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Rising rainfall intensity induces spatially
divergent hydrological changes within a
large river basin

Yiping Wu 1,2, Xiaowei Yin1, Guoyi Zhou 3 , L. Adrian Bruijnzeel4,5,
AiguoDai 6, FanWang1, PierreGentine 7, GuangchuangZhang1, Yanni Song8&
Decheng Zhou 3

Droughts or floods are usually attributed to precipitation deficits or surpluses,
both of which may becomemore frequent and severe under continued global
warming.Concurring large-scale droughts in the Southwest andflooding in the
Southeast of China in recent decades have attracted considerable attention,
but their causes and interrelations are not well understood. Here, we examine
spatiotemporal changes in hydrometeorological variables and investigate the
mechanism underlying contrasting soil dryness/wetness patterns over a 54-
year period (1965–2018) across a representative mega-watershed in South
China—the West River Basin. We demonstrate that increasing rainfall intensity
leads to severe drying upstream with decreases in soil water storage, water
yield, andbaseflow, versus increases therein downstream.Our studyhighlights
a simultaneous occurrence of increased drought and flooding risks due to
contrasting interactions between rainfall intensification and topography
across the river basin, implying increasingly vulnerable water and food
security under continued climate change.

Drought is a periodic natural phenomenon that may last for weeks to
years; initially typically resulting from precipitation deficit, drought
generally leads to reduced water availability and plant growth1–7. In
contrast to the permanent aridity of dry regions, droughts canoccur in
water-rich areas as well, reflecting anomalous fluctuations in local or
regional precipitation. Severe droughts have affected nearly every
continent in recent decades8,9. Flooding or excessive wetness, is
usually caused by prolonged and intense rainfall, and may be exacer-
bated by widespread land degradation and urbanization or by snow-
melt in cold regions10–13. Floods may occur suddenly or gradually but

often have severe impacts on agriculture, economy, and society at
large14–16.

Both droughts and floods are common andwidespread, and form
the costliest meteorological disasters8,9. Between 1984 and 2017,
droughts caused an estimated average annual loss of USD 16.5 billion
globally, accounting for 13% of the total economic costs arising from
meteorological disasters; for China, this fraction reached 20% with an
average annual loss of USD 6.3 billion (44.4 billion RMB)17. Moreover,
drought-induced tree mortality and associated reductions in ecosys-
tem services have been reported around the globe18–20: in Europe,
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droughts killed ~500,000 ha of forest between 1987 and 201621,22; the
severe drought of 2010 in Amazonia temporarily turned the forest
from a carbon sink to a net source23,24; and in 2013, a one-in-a-century
drought in South China caused a reduction in carbon sequestration of
101.5 Tg C25. Similarly, flooding accounted for 34% of all natural dis-
asters registered world-wide between 1960 and 2014 (on average 17
major floods/year)26, causing a total damage ofUSD651 billion globally
between 2000 and 201927 and increasing the percentage of global
population exposed to floods by ~20% between 2000 and 201528. In
China, ~11.42 million hectares of cropland were affected annually by
flooding between 1978 and 2018, representing an average annual loss
of 187.32 million tons of grains29.

Given the rapid and successive warming and altered rainfall
regimesobserved in recent years, climate changemaywell increase the
frequency, extent, and severity of droughts and floods in future,
thereby putting securities of water, food, and ecological systems at
greater risk3,28,30–34. Globally, dry areas have increased from 20% in
1950–1979 to over 30% after the 1990s35. The frequency of nearly all
grades of drought (frommoderate to exceptional) has been projected
to increase substantially (by 17–34%) over most continents by the late
21st century36. Similarly, flood frequency and duration have increased
globally between 1985 and 201537. Overall, rising climatic extremes
imply a growing vulnerability of ecological and socio-economic sys-
tems under continued climate change, which has sparked substantial
scientific interest38–44. However, although it is generally thought that
droughts and floods may both become more severe (both in degree
and extent) due to intensification of the hydrological cycle under
continued global warming45, predicting the associated changes in
frequency, duration, and severity for specific regions is challenging
because of the often large spatiotemporal heterogeneity of land sur-
face conditions46–49. In particular, the mechanism of how spatio-
temporal changes in rainfall intensity within large river basins affect
patterns of soil drying or wetting and their associated hydrological
responses at different levels of scale has not been examined
sufficiently.

China has long suffered from extended and severe droughts that
often led to major environmental and socio-economic losses17,50.
Southwest China, in particular, has experienced extreme and sus-
tained drought conditions since the beginning of the 21st century,
with devastating consequences for agriculture and natural
ecosystems50–52. For example, the 2010 spring drought caused a 20%
reduction in hydropower production, a shortage of drinking water
for 60 million people, and USD 3.5 billion worth of economic
losses53–55. Accompanying the droughts in the Southwestern parts of
the country, floods have been frequently reported for Southeast
China56–58. Both the annual peak discharge and the number of
extreme flood events in the West River Basin (the largest tributary of
the Pearl River) have been increasing in recent decades59–61. In the
same river basin, an extreme (200-year return period) flood occur-
ring in June of 2005 affected over 4 million hectares of land, causing
an economic loss of nearly USD 2 million (13.6 billion RMB), 131
casualties, and rendering12.63 million people homeless62. Perti-
nently, both droughts in the Southwest and flooding in the Southeast
occurred simultaneously in some years47,63. Several studies examined
the recent droughts and floods in the region41,46,48,49, assessing their
spatiotemporal patterns and emphasizing the potential role of El
Niño/Southern Oscillation (ENSO)44,49,64. However, it is still unclear
whether, and to what extent, the drying in the Southwest and the
flooding in the Southeast are related. In particular, it is not well
understood whether the two phenomena can be attributed to a sin-
gle (e.g., altering precipitation patterns) or multiple climate factors.
These questions motivated us to examine how precipitation and
other hydroclimatic fields have changed in the past decades, what
the resulting hydrological responses have been, and to what extent
regional drying and flooding are potentially interrelated.

For this purpose, we selected the 353,120 km2 West River Basin
(WRB) because it spans the Southwestern (headwaters) and South-
eastern (downstream lowland) parts of the China (Fig. 1). In particular,
we aim to investigate: (i) the spatiotemporal patterns of changes in
precipitation and other hydrometeorological variables between 1965
and 2018; (ii) the associated changes in hydrological responses; and
(iii) the primary evolutionary mechanism of dry and wet spells
(drought/flood risks) across the basin and their possible interrelation.
We hypothesize that rainfall intensification constitutes the primary
driver of both drought occurrence (in the Southwest) and flooding (in
the Southeast).

Results
Trends of rainfall intensity and other major climate variables
To examine how the climate across the WRB changed during the 54-
year study period (1965–2018), we investigated the spatial patterns
and temporal changes of rainfall and several other major climate
variables, notably air temperature (maximum and minimum values),
wind speed, relative humidity, and solar radiation using daily obser-
vations from31 nationalmeteorological stations distributed across the
basin (Fig. 1).

We first analyzed the change of rainfall intensity. As shown in
Fig. 2a, 26 out of the 31 stations showed an upward trend for the
amount of rainfall per rain day (rainfall intensity index, RI, in mmd−1;
see Methods) with a locally observed maximum annual rate of
0.04mm d−1 y−1. Eight stations (two in the upstream and three in the
mid- and downstream, respectively) exhibited statistically significant
rising trends for RI, despite a slight downward trend for annual rainfall
in the upstream region and non-significant trends for the mid- and
downstream regions (Supplementary Fig. 1a). The slope of the upward
trend for RI steepened in the downstreamdirection (i.e., from0.01mm
d−1 y−1 in the upper part to 0.03mm d−1 y−1 in the downstream part;
Fig. 3a–c), indicating an increase in the intensification of rainfall from
the headwaters towards the basin outlet. Amounts of light rain (events
<10mm d−1) decreased at all stations, with average trends of –0.83,
–0.76, and –0.54mmy−1 for the upstream, middle, and downstream
parts of the basin (P <0.01; Fig. 3d–f). This basin-wide decrease in light
rains implies an increased proportion of non-light rains (i.e., increased
rainfall intensity) considering the stable annual amounts of rainfall in
the mid- to downstream sections. Similarly, all stations showed a
downward trend for the number of days with light rain (statistically

Fig. 1 | Location of the West River Basin (WRB) within South China plus loca-
tions of climatic and stream gauging stations used in the present analysis. The
green dots mark the meteorological stations. The red triangles mark three
streamflow gauging stations. The inset highlights the location of the WRB with an
East Asian monsoon climate.
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significant for 29 stations or 94%; Fig. 2c). Averaged per region,
decreases in the number of days with light rain varied from –0.46d y−1

in the upstream part to –0.33d y−1 in the downstream part (Fig. 3g–i).
Further, the number of days without rain increased significantly at
26 stations (84%), with significant average trends per sub-region of
0.55d y−1 in the upstream part versus 0.31d y−1 in the downstream part
(Fig. 2d and Fig. 3j–l), indicating greater drying in the upstream
direction. The longer dry intervals between rainfall events and the
greater degree of drying in the upstream area are also reflected in the
respective increases in the maximum number of consecutive dry days
(Fig. 2e and Fig. 3m–o) and the reductions in the maximum number of
consecutive wet days (Fig. 2f and Fig. 3p–r) across the basin.

Both maximum andminimum air temperatures presented overall
upward trends throughout the basin, with a greater increase for
minimum temperatures (up to 0.04 °C y−1). However, the degree of
warming did not show a clear spatial pattern (Supplementary Fig. 1b,
c). For wind speeds, no overall temporal or spatial trends were found
(Supplementary Fig. 1d). Similarly, no spatial patterns were found for
relative humidity and solar radiation despite generally downward
trends (Supplementary Fig. 1e–f). Therefore, the primary feature of the
climate shift is a significant and substantial intensification of rainfall
across the basin.

Changes in key hydrological components
To examine the WRB’s hydrological responses to its shifting climate—
notably intensifying rainfall and longer dry spells—we calibrated/vali-
dated the Soil andWaterAssessment Tool (SWAT). This process-based,
spatially distributed hydrological model allows the derivation of spa-
tiotemporal changes in hydrological components (see Methods). In
this study, the key components simulated by SWAT includes soil water
content, water yield, quick-response surface runoff (overland flow),
and slow-response baseflow. We used linear regression to detect
annual trends for the respective hydrological variables during the 54-
year study period, with graphical representation at subbasin and
hydrological response unit (HRU) levels as shown in Fig. 4.

Soil water content decreased significantly in the uppermost part
of the WRB (at rates up to –2.0mmy−1 at HRU level), whereas the mid-
and downstream parts generally showed increases (up to 2.0mmy−1

for some HRUs; Fig. 4a, b). Similarly, upstream water yields exhibited
substantial decreases (up to –4.8mmy−1), accompanied by mostly
modest increases in water yield lower down in the basin (although
locally up to 4.2mmy−1; Fig. 4c, d). For surface runoff, a primary

contributor to flooding due to its typically quick response to rainfall, a
similar spatial pattern emerged of significant decreases in some
upstream areas (as high as –3.9mmy−1 locally) versus (often non-sig-
nificant) increases further downstream ( < 5.0mmy−1; Fig. 4e, f). Con-
versely, baseflow generally declined throughout the WRB, with the
declines being most pronounced in the upstream parts (up to
–3.2mmy−1; Fig. 4g, h). As such, the hydrological changes induced by
climate change confirm the general pattern of drying in the upstream
part of the basin versus a general wetting downstream. In addition, we
found that slopes in the upstream area were generally higher than that
in the mid- and downstream areas (Fig. 4i, j), which is generally con-
sistent with the soil dryness/wetness patterns especially at the
HRU level.

Spatiotemporal patterns of dryness and wetness
To examine the spatiotemporal evolution of droughts in theWRB, we
employed our previously-developed drought evaluation system,
which integrated the hydrological modeling of SWAT and a water
budget-based drought index, to derive the spatiotemporal series of
the Palmer Drought Severity Index (PDSI;Methods) at amonthly time
step. Next, we used linear regression analysis to detect annual trends
in PDSI during the 54-year study period, with graphical representa-
tion at subbasin and HRU levels (Fig. 5). Annual values of PDSI
decreased substantially, especially in the upstream part of the basin,
at rates up to –0.11 y−1 in some HRUs and up to –0.04 y−1 in some
subbasins (statistically significant). In contrast, PDSI values increased
moderately in the downstream part, with maximum rates up to
0.03 y−1 in some HRUs and 0.02 y−1 in some subbasins (statistically
non-significant; Fig. 5a, b). The spatial pattern again suggests strong
drying in the upstream part, with the trend gradually becoming non-
significant in the central part of the basin, and reversing to moderate
wetting in the downstream area. We further identified areas as drying
or wetting based on the spatial distribution of PDSI trends at HRU
level. Considering the uncertainties of the modeling, trend values
between –0.01 to +0.01 (instead of zero) were taken to be neutral. As
shown in the pie chart of Fig. 5c, about 29% of the HRUs (mostly
located in the upstream part) were drying and only 7% (mostly
located in the mid- and downstream) were wetting up. This result
aligns with the spatial hydrological response patterns identified in
the previous section, indicating drought conditions were exacer-
batedmostly in the upstream part of the basin, both in terms of areal
extent and degree (Fig. 5a–c). On a more limited scale, the lower

Fig. 2 | Spatial distribution of annual trends of rainfall intensity-related factors
in the West River Basin over the 54-year (1965–2018) study period. a Rainfall
intensity index (RI, mm d−1). b Light-rain (<10mmd−1) amount (LR, mm). c Number

of days with light rain (LRD).dDayswithout rain (NRD). eThemaximumnumber of
consecutive dry days (CDD). f The maximum number of consecutive wet days
(CWD). Source data are provided as a Source Data file.
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parts of the basin appear to becomemore liable to flooding (Fig. 4e, f
and Fig. 5).

To further explore the temporal dynamics of the above spatial
patterns of drying andwetting, we conducted an Empirical Orthogonal
Function (EOF) analysis of the PDSI time series at the subbasin level

(Methods). The eigenvalues of five modes, together with explained
variances and error ranges, are listed in Supplementary Table 1.
According to the North significance test65, the first three modes were
statistically significant whereas the error range of the fourth mode
overlapped with the fifth. Further, because the cumulative explained
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data are provided as a Source Data file.
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variance for the first two modes (49.6%) was not improved much by
adding the third mode (Supplementary Table 1), we selected the first
two leading modes to explain the main spatiotemporal features of
PDSI. Figure 6a, b presents the spatial patterns of the two leading
modes (EOFs), while their respective temporal variabilities (Principal

Components, PCs) are shown in Fig. 6c, d, together with the results of
the Mann-Kendall mutation test (Fig. 6e, f). The eigenvalues of EOF 1
were positive across all subbasins (Fig. 6a), indicating a consistent
trend (either drying or wetting) across the entire basin. Further, posi-
tive or negative values of PC 1 (time coefficients) in a year indicated

Fig. 4 | Spatial distribution of annual trends for four hydrological components
from 1965 to 2018 and slope across the West River Basin. a, c, e, and g The
annual trends for soil water content, water yield, surface runoff, and baseflow at
subbasin level (shaded areas with statistically significant trends). b, d, f and h The

annual trends for soil water content, water yield, surface runoff, and baseflow at
hydrological response unit (HRU) level. i, j Slopes for subbasin and HRU level,
respectively. Source data are provided as a Source Data file.

Fig. 5 | Spatial distribution of annual trends of the Palmer Drought Severity
Index (PDSI) in theWest River Basin from 1965 to 2018. a The annual trends for
PDSI at subbasin level (shaded areas with statistically significant trends). b The

annual trends for PDSI at hydrological response unit (HRU) level. c The pie chart
summarizes the percentages of HRUs showing a drying, wetting, or neutral trend.
Source data are provided as a Source Data file.
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that the WRB, as a whole, was relatively wet or dry that year. As shown
in Fig. 6c, wet and dry years either alternated or tended to be grouped.
For EOF 2 (Fig. 6b), the eigenvalues were generally negative for the
upstream part of the basin, whereas they became positive for the mid-
to downstream parts, implying opposite trends for the PDSI in the
respective regions. Further, a positive (negative) PC 2 in regions having
a positive EOF 2 represented wetting (drying). According to Fig. 6d,
most values of PC 2 were negative before 1992, suggesting the
upstream part to be relatively wet and the downstream part relatively
dry between 1965 and 1991. Values of PC 2 became positive from 1992
onward, indicating a reverse pattern of upstream drying and down-
stream wetting (Fig. 6d). Thus, the combination of EOF 2 and PC 2
explains the above opposite trends—a drying upstream and wetting
downstream. The timing of this reversal was confirmed by the muta-
tion test as the year 1992 (Fig. 6f). In addition, the new pattern of
increased drying of the basin’s headwaters and enhanced wetting of
the lowlands became more pronounced after 2009 (i.e., when the UF
curve exceeded the 0.05 significance level; Fig. 6f).

Features of drought evolution in time and space
Considering the mutation point for drought occurrence identified in
Fig. 6f, we divided the 1965–2018 study period into two halves:
1965–1991 and 1992–2018. After quantitatively evaluating the degree
and extent of drought in time and space (see Methods), we compared
the differences between the two periods in terms of drought fre-
quency, areal extent, duration, and severity.

Based on the time series of PDSI atHRU level for the entire period,
the frequency of mild drought occurrence increased gradually in a
downstream direction (up to 22% locally in the downstream) (Fig. 7a).
A largely similar spatial pattern was identified for the first period
(Fig. 7d), but no clear spatial gradient was observed for the second
period (Fig. 7g). Overall, the spatial pattern for moderate droughts
resembled that for mild droughts, although the magnitude of

frequency change was lower: generally <8% for the upstream part and
<11% for the downstream part (Fig. 7b, e). In terms of severe drought
occurrence, however, the up- andmidstreamareas experienced higher
frequencies (by up to 16%) than the downstream area (whole period;
Fig. 7c), with the gradual increase in the upstream direction becoming
more pronounced during the second period (Fig. 7i). To further illus-
trate the trends in areal drought extentwith time, the percentage areas
suffering from the respective types of drought (mild, moderate, and
severe) in the up-, mid-, and downstream parts of the WRB are pre-
sented in Supplementary Fig. 2. Areal extents of all three grades of
drought increased with time in the upstream part, and the trends for
mild (4.6%per decade) andmoderate (4.2%per decade) droughtswere
statistically significant (Supplementary Fig. 2a, b). In the mid- and
downstreamparts, areal drought extent decreased slightly despite the
non-significant trend.

Considering the entire study period, drought durations gradually
increased in the downstream direction (Fig. 8a, b). Drought severity,
however, showed a different spatial pattern with relatively higher
values upstream and lower values in the mid- and downstream parts
(Fig. 8c, d). Combined, the regional trends for drought duration sug-
gested a significant upward trend in theupstreampart (Supplementary
Fig. 3a, b) and a non-significant downward trend downstream (Sup-
plementary Fig. 3e, f). Considering the respective trends for the first
(1965–1991) and second (1992–2018) period separately (Fig. 8e–l),
there was a clear reversal in spatial pattern during the latter period,
with generally longer drought duration and greater severity in the
upstream part in recent decades (Fig. 8i–l). A similar change is
apparent from the summary graphs of changes in drought duration
and severity between the two periods, both at the subbasin (Fig. 9a)
and regional levels (Fig. 9b). The cumulative duration of upstream
droughts increased substantially (by 41.3%) from 63months in the first
period to 89 months in the second, whereas drought severity
increased from 81.4 to 119.0 (an increase of 46.2%), indicating clearly
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exacerbated drought conditions. Conversely, drought duration in the
mid- and downstream parts decreased by 17.4% and 22.9%, respec-
tively, from the first to the second period. Similarly, drought severity
decreased by 21.4% (midstream area) and 18.2% (downstream area),
suggesting a shift to wetter conditions. Summarizing, the spatio-
temporal pattern of changes in drought duration and severity con-
firmed the upstream drying and downstream wetting trends signaled
earlier.

To further identify the most significant factors driving this spa-
tially divergent pattern of drought evolution, we examined the corre-
lations between averaged PDSI for the up- and downstream regions,
respectively, and various rainfall-related variables (Fig. 10). The
upstream drying trend correlated mostly with rainfall intensity, max-
imum number of consecutive wet days, amounts of light rain, and the
number of days without rain (all with |r | >0.5). Conversely, the down-
streamwetting trend was due primarily to changes in rainfall intensity

Fig. 7 | Spatial distribution of frequencies of different grades of drought in the
West River Basin at the hydrological response unit (HRU) level during the
different periods. a–c The frequencies of mild, moderate, and severe drought
during the whole period (1965–2018). d–f The frequencies of mild, moderate, and

severe drought during the first half (1965–1991). g–i The frequencies of mild,
moderate, and severe drought during the second half (1992–2018). Source data are
provided as a Source Data file.

Fig. 8 | Spatial distribution of drought duration and severity in the West River
Basin during the different periods. a–d The drought duration and severity at the
subbasin and hydrological response unit (HRU) levels during the whole period
(1965–2018). e–hThe drought duration and severity at the subbasin andHRU levels

during the first half (1965–1991). i–l The drought duration and severity at the
subbasin and HRU levels during the second half (1992–2018). Source data are
provided as a Source Data file.
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and the number of days without rain (Fig. 10). Under the same rainfall
pattern change, a significant decrease in continuous wet days,
amounts of light rain, and a significant increase in the number of days
without rain could cause upstream to become drier; whereas a sig-
nificant increase in rainfall intensity and the number of days without
rain may lead to more severe flood risks downstream. Finally, to
examine to what extent rainfall intensification alone may explain the
spatially divergent hydrological responses between the upstream and
downstream parts of the WRB, a series of virtual experiments were
conducted across a range of scales from individual hillslopes to HRUs,
subbasins including upstream versus downstream.

Primary mechanism of upstream drying and downstream
wetting
First, we examined the hydrological response at the slope scale. A case
study comprising sloping land subject to two rainfall intensity sce-
narios (RI = 9 and 11) was designed whilst keeping all other factors as
well as the total amount of rainfall the same (1,605mm). SWAT-
modeled hydrological responses (Supplementary Fig. 4) showed
greater surface runoff under increased RI, both in volume (from
164mm to 191mm) and proportion (from 10% of rainfall to 12%),
whereas infiltration was correspondingly reduced (from 90% to 88%).
As such, flooding risk at this scale increased for increased RI.

Second, we examined the hydrological response at the HRU scale.
Two small watersheds considered representative of topographic con-
ditions in the up- and downstream parts of the WRB—steeper in the
highland, gentler in the lowland—were selected (see the aerial views
and densities of slope and TopographicWetness Index (TWI) as shown
in Supplementary Fig. 5). Hydrological simulations were carried out
using the respective rainfall time series for the two watersheds during
the full study period (1965–2018) as input. It is noted that there is only
one weather station for this specific watershed, ensuring the climate
conditions (e.g., precipitation and temperature) are the same for all the
sloping lands in the watershed. Under the prevailing intensifications of
rainfall, soil water trends atHRU level proved tobedependent on slope
steepness and the so-calledTWI, such that steepHRUs (upland) tended
to become drier, and gentle HRUs (lowland) wetter (Supplementary
Fig. 5) in both watersheds.

Third, we examined the hydrological response at the sub-region
scale (i.e., the entire upstream and downstream). Moving up in scale,
we selected two years with closely comparable rainfall totals but
strongly different intensities: 1970 (upstream rainfall and RI: 825mm
and 6.2; downstream rainfall and RI: 1605mm and 9) and 2010
(upstream rainfall and RI: 849mm and 6.5; downstream rainfall
1650mmand 11) because the amounts of rainfall in these two years are
very close (<3% difference) but with clear intensification during 40
years. For the sake of fairness, we further removed the 3% difference in
rainfall amount by decreasing this amount for 2010 rainfall timeseries
(i.e., updated 2010 rainfall became 825mm for upstreamand 1605mm
for downstream; Supplementary Table 2). Keeping all input data
between the two years the same except for rainfall, the simulated
hydrological responses showed annual amounts of soil water, water
yield, surface runoff, and baseflow for the upstreampart of theWRBall
to become less under increased rainfall intensities (by –0.5%, –6%, –7%,
and –8%, respectively) whereas the responses increased for the
downstream part (by 0.9%, 10%, 15%, and 3%, respectively; Supple-
mentary Table 2). Further, seasonal peak streamflow at the height of
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Fig. 9 | Distribution of drought duration and severity at the subbasin and sub-
region (up-, mid-, and downstream) levels in the West River Basin during the
first (1965–1991) and second (1992–2018) half of the study period. aDistribution
of drought duration and severity at the subbasin level. There are 187 data points in

the panel representing the subbasins we delineated in the basin. b Distribution of
drought duration and severity at the sub-region level. Source data are provided as a
Source Data file.

Fig. 10 | Correlation relationship between Palmer Drought Severity
Index (PDSI) and various rainfall-related variables in the upstream (upper
right-hand panel) and downstream (lower left-hand panel) parts of the West
River Basin. Blue upward arrows refer to an upward trend for a specific variable,
while the opposite is indicated by red downward arrows. Filled triangles indicate a
statistically significant trend. The color and size of a circle refer to the correlation
coefficient between PDSI and a specific variable, with red and blue indicating
positive and negative significant correlations, respectively, and a black cross for
non-significance. Source data are provided as a Source Data file.
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the rainy season (June–August) increased by 51% and 15% for the up-
and downstream parts, respectively, whereas minimum dry-season
flows (December–February) became either less (–2% for the upstream
part) or increased (by 25% downstream; Supplementary Table 2). In
short, these model results can provide strong support for the con-
tention that the intensification of rainfall in the WRB is likely the chief
factor underlying the observed spatially diverging trends for water
availability in recent decades, mainly as a result of contrasts in the
interaction between rainfall intensity, slope gradient and slope mor-
phology (Supplementary Fig. 5).

Discussion
The PDSI is a widely acceptedmeasure to characterize the dynamics of
hydro-meteorological droughts, as the index integrates the water
budget and soil moisture status, thereby enabling the incorporation of
the effects of numerous driving factors in a comprehensive
manner38,64. Here, spatiotemporal series of the PDSIwere derived using
a combination of spatially distributed hydrological modeling (with
SWAT) to quantify soil moisture dynamics at the scale of hydrological
response units (HRUs) and computing the associated PDSI66. As shown
in Supplementary Fig. 6, SWAT-based simulated monthly streamflow
matched observations at three gaging stations (Fig. 1) very well
(including most peaks and low flows), both for the calibration
(1991–2000) and validation (2001–2010) periods. With generally low
values for the percentage bias (|PB| < 11%) and high to very high values
for the Nash-Sutcliffe Efficiency (NSE) and R2 (ranging from 0.74 to
0.95; Supplementary Fig. 6), these streamflow simulations canbe rated
as “good” to “very good” (Methods)67. As a further internal check of
model performance, we validated SWAT’s ET simulations using a
remote sensing-based re-analysis ET product during 1980–2017 with
an R2 of 0.87, indicating a good model performance (Supplementary
Fig. 7). For soil water, comparisons between SWAT-based simulations
and two sets of satellite-based products indicated satisfactory model
performance (R2 = 0.55–0.56, Supplementary Fig. 8). Therefore, the
dynamics of the hydrological components simulated by SWAT pro-
vided a sound basis for the PDSI calculations used in the drought
analysis. We also found that basin-wide average annual PDSI values
compared reasonably well with other drought indices, such as the
Standardized Precipitation Index (SPI), the Standardized Precipitation
Evapotranspiration Index (SPEI), and the self-calibrating PDSI (Meth-
ods; Supplementary Fig. 9).

Trend analysis highlighted a clear shift in the climate of the WRB
that was characterized by intensifying rainfall and warming air (Fig. 2
and Supplementary Fig. 1). Because annual rainfall totals generally did
not change appreciably (Supplementary Fig. 1a), this intensification
manifested itself in the form of increases in average amount of rainfall
per rain day (rainfall intensity index), the number of no-rain days, and
themaximumnumber of consecutivedrydays, but also asdecreases in
amounts of light rain, the number of days with light rain, and the
maximum number of consecutive wet days (Fig. 2). The resulting
hydrological changes as evaluated using SWAT suggested an overall
mild decrease in soil water storage across the basin, along with
decreased year-round surface runoff and baseflow in the upstream
part, and increased wet season runoff in the downstream part (Fig. 4).
Thus, the upstream area became drier in terms of soil water and
streamflow in both seasons, whereas themid- anddownstreamregions
became wetter in the wet season (with increased surface runoff). This
spatial contrast could not be explained by the observed overall
warming, as the latter did not show a distinct spatial pattern (Sup-
plementary Fig. 1b, c). Rather, the increasingly intense and temporally
more concentrated rainfall raised amounts of quick-response surface
runoff during the wet season, whereas the reduction in amounts of
light rain, together with the more elongated dry periods, reduced soil
water storage and groundwater recharge, leading to reduced baseflow
(i.e., reduced streamflow in the dry season), especially upstream.

Therefore, rainfall intensification in the broad sense of the term can
explain the spatiotemporal pattern of the associated hydrological
responses identified by the process modeling, as also demonstrated
convincingly by the results of rainfall intensity scenario analyses across
a range of spatial scales (Supplementary Figs. 4 and 5; Supplementary
Table 2). In addition, the observed wetting of the downstream part of
the WRB implies a higher risk of flooding given the generally positive
correlation between flood occurrence and soil moisture status68–74.

Our long-term time series of PDSI-values based on spatially dis-
tributed hydrological process modeling not only gave a general pic-
ture of drought evolution across the WRB with time, but also allowed
derivation of the drought patterns at an unprecedented level of spatial
detail and flexibility (from HRUs to subbasins and regions; Fig. 5). The
results are generally in line with previous reports of the drought
situation in Southwest China52,75 which emphasized the shortage of
water for domestic and agricultural uses and the substantial socio-
economic losses associated with drought50. Further, the EOF analysis
not only illustrated the divergent spatial pattern of drought evolution
across the WRB with drying upstream and wetting downstream, but
also detected a shift in drought regime around 1992. For the upstream
region, there was a significant positive trend in the extent of bothmild
and moderate droughts (Supplementary Fig. 2a, b) as well as a clear
shift towards increased drought frequencies (of all grades) after 1992
(Fig. 7). In addition, both drought duration and severity increased in
the upstream part, while decreasing in the mid-stream and, particu-
larly, the downstream parts (Figs 8 and 9).

Similar changes in rainfall patterns as theonesobservedhere (e.g.,
decreases in light rain amount and days, increases in rainfall intensity
and no rain days) have been reported previously for some areas within
the WRB7,76 and elsewhere in the globe77–79. Shifts in seasonal pre-
cipitation cycles can lead to substantial changes in the frequencies of
droughts and floods80, even in the absence of any trends in annual
totals. Increases in heavy rainfall typically increase surface runoff and
may lead to severe flooding, whereas decreases in light and moderate
rainfall can prolong dry periods and increase drought risk78. Although
the phenomenon of upstream drying and downstream wetting iden-
tified for theWRB has also been reported for other river basins around
the world, such studies—unlike the present work—limited to descrip-
tions of the changes in streamflow and/or total water storage81–83, with
no further attempt at identifying the primary underlying mechanism
(cf. Supplementary Fig. 5). In brief, our study emphasized the causality
between spatially divergent hydrological changes and rainfall intensi-
fication, highlighting the exacerbated drought and flooding and their
interrelation in a river basin.

Being located in the southern part of China, the WRB has a sea-
sonal monsoon climate with maximum precipitation in summer and a
dry winter/spring season. As such, summer flooding and drought
conditions during spring are a regular phenomenon in the region49,84.
However, the results of the present study demonstrated that intensi-
fying rainfall has led to important changes in the spatiotemporal dis-
tribution of hydrological responses, notably significant drying of the
upstream parts of the basin versus wetting of the downstream parts
(Figs. 4, 5, and 9). These hydrological changes cause a series of pro-
blems. Firstly, they exacerbate the problems inherent to the mon-
soonal climate—the dryness in dry season and wetness in wet season.
Secondly, the upstream drying and associated reduction in water
availability (baseflow: Fig. 4g, h; minimum flows: Supplementary
Table 2) will increase the discrepancy between water demands and
supply, thereby potentially causing greater agricultural and socio-
economic losses. Thirdly, the increases in surface runoff andmaximum
streamflow in summer, together with the increased soil wetness in
some areas (Fig. 4; Supplementary Table 2) will raise the flooding risk
in terms of degree and areal extent in the downstream part of the
basin. Consequently, the identified spatial pattern of upstream drying
upstream and downstream wetting exacerbates the existing water-
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related problems in the basin and heightens socio-economic pressures
on regional water resource managers.

This study investigated the hydrological responses to changes in
rainfall pattern in recent decades across the West River Basin, a large
(353,120 km2) watershed in monsoonal Southern China. The intensi-
fying rainfall over the 54-year study period (1965–2018) was reflected
by clear and significant increases in amount of rainfall per rainy day,
the number of days without rain, and the maximum number of con-
secutive dry days, but also by concurrent decreases in amount of light
rain, the number of days with light rain, and the maximum number of
consecutive wet days. Combining this climatic information with spa-
tially distributed hydrological processmodeling yielded a clear spatial
pattern of changes in dryness and wetness across the basin. The
inferred decreases in annual water yield and surface runoff for the
upstream region, and increases thereof for the downstream region,
indicated increasingly severe water shortages upstream, as well as
greater overall water availability and higher flood risk downstream in
recent decades. Further, combining the hydrological process model-
ing with computation of the Palmer Drought Severity Index allowed
derivationof patternsofdrought occurrence, extent, and severity at an
unprecedented level of spatial detail (down to 2738 so-called Hydro-
logical Response Units), thereby supporting improved representation
at larger scales (i.e., subbasin and region). Both analysis of the spa-
tiotemporal evaluation of drought and Empirical Orthogonal Function
analysis, confirmed the severe drying trend for the upstream part of
the basin versus the wetting of the downstream part inferred by the
hydrological modeling. Finally, similarly diverging trends in dryness/
wetness and water availability for the up- and downstream areas were
confirmed in a virtual experiment that isolated the hydrological effects
of rainfall intensification across various scales. Although the present
study focused on a single large river basin in Southern China, our
finding that a temporal change of rainfall (i.e., intensification of rain-
fall) can cause major spatially contrasting changes in hydrological
response due to differences in slope gradients and curvature may also
apply to other large river basins experiencing comparable levels of
climatic intensification, with major implications for the exacerbation
of both drought and flooding risks.

Methods
Study area
The West River Basin (WRB) is a macro-scale watershed (353,120 km2)
located in South China, accounting for 78% of the Pearl River Basin in
area with a significant East Asian monsoon climate (Fig. 1)85,86. With a
total length of 2214 km, the main stem of the West River originates in
the Maxiong Mountains in Yunnan province and runs generally from
West to East through the provinces of Guizhou, Guangxi, and Guang-
dong before entering the South China Sea in the Pearl River Delta
(Fig. 1)84. The terrain is characterized as mountainous with intra-
montane plateaux in the northwest, consisting of small to medium
mountains and hills in the central part, and becoming increasingly
lower and flatter in the downstream part87. The bedrock geology
consists primarily of granites, sandstones, shales, and limestones of
Precambrian and Paleozoic age, respectively, whereas Quaternary
alluvial deposits are important as well, particularly in the downstream
region. The dominant soil types include latosolic (37.7%), calcareous
(12.2%), and alluvial soils (15.3%)88,89 which broadly correspond to the
ferralsols/acrisols, rendzinas, and fluvisols, respectively, in the
UNESCO/FAO classification. The primary land-cover types are ever-
green forests—both natural monsoon broad-leaf forest, regenerating
pine forests and coniferous plantations (61%)—grasslands (15%), and
farmland (22%). Depending on elevation, theWRBhas a sub-tropical to
tropical monsoon climate, with average annual temperatures ranging
from ~14 °C in the western headwater area to ~22 °C in the eastern
lowlands85.Mean annualprecipitation varies from~1000mmupstream
to ~2200mm downstream, with an overall mean of ~1480mm. The

average annual streamflow at the Tiane gaging station on the upper
main stem is 357mm (mean discharge of 1545m3s−1), compared to
~640mm at Gaoyao close to the basin outlet (Fig. 1). About 80% of
streamflow is recorded during the main monsoon season (April to
September)85,90. The West River is the second-largest in China in terms
of streamflow amount, with an average discharge about five times that
of the Yellow River, or 4.5 times that of the European Rhine River91.

Observational climate and streamflow data
Quality-controlled daily meteorological data for 31 stations covering
54 years (from 1965 through 2018)were obtained from theData Center
of the China Meteorological Administration (http://data.cma.cn),
including rainfall, maximum and minimum air temperatures, relative
humidity, and wind speed. Solar radiation inputs were estimated from
measured sunshine duration data as follows:

Q=QA a+b
n
N

� �
ð1Þ

where QA is the maximum possible radiation at the top of the atmo-
sphere, n is sunshine duration, N is the maximum possible duration of
bright sunshine (both in hours), and a and b are empirical constants.

Streamflow data is measured daily by an agency affiliated with the
Pearl River Water Resources Commission; we used the quality-
controlled monthly data for three streamflow-gaging stations (Tiane,
Wuxuan, and Gaoyao; see Fig. 1 for locations) for hydrological model
calibration and validation (see the corresponding section below).

Rainfall intensification metric
To represent rainfall intensity, we defined and examined six metrics
derived from the daily time series of rainfall (RF), i.e. rainfall intensity
(RI, average rainfall amount per rain day); light-rain amount (rainfall
accumulation for RF < 10mmd−1); light-rain days (number of days with
RF < 10mmd−1); no-rain days (number of days without rainfall, used as
an indirect measure of rainfall frequency in a year); the maximum
number of consecutive dry days; and the maximum number of con-
secutive wet days in a year. The first two metrics (RI and light-rain
amount) represent the intensity of rainfall at the daily scale, while the
remaining metrics of rainfall frequency can be regarded as character-
izing the intensity of rainfall at an annual scale.

Spatially distributed hydrological modeling: SWAT model
The Soil andWater Assessment Tool (SWAT) model was developed by
the U.S. Department of Agriculture’s Agricultural Research Service
(USDA–ARS) for the investigation of the effects of climate and land
management practices on water, sediment, and agricultural chemical
yields92–94. This process-based watershed-scale model simulates the
water budget, plant growth, transportation of sediment and agri-
cultural chemical yields at a daily time step. The hydrological part of
themodel is based on thewater balance of the soil profile and includes
precipitation, surface runoff and infiltration, evapotranspiration (ET),
soil water movement (lateral flow and vertical percolation), and
baseflow95. Here, the Penman-Monteith method was selected for the
estimation of potential evapotranspiration (PET), whereas the model
uses a daily leaf area index to partition the PET into potential soil
evaporation and potential plant transpiration95. Further details can be
found in the theoretical and practical descriptions of the model93,96.

SWAT: model input, setup, and calibration/validation
SWAT requires input data for the characterization of climate, topo-
graphy, soil, land cover, and land management97. ArcSWAT (version
2012) was employed to generate the respective input files and various
watershedproperty-relatedparameters (e.g., soil texture, bulk density,
hydraulic conductivity, available water capacity). In a SWAT setup, a
river basin (i.e., a study area) is delineated to a number of subbasins
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based on topography, and a subbasin is divided into multiple hydro-
logical response units (HRUs) based on unique combinations of land
use, soil type, and slope in the subbasin92,93. SWAT adopts an equation
to adjust the Soil Conservation Service (SCS) Curve Number (CN) to a
different slope, reflecting increased overland flow for a higher slope98.
For the WRB, Shuttle Radar Topography Mission (SRTM) digital ele-
vation model (DEM) data at 90-m resolution99 were used to delineate
the WRB. The land-cover changes in the WRB between 1980 and 2015
were quite minor, hence the SWAT setup used the land-cover map for
year 2000 (1 km× 1 km resolution) to represent the full study period.
The soil map was obtained from the Ecological and Environmental
Science Data Center for West China. In this study, the WRB was deli-
neated into 187 subbaisns and 2738 HRUs. The least computation unit
of the model is HRU, then simulated hydrological components (e.g.,
water yield, ET, soil water, surface runoff, baseflow)of all HRUswithin a
subbasin were integrated to give the corresponding results per sub-
basin. A similar integrative approachwasused for the larger scales (i.e.,
the upstream, mid- and downstream, and the entire WRB).

SWAT-CUP (Calibration and Uncertainty Programs) SUFI-2100–102

was used to calibrate the model’s key parameters using streamflow
data for three gaging stations—Tiane, Wuxuan, and Gaoyao that
represented the upper, middle, and downstream reaches, respectively
(Fig. 1 and Supplementary Fig. 6). For each station, 10-year streamflow
records were used for calibration (1991–2000) and subsequent ten-
year records for validation (2001–2010; with 1 year (2010) of observed
streamflow missing at Tiane (Supplementary Fig. 6)). A 5-year warm-
ing-up period (1960–1964) was applied to minimize the impacts of
uncertain initial conditions on model simulations for the full
1965–2018 period. Based on our previous work with SWAT
calibration102–105, we selected five key parameters for calibration for the
up-, mid-, and downstream parts, respectively, and the resulting fitted
parameter values are listed in Supplementary Table 3. In addition, we
did internal checking of model simulations of ET and soil water, using
re-analysis ET data based on a fusion of ERA5, MERRA2, and GLDAX2-
Noah data during 1980–2017106 and satellite-based root zone soil water
amount from Centre Aval de Traitement des Données SMOS (CATDS)
during 2011–2018107 and GLEAM-based topsoil water during
1980–2018108,109, respectively.

Drought assessment
Various widely-used statistical drought indices (e.g., the Standardized
Precipitation Index (SPI)110, the Standardized Precipitation Evapo-
transpiration Index (SPEI)111, and the Streamflow Drought Index
(SDI)112) use only one or two climatic variables. In contrast, the Palmer
Drought Severity Index (PDSI)113 requiresmore input data (e.g., ET, soil
available water capacity, soil water content, and water yield) to drive a
two-layer water balance model and evaluate the degree of soil moist-
ure stress on a monthly time scale. The use of the PDSI facilitates
comparisons across time and space and is capable of capturing
extreme events because values are normalized by average moisture
conditions31,38,64,114. Hence, the PDSI was selected to assess drought
changes across the WRB.

We developed a watershed-scale drought evaluation system that
uses SWAT-based spatially distributed hydrological modeling to
compute hydrological variables that are required for PDSI115 calcu-
lation. In this system, the least computation unit is HRU (there are
2738 HRUs in the WRB). For each HRU, the spatially-distributed
SWATmodeling can provide dynamics of soil water content, PET and
ET, water yield, and recharge. Then, these hydrological variables
were taken as input to compute PDSI for each HRU at monthly time
scale. Finally, the HRU-based results can be summarized into sub-
basin, basin, and even regional scales. In addition, to evaluate the
performance of PDSI, the basin-wide annual PDSI values were com-
pared with SPI, SPEI, and scPDSI (obtained from the Climatic

Research Unit (CRU))116.The detailed procedure of the SWAT-based
drought evaluation system and PDSI-calculation equations can be
found in our previous publication66.

We used a universally-adopted PDSI-based drought classification
system that can help identify occurrence of a drought event and
recognize its grade as mild, moderate, severe, or extreme (Supple-
mentary Table 4). Drought frequency is defined as the number of
drought events during a given period of time117 or is expressed as the
ratio of the time with drought occurrence to total study time. The so-
called ‘runs’ theory was developed to characterize various drought
features, including duration, intensity, and severity118. A run is defined
as a time series of variables indicating drought (e.g., PDSI). If the values
in the run are all below a given threshold (e.g., PDSI= –1), the run is
considered negative, otherwise the run is positive5,31. Drought duration
refers to a period in terms of weeks, months, years or other time
segments during which all drought indices are below a given
threshold119. Drought severity refers to the sum of the portions of
drought indices that are lower than the given threshold throughout the
duration. Here, we used the runs theory and the spatiotemporal series
of PDSI to evaluate drought duration and severity across the WRB.

The Empirical Orthogonal Function (EOF) method is a statistical
decomposition approach that extracts useful information by reducing
dimensionality120–123. It is widely used for the identification of dominant
spatiotemporal patterns of geophysical variables, especially in thefield
of global change121,124–126. A set of EOF for a specific variable or data-set
with m observations at n stations (giving an m × n matrix X), can be
denoted as:

X t,sð Þ=
Xn

i= 1

PCðsÞ× EOFðtÞ ð2Þ

where X(t,s) is the original spatiotemporal series or dataset as a func-
tion of time (principal components, PCs) and space (EOF modes,
EOFs), and n is the sample size of space.

In this study, we used the EOF method to decompose spatio-
temporal series of drought by analyzing the first two EOF modes
(spatial pattern) and the related temporal variability (PCs). For this, we
adopted the annual series of PDSI values for the 187 subbasins of the
WRB over the 54 years of observations, giving a matrix size of 54×187.
The North test was used to identify significant EOFs65. An EOF was
considered significant if its error range did not overlap with that of the
next higher EOF.

Trend analysis
We adopted the widely used Mann-Kendall test to analyze the results
decomposed by EOF127,128. We also used the Pearson chi-square nor-
mality test to check the distribution of key climate variables and
drought indices129, after which linear regression analysis was employed
in combination with the least-squares method to detect any trends. If
the slope of a fitted linear line differed significantly from zero (t-test:
P <0.05), the trend was regarded as statistically significant. Trends for
the respective climate elements over 1965–2018 study period were
analyzed per climate station; the inverse distance weighted inter-
polation method130 was used to present the spatial distributions. Time
series of monthly PDSI values at subbasin/HRU level were used to
detect annual and seasonal trends of drought.

Data availability
For SWAT input and setup, dailymeteorological data for 31 stations are
obtained from the Data Center of the China Meteorological Adminis-
tration (http://data.cma.cn). The DEM data is downloaded from the
Shuttle Radar Topography Mission (https://srtm.csi.cgiar.org). The
land use data are collected from the Resources and Environmental
Science Data Center (https://www.ncdc.ac.cn). The soil map is
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obtained from the Ecological and Environmental Science Data Center
for West China (http://westdc.westgis.ac.cn). For calibration and vali-
dation of SWAT, daily streamflow data is obtained from an agency
affiliated with the Pearl River Water Resources Commission. The re-
analysis ET data are available at the National Tibetan Plateau Data
Center (https://www.tpdc.ac.cn). The SMOS L4 RZSM product is
obtained from the Centre Aval de Traitement des Données SMOS
(https://www.catds.fr). The GLEAM soil moisture data are available at
the Global Land Evaporation Amsterdam Model (https://www.gleam.
eu). For the evaluation of PDSI performance, the scPDSI data is
obtained from the Climatic Research Unit (https://crudata.uea.ac.uk/
cru/data/drought/). Source data are provided with this paper.

Code availability
The code used in this study is available from the authors upon request.
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