study are
subject to privacy restrictions but may be made available upon request
to the corresponding authors. Response to requestswill bemadewithin
15 work days. Source data are provided with this paper. The CheXpert
public dataset is available at https://stanfordmlgroup.github.io/
competitions/CheXpert/. The ISIC2019 Skin Image public dataset is
available at https://challenge.isic-archive.com/data/#2019. Source data
are provided with this paper.

Code availability
The code necessary to reproduce the results of this manuscript are
providedathttps://github.com/fangdai-dear/QuasiParetoImprovement
and deposited to Zenodo61.
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