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AutomatingGeneralMovements Assessment
with quantitative deep learning to facilitate
early screening of cerebral palsy

Qiang Gao 1,6, Siqiong Yao1,2,6, Yuan Tian3, Chuncao Zhang3, Tingting Zhao4,
Dan Wu4, Guangjun Yu4,5 & Hui Lu 1,2,4

The Prechtl General Movements Assessment (GMA) is increasingly recognized
for its role in evaluating the integrity of the developing nervous system and
predicting motor dysfunctions, particularly in conditions such as cerebral
palsy (CP). However, the necessity for highly trained professionals has hin-
dered the adoption of GMAas an early screening tool in some countries. In this
study, we propose a deep learning-basedmotor assessmentmodel (MAM) that
combines infant videos and basic characteristics, with the aim of automating
GMA at the fidgety movements (FMs) stage. MAM demonstrates strong per-
formance, achieving an Area Under the Curve (AUC) of 0.967 during external
validation. Importantly, it adheres closely to the principles of GMA and exhi-
bits robust interpretability, as it can accurately identify FMs within videos,
showing substantial agreement with expert assessments. Leveraging the pre-
dicted FMs frequency, a quantitative GMA method is introduced, which
achieves an AUC of 0.956 and enhances the diagnostic accuracy of GMA
beginners by 11.0%. The development of MAM holds the potential to sig-
nificantly streamline early CP screening and revolutionize the field of video-
based quantitative medical diagnostics.

The Prechtl General Movements Assessment (GMA) serves as a valu-
able tool for assessing the developmental status of an infant’s nervous
system and the potential presence of motor abnormalities1. It accom-
plishes this by evaluating the quality of general movements (GMs),
which are part of the infant’s repertoire of spontaneous movements1,2.
Typically, when infants reach a corrected age of 9–20 weeks, GMs
exhibit characteristics such as moderate speed, variable acceleration,
and engagement of the neck, trunk, and limbs in various directions1–3.
These specificmovements are referred to as fidgetymovements (FMs).

Notably, the absence of FMs represents a highly reliable indicator for
predicting the early onset of cerebral palsy (CP)4, which is the most
common motor disability in childhood, encompassing a group of
disorders that profoundly affect an individual’s movement, balance,
and posture5–7. CP affects approximately 1.4–2.5 cases per 1000 live
births in high-income countries, with a higher incidence observed in
low- and middle-income countries8,9. GMA plays a pivotal role in
facilitating early screening for CP, enabling the detection of potential
risks. This, in turn, allows for the optimization of the infant’s malleable
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brain development and the minimization of the adverse effects of
motor impairments through personalized interventions7,10. Health
professionals trained in GMA possess the ability to qualitatively assess
FMs by observing infants in a supine position, free from crying or
external stimuli. They categorize an infant’s GMs at the FMs stage as
normal FMs, abnormal FMs, or absent FMs1,2,11, inwhich the absent FMs
demonstrate a sensitivity of 98% and a specificity of 94% in CP
prediction12,13. Nevertheless, GMA still requires highly trained and
certified professionals, as well as experience and regular calibration, to
achieve the desired precision and consistency4,14. Consequently, the
widespread use of GMA in the general population is not feasible,
necessitating the exploration of alternative automated GMAmethods.

Artificial intelligence has significantly advanced the assessment of
neurodevelopmental deficits in infants through motor assessment15,16.
The use of wearable sensor devices and motion capture markers has
enabled the collection of precise motion data, which can then be
harnessed to predict various types of GMs, CP, or other motor
impairments using machine learning techniques17–22. However, it is
worth noting that these devices can interfere with the normal move-
ments of infants and impose demanding operational requirements on
medical staff15. In contrast, video-based computer vision methods,
suchasbackground subtractionor opticalflowalgorithms,offer a non-
invasivemeans of detecting changes between consecutive frames. This
approach enables the representation of overall motion changes or the
tracking of specific limb motion changes without disturbing the
infant’s movements15,16,23–27. The advent of deep learning has revolu-
tionized computer vision techniques, particularly through pose esti-
mation methods that allow for the direct extraction of an infant’s joint
coordinates from video data. This innovation helps overcome chal-
lenges related to illumination, background interference, and other
sources of noise28. These estimated coordinates serve as valuable
inputs for extracting motion representation information, which can
then be utilized in traditional machine learning or deep learning-based
spatiotemporal models. This integration has led to a significant
improvement in the accuracy of predicting specific neurological
deficits29–33.

In the context of automated GMAmethods at the FMs stage, high
accuracy is typically achieved through qualitative approaches that
leverage spatiotemporal models. However, these methods often pro-
vide only the final classification outcome for GMs31,32. In contrast,
quantitative tools offer objective measurements and numerical data,
reducing the influence of subjective interpretation and enabling a
more comprehensive assessment of a patient’s condition34,35. Some
studies have attempted to quantify GMA by analyzing the motion
patterns in various body parts, including the head, trunk, arms, and
legs29,30. These analyses consider factors such as direction, magnitude,
speed, and acceleration, along with their statistical characteristics, to
derive quantitative values25,26,29,30. Nevertheless, quantitative approa-
ches have not consistently matched the performance of qualitative
methods in GMs classification, and the emphasis on different body
parts or various indicators contradicts the spatial integrity in gestalt
perception36. Moreover, both existing qualitative and quantitative
methods often lack the interpretability required for their users to fully
comprehend the model results. While some studies have acknowl-
edged the occurrence of FMs, their efforts to explain the precise
locations where FMs appear have been insufficient31,32.

In this study, we employ a 3D pose estimation method to predict
the coordinates of critical joints in infant videos and introduce a dis-
tance representation approach to capture the overall motion patterns.
Building upon the principles of multi-instance learning (MIL)37 and
Transformers-based techniques38, we present an infant motor assess-
ment model (MAM). MAM utilizes infant movements and basic char-
acteristics to achieve precise predictions of GMs at the FMs stage. To
enhance the model’s compliance with GMA principles while main-
taining robust interpretability, we designed a dedicated FMs reference

branch and a specializedCloseness loss function.When combinedwith
MIL framework, these components enable our model to identify the
presence of FMs within the videos. Furthermore, we propose a quan-
titative GMA diagnosis method at the FMs stage based on the pre-
dicted frequency of FMs. This approach has been validated as effective
and demonstrated to improve the diagnostic accuracy for GMA
beginners. Given the substantial predictive value of the absenceof FMs
in detecting CP, our automated approach represents a significant
contribution to advancing the universal early screening of CP.

Results
GMA results and video information
This study comprises three cohorts, and the cohort filtering process is
visually represented in Fig. 1. Cohort 1 and Cohort 2 are primarily
utilized for internal cross-validation and external validation, respec-
tively, while Cohort 3 functions as a reference and is employed for pre-
training theMAM. Each infant included in this study is accompanied by
a video that is pivotal for assessing their GMs. Infants whose corrected
ages fall outside the range of 9–20weeks, those lacking essential basic
characteristics, or thosewhose corresponding videos do not adhere to
the recording requirements stipulated by the GMA have been sys-
tematically excluded fromCohort 1 and Cohort 2. Additionally, infants
displaying abnormal FMs have been excluded, as this category is rare
and possesses limited predictive power2,11. It is worth noting that nor-
mal FMs can be further subdivided into continuous FMs, intermittent
FMs, and sporadic FMs. The prognosis associated with sporadic FMs
closely resembles that of absent FMs39,40. Consequently, we have
categorized infants with continuous FMs and intermittent FMs as the
normal group, and infants with sporadic FMs and absent FMs as the
risk group. Following these exclusions and categorizations, the inter-
nal cross-validation dataset comprises 691 infants in the normal group
and 215 infants in the risk group. The external validation dataset con-
sists of 173 infants in the normal group and 48 infants in the risk group.
Comprehensive details regarding the basic characteristics of the
infants included inboth the internal and external datasets areprovided
in Table 1. To assess potential differences between the normal and risk
groups, we conducted a Chi-square test to examine sex distribution,
while other essential characteristics, such as gestational age, birth
weight, and corrected age, were analyzed using either the t-test or
Mann–Whitney test, depending on the normality of the data. Notably,
no statistically significant differences (p > 0.01 for all comparisons)
were observed between these two groups. Cohort 3 serves as a repo-
sitory for infants excluded by Cohort 1 solely due to the absence of
basic characteristics. The videos of these infants are meticulously
segmented into FMs or non-FMs clips. These clips are employed as
references and used for pre-trainingMAM, contributing to themodel’s
robustness and accuracy.

Within Cohort 1, the median video duration is 295 s, with a range
of 119 to 653 s. Frame rates predominantly include 25 fps (95.4%), with
a smaller proportion at 29 fps (4.6%). Pixel resolutions encompass
720 × 576 (1.7%), 1280 × 720 (4.9%), 1440 × 1080 (1.3%), and
1920 × 1080 (92.2%). In Cohort 2, the median video duration is 297 s,
with a range of 181 to 556 s. Frame rates are all 25 fps (100%), and pixel
resolutions encompass 1280 × 720 (10.4%), 1440 × 1080 (5.4%), and
1920 × 1080 (89.6%). Cohort 3 exhibits a median video duration of
299 s, ranging from 188 to 409 s. Frame rates in this cohort are pre-
dominantly 25 fps (96.3%), with a smaller proportion at 29 fps (3.7%).
Pixel resolutions encompass 720 × 576 (2.9%), 1280 × 720 (16.9%),
1440 × 1080 (2.1%), and 1920 × 1080 (78.2%).

Performance of MAM in GMs prediction
As shown in Fig. 2, MAM is organized into three key components: the
Ref Branch, theMain Branch, and the Info Branch. The performance of
MAM in GMs prediction at the FMs stage was tested both in internal
and external datasets. The receiver operating characteristic (ROC)
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curve of each fold in internal cross-validation and mean ROC curve in
external validation are shown in Supplementary Figs. 3 and 4. MAM
achieved an area under ROC curve (AUC) value of 0.973 (±0.007), an
accuracy of 0.938 (±0.007), a sensitivity of 0.939 (±0.021), a specificity
of 0.934 (±0.014), a positive predictive value (PPV) of 0.826 (±0.031)
and a negative predictive value (NPV) of 0.980 (±0.006) in the internal
dataset. In the external validation, MAM achieved an AUC value of
0.967 (±0.005), an accuracy of 0.934 (±0.008), a sensitivity of 0.925
(±0.024), a specificity of 0.936 (±0.009), a PPV of 0.802 (±0.022) and a
NPV of 0.978 (±0.008).

We then compared the performance of MAM with other state-of-
the-art methods, as shown in Table 2. Using the same video data and

parameter adjustment way, MAM far exceeds other methods in terms
ofAUC, accuracy, sensitivity, specificity andPPV, regardlessofwhether
in internal validation or external validation. All models have relatively
high NPV, but MAM still achieves the best performance.

Furthermore, we observed the performance of the MAM without
the Info Branch (MAM.w/o.info). Compared with the original MAM,
only the average specificity and average PPV of MAM.w/o.info in
internal validation show slightly better, while the averages of other
metrics are lower in both internal and external validation. However,
after conducting theMann-Whitney test, it was found that therewas no
significant difference (p >0.01 for all comparisons) in all metrics
between MAM and MAM.w/o.info. Furthermore, SHapley Additive

Table 1 | The basic characteristics of the infants in internal and external datasets

Internal cross-validation dataset (n = 906) External validation dataset (n = 221)

Normal group Risk group p value Normal group Risk group p value

n 691 (76.3%) 215 (23.7%) 173 (78.3%) 48 (21.7%)

Sex

Male 353 (51.1%) 114 (53.0%) 0.676 87 (50.0%) 27 (56.3%) 0.570

Female 338 (48.9%) 101 (47.0%) 86 (50.0%) 21 (43.8%)

GA (week) 35.11 (3.22) 35.68 (3.22) 0.012 35.14 (3.34) 35.58 (3.38) 0.384

BW (g) 2415.67 (665.88) 2514.93 (699.11) 0.093 2414.86 (687.62) 2526.56 (671.03) 0.313

CA (week) 12.53 (2.72) 12.53 (2.64) 0.866 12.73 (2.72) 12.75 (2.86) 0.928

Data are represented by n (%) or mean (sd). The p values are calculated using Chi-square test, t-test or Mann–Whitney test. All tests are two-tailed.
GA gestational age, BW birth weight, CA corrected age.

Fig. 1 | The flowchart of cohort filtering. a Cohort 1 initially comprised 1204
infants. 298 infants were excluded, and 906 infants were retained for training and
internal cross-validation, including 691 infants categorized as having normal FMs
and 215 infants categorized as having risk FMs (absent FMs or sporadic FMs).
bCohort 2 initially comprised 283 infants. 62 infantswere excluded, and 221 infants
were retained for external validation, including 173 infants categorized as having

normal FMs and 48 infants categorized as having risk FMs. The infants in normal
group included 60 infants having continuous FMs and 113 infants having inter-
mittent FMs. c Cohort 3 is the 298 infants excluded from Cohort 1. 55 infants were
excluded due to age, video quality or abnormal FMs, and 243 infants were retained
for MAM pre-training, whose videos were annotated with FMs and further seg-
mented into 1,586 FMs clips and 4100 non-FMs clips. FMs fidgety movements.
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exPlanations (SHAP)41 methodwas applied to explore the contribution
of the infants’ characteristics in the Info Branch to the final prediction.
As shown in Supplementary Fig. 5, we found that the video feature in
the Main Branch dominated the prediction of normal probability,
wherein the larger the video feature value after fusion, the greater the
predictionprobability of thenormal group. The contributiondegreeof
the four basic characteristics was small, and it was difficult to distin-
guish the direction of their influence on the prediction of normal
probability.

To illustrate the role of distance matrices and 3D pose estimation
(see Methods), we evaluated the AUC values obtained by the model
using different input construction ways and pose estimation methods
of different dimensions (Supplementary Table 1). We found that the
proposed input construction way of distance matrices outperformed
that of using coordinates, velocities and accelerations, or their com-
binations. In addition, under the same input construction way, the
performance obtained by using 3Dpose estimationmethod is superior
to that obtained by using 2D pose estimation method.

Fig. 2 | The overall architecture of MAM.MAM consists of a Ref Branch, a Main
Branch, and an Info Branch. The Ref Branch, containing a 3D pose estimation step,
an input construction step, a spatio-temporal Transformer (Supplementary Fig. 1)
and a classifier, employs small FMs or non-FMs clips as inputs, and outputs FMs and
non-FMs probability. The Main Branch, with an additional split step and an

attention-based fusion (Supplementary Fig. 2), employswhole videos as inputs, and
outputs normal and risk probability. The Info Branch employs basic characteristics
as input, and output normal and risk probability by a fully connected neural net-
work. The normal and risk probability given by theMain Branch and InfoBranch are
combined to give the final normal and risk probability.

Table 2 | The performance of MAM in internal cross-validation and external validation

Method AUC Accuracy Sensitivity Specificity PPV NPV

Internal cross-validation

EML 0.846 ± 0.034 0.787 ± 0.017 0.786 ±0.078 0.788 ±0.039 0.556 ±0.033 0.918 ± 0.026

STAM 0.880 ±0.005 0.840 ±0.020 0.832 ±0.030 0.842 ±0.036 0.643 ±0.048 0.938 ± 0.008

WO-GMA 0.912 ± 0.010 0.856 ± 0.017 0.879 ±0.042 0.848 ±0.025 0.663 ±0.034 0.955 ± 0.015

MAM 0.973 ±0.007 0.938 ±0.007 0.939 ±0.021 0.934 ±0.014 0.826 ±0.031 0.980 ±0.006

MAM.w/o.info 0.965 ±0.006 0.931 ± 0.012 0.912 ± 0.010 0.937 ±0.016 0.832 ±0.034 0.969 ±0.003

External validation

EML 0.844 ± 0.026 0.767 ± 0.027 0.850 ±0.035 0.744 ±0.039 0.483 ±0.037 0.947 ± 0.010

STAM 0.882 ± 0.011 0.810 ±0.016 0.879 ±0.018 0.791 ± 0.025 0.539 ± 0.025 0.959 ± 0.004

WO-GMA 0.906 ± 0.014 0.848 ±0.019 0.904 ±0.048 0.832 ±0.035 0.603 ±0.040 0.970 ± 0.013

MAM 0.967 ±0.005 0.934 ±0.008 0.925 ±0.024 0.936 ±0.009 0.802 ±0.022 0.978 ±0.008

MAM.w/o.info 0.966 ±0.006 0.928 ±0.008 0.908 ±0.038 0.933 ±0.005 0.790 ±0.013 0.974 ±0.011

Data are represented by mean ± sd. The highest value for each metric is shown in bold.
EML ensemble machine learning model by Mccay et al.30, STAM spatio-temporal attention-based model by Nguyen-Thai et al.31,WO-GMA weakly supervised online action detection model by Luo
et al.32, MAM motor assessment model,MAM.w/o.info MAM without the Info Branch, AUC area under receiver operating characteristic curve, PPV positive predictive value, NPV negative
predictive value.
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Performance of MAM in FMs identification and quantification
To investigate the capability of MAM in identifying FMs, we converted
the FMs probabilities obtained by the classifier in theMain Branch into
FMs clips or non-FMs clips setting 0.5 as the threshold. We then

compared evaluations for FMs or non-FMs clips in the entire video by
the MAM and the GMA experts. Figure 3a shows examples of a normal
infant’s video and a risk infant’s video, with each clip being assigned a
value from0 to 1 by theMAM. The closer a clip’s value is to 1, themore

Fig. 3 | The performance of MAM in FMs identification and quantification.
a Examples of FMs and non-FMs clips evaluated by MAM and GMA experts. Each
rectangle inside the black dashed box represents a 9.6-s video clip of the identified
infant pose information. The bottom squares represent the corresponding pre-
dictions, with blue denoting a non-FMs clip and pink denoting an FMs clip.
bDistribution of concordance in the evaluations of FMs in videos from the external
validation dataset (n = 221) by GMA experts and different MAM types. MAM.w/o.C
MAMwithout Closeness loss function,MAM.w/o.C.refMAMwithout Closeness loss
function and Ref Branch. c Distribution of predicted FMs frequencies by MAM in
normal group (n = 173) and risk group (n = 48). d The receiver operating

characteristic (ROC) curve for classification of normal and risk group using pre-
dicted FMs frequency by MAM. The light blue area represents the 95% confidence
interval, with the center line representing the mean. AUC area under ROC curve,
e Distribution of predicted FMs frequencies by MAM in infants having continual
FMs (n = 60) and intermittent FMs (n = 113). For all boxplots in b, c, e, the center
lines of boxplots indicate the median values; box limits show upper and lower
quartiles; whiskers extend from box limits to the farthest data point within 1.5 ×
interquartile range; points beyond whiskers are outliers. Source data are provided
as a Source Data file.
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likely it is to be an FMs clip. The experts’ results are represented as
either 0 or 1, with 0 denoting a non-FMs clip and 1 denoting an FMs
clip. In the examples, the concordance of the judgments between
MAM and GMA experts on FMs is commendable. To provide a more
comprehensive view, we drew a boxplot to reflect the distribution of
concordance between MAM and GMA experts across all external vali-
dationdata. As shown in Fig. 3b (left), themediankappa value achieved
0.601 (Q1–Q3 0.357–0.845). The Closeness loss function (see Meth-
ods) and the Ref Branch were effective in enhancing MAM’s ability to
identify FMs. Without using the Closeness loss function, the con-
cordance, shown in Fig. 3b (middle), reached a kappa value of 0.224
(Q1–Q3 0.025–0.530). Without using the Closeness loss function and
Ref Branch, the concordance dropped to a kappa value of 0.064
(Q1–Q3 −0.046–0.280), as shown in Fig. 3b (right).

We calculated the proportion of FMs clips in an entire video and
named it “FMs frequency”. As shown in Fig. 3c, the median of FMs
frequency in the external validation dataset is 0.553 (Q1–Q3
0.412–0.706) in the normal group and 0.135 (Q1–Q3 0.082–0.215) in
the risk group. There is a significant difference (p <0.01) in FMs fre-
quency between the normal group and the risk group. Further, we
classified videos of the normal group and risk group directly using the
FMs frequency to explore if MAM could transform GMA from a qua-
litative to a quantitative tool. As shown in Fig. 3d, an AUCof 0.956 (95%
CI 0.924–0.989) is obtained, indicating that we can quantify GMA in
this way.

We then observed the distribution of FMs frequency evaluated by
MAM in infants having continuous FMs and intermittent FMs. As
shown in Fig. 3e, the median FMs frequency in infants having con-
tinuous FMs is 0.738 (Q1–Q3 0.672–0.798), and the median FMs fre-
quency in infants having intermittent FMs is 0.455 (Q1–Q3
0.359–0.560). There is a significant difference (p <0.01) in FMs fre-
quency between these two categories. Using a threshold of 0.603 to
classify continuous FMsand intermittent FMsbasedonFMs frequency,
results in an AUC of 0.932 (95% CI 0.892–0.973) and an accuracy of
0.902. These results further validate that our approach can quantita-
tively automate GMA.

MAM’s ability to assist GMA beginners
The attention-based fusion (Supplementary Fig. 2) step in the Main
Branch learns the contribution degree of the FMs probability of each

“instance” to predict the normal probability of the “bag” (see Meth-
ods). For the trained MAM, the absolute contribution of each
“instance” to the normal probability of the “bag” solely depends on its
FMs probability, whereas the relative contribution also depends on
other “instances” in the “bag” due to the softmax operation. Figure 4a
displays the absolute weights (exponentially processed) of the
“instances” for the final normal probability prediction at different FMs
probabilities. The curve indicates that clips with higher FMs prob-
ability have greater value in predicting the normal probability of the
whole video.

In clinical practice, the health professionals need to distinguish
FMs from various othermovements that occur concurrently with FMs,
such as wiggling-oscillating and saccadic armmovements2,11. However,
this is difficult for some less-experienced observers2,11. We hypothe-
sized that the clips featuring high FMs probability in the videos pre-
dicted by MAM may provide valuable reference points for beginners,
helping them build confidence in assessing developing infants.
Therefore, we examinedMAM’s capacity to assist beginners, primarily
achieved through repeated display of focused clips with high FMs
probability determined by the MAM.

Using GMA expert evaluations as reference, we compared the
diagnostic accuracy of three GMA beginners (GMA certified for less
than six months) with and without the assistance of MAM on the
external validation dataset. As shown in Fig. 4b, without the assistance
of MAM, the prediction accuracy of the three beginners was 0.846,
0.869, 0.837, respectively. However, with the assistance of MAM, their
accuracy improved to 0.950, 0.973, and 0.959, respectively, with an
average increase of 11.0%.

Discussion
In this study, we developed a multi-instance multimodal motor
assessment model based on the Transformer architecture to realize
prediction of GMs in infants at the FMs stage, which aimed at expe-
diting the early detection of CP. The proposed model referred to as
MAM, outperforms extantmethodologies across all evaluatedmetrics.
Unlike existing methods29–31 which exclusively relied on motion pos-
ture from videos to predict GMs, we adopted a multimodal fusion
approach to explore the influence of infants’ basic characteristics on
the final prediction accuracy. Through hypothesis testing and SHAP
analysis, it was discerned that these basic characteristics exerted a

Fig. 4 | The prediction details ofMAMandMAM’s assistance toGMAbeginners.
a Absolute contribution of FMs probability to the normal probability. The expo-
nential function in the softmax operation is taken to better reflect the degree of

contribution. b Comparison of diagnostic accuracy among three GMA beginners
with or without MAM’s assistance. Source data are provided as a Source Data file.
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marginal impact on the model’s final predictive ability, where video
features remained as the primary contributors. This also explains why
health professionals typically do not consider additional information
about the infant when assessing infants of a specific age group1,11.

The perception of FMs is the prerequisite for health professionals
to make correct GMs classification judgment at the FMs stage, and the
absence of FMs constitutes the most robust indicator for predicting
CP4,40. Therefore, if the model can pinpoint the location of FMs within
videos, it not only provides decision support for health professionals
but also enhances the model’s transparency and reliability. While
previous methods31,32 have taken note of this aspect, they fell short of
achieving notable advancement. Leveraging MIL, referencing the Ref
Branch, and integrating the specially devised Closeness loss function,
MAMeffectively identifies the location of FMs. Figure 3b highlights the
crucial role of the Ref Branch and Closeness loss function. The original
and complete MAM achieves substantial agreement with GMA experts
in identifying FMs. Additionally, the clipswhereMAMassigns high FMs
probability have been shown to be valuable to GMAbeginners, as they
contribute to an improvement in diagnostic accuracy.

Quantification has always been a focus in medical diagnostic
tools, as it providesmore objective, intuitive, and convenient evidence
for both health professionals and patients34,35. However, the classifi-
cation reliability of quantitative GMA at the FMs stage is not
adequate25,26. Moreover, previous quantitative methods have deviated
from the gestalt principle of GMA29,30. Here, based on the FMs identi-
fiedbyMAM,weproposedquantifyingGMAusing the concept of “FMs
frequency”, which was expressed as the proportion of FMs clips.
Without breaking down the individual limb movements of the infant,
this approach adheres to the gestalt principle of maintaining spatial
integrity during observation. We further verified that this approach
was able to distinguish between normal and risk group videos, and
between continual and intermittent FMs videos. These encouraging
results demonstrate the effectiveness of our quantitative GMA
method.

Early screening of CP ensures that the interventions can be
implemented at critical stages of brain development to maximize
motor and cognitive outcomes, and reduce the incidence of other co-
morbidities such as visual and hearing impairments7,13. Additionally,
early screening provides parents with a clear result for their high-risk
baby, reducing their stress and anxiety, and enhancing their coping
abilities7,42. Among the risk group in Cohort 1, 156 infants retained their
follow-up results at 2–4 years of age, of which 129 (82.7%) were even-
tually diagnosed with CP. The majority of these infants have received
timely intervention after GMA, so the proportion of infants who were
diagnosed as only having mild CP was 88.4%. This highlights the sig-
nificance of GMA in early screening and enabling early intervention.
Yet, GMA is still plaguedby limitations suchas requirement for training
and certification, as well as being labor-intensive4. Our MAM method
aptly addresses these issues. MAM can also serve as an aid for GMA
beginners, helping them boost their prediction accuracy. For low- and
middle- income countries and regions that lack GMA training, MAM
can act as an alternative solution to GMA. Additionally, MAM’s high
sensitivity allows it to serve as a screening tool, making it possible to
use GMA at a population level.

There are some limitations of the study. First, the infants whose
videoswereused in this studywerehigh-risk infants. Thus, the effectof
the model on normal infants cannot be directly assessed. Second, all
the videos in this study were from hospitals. Therefore, the results do
not directly reflect the MAM’s performance in video recordings out-
side hospitals, such as those shot at home. In the future, MAM should
be tested with non-high-risk infants and in diverse scenarios.

In conclusion, we have developed a quantitative and explainable
motor assessment model based on deep learning to automate GMA
and facilitate early screening of CP. The MAM demonstrated good
performance while adhering to the principles of GMA. Our study

provides a possible paradigm for video-based quantitative medical
diagnostics.

Methods
Description of datasets
This study was approved by the Ethics Review Committee at Shanghai
Children’s Hospital, Shanghai Jiao Tong University. Parents of all
infants in the study provided written informed consent prior to their
infants’ inclusion, and the videos and basic characteristics were
anonymized. TheCohort 1 contains 1204distinct high-risk infants (e.g.,
pretermbirth, low birth weight, respiratory distress syndrome, in vitro
fertilization, atrial septal defect, and hyperbilirubinemia) from
Shanghai Children’s Hospital collected from January 2013 to June 2019.
Cohort 2 contains 283 distinct high-risk infants from Shanghai Chil-
dren’s Hospital collected from 2019 July to February 2023. The flow-
chart of cohort filtering is shown in Fig. 1. 906 infants were retained in
Cohort 1 for internal cross-validation, and 221 infants were retained in
Cohort 2 for external validation. Cohort 3 is the 298 infants excluded
from Cohort 1, in which 55 infants were excluded due to age, video
quality or abnormal FMs, and 243 infants were retained for pre-
training MAM.

A video recording of each infant according to GMA standards was
obtained. The videos were annotated by two GMA experts blinded to
the infants’medical histories. Both experts held GMA certification and
had over 5 years of assessment experience. The experts made inde-
pendent judgments, but were allowed to discuss and reach consensus
in case of inconsistent results. The reliability between the two experts
reached a kappa value of 0.947. In Cohort 1, 691 infants were cate-
gorized into the normal group and 215 infants were categorized into
the risk group. In Cohort 2, 173 infants were categorized into the
normal group (60 continuous FMs and 113 intermittent FMs) and 48
infants were categorized into the risk group. In Cohort 3, all videos
were annotated for the intervals of FMs appearance. We cropped 1586
FMs clips that are completely covered by FMs and 4100 non-FMs clips
that contain no FMs, each 9.6 s long. All the videos in Cohort 2 were
also annotated for the intervals of FMs appearance. These videos were
further segmented into 9.6-second clips with a step size of 6 s. Based
on whether the proportion of FMs within each clip was greater than
0.5, these clips were categorized as FMs clips or non-FMs clips. This
categorization was used to assess the concordance betweenMAM and
GMA experts in identifying FMs.

Overall architecture of MAM
MAM represents a multi-instance multimodal model founded on the
Transformer architecture. As depicted in Fig. 2, MAM is organized into
three key components: the Ref Branch, the Main Branch, and the Info
Branch. The Ref Branch is specifically designed for pre-training the
spatio-temporal Transformer (Supplementary Fig. 1) and the classifier
within MAM. It utilizes video clips featuring FMs and non-FMs from
Cohort 3. The training process incorporates the Triplet loss43, a formof
margin loss, to distinguish between FMs clip representations and non-
FMs clip representations. These representations are dynamically
adapted during training and serve as crucial references for the clip
representations in the Main Branch. Both the Main Branch and Ref
Branch share a substantial portion of their architectural elements. The
fine-tuned 3D pose estimation model is responsible for extracting
critical joint coordinates from supine infant videos. Importantly, the
input construction step involves distance matrices of each dimension,
which encapsulate overall motion patterns and capture potential
coordination relationships among non-adjacent joints. The Main
Branch incorporates an additional split step, dividing the input
(referred to as a “bag” inMIL) into small parts (“instance” inMIL) of the
same size as those in the Ref Branch. Meanwhile, an extra attention-
based fusion (Supplementary Fig. 2) step is responsible for amalga-
mating the probabilities of FMs and non-FMs instances into the normal
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and risk probability of the “bag”. The designed Closeness loss function
enables instances’ clip representations to dynamically converge
towards the FMs or non-FMs representation centers of the Ref Branch,
resulting in improved instance prediction outcomes. The Info Branch
utilizes the basic characteristics (sex, gestational age, birth weight, and
assessment age) of the infants corresponding to the videos in theMain
Branch for predictions. The resultant predictions are integrated with
those from the Main Branch to yield multimodal predictions for the
final normal and risk probability.

3D information acquisition and pre-processing
We used the VideoPose3D44 model to perform monocular 3D pose
estimation of the infants. This model was trained on adult datasets45.
However, the proportions of infant limbs are very different from those
of adults, and the infants are in the supine position rather than the
standing position of adults. Directly applying the originalmodel to the
infant videos will lead to a large bias in pose estimation. Therefore, we
extracted 5 frames from each of the 298 videos in Cohort 3 and
manually annotated the critical joints to fine-tune HRNet46, which can
be considered a kernel of VideoPose3D. Next, we migrated the kernel
to the VideoPose3D framework and obtained 3D coordinates of the 17
critical joints in each frame of all videos in our dataset. The frame rate
of the videos has been standardized to 25 fps before fed into the
VideoPose3D model. Moving Average process was applied to the
obtained coordinate values with a window size of 5 frames. We then
calculated the mean and standard deviation of all coordinates in each
of the three dimensions and used this information to normalize the
coordinates.

Input features construction
We constructed distance matrices between the joints in each frame in
3D to capture the potential coordination relationship between non-
adjacent joints and represent the overall motion patterns, as shown
below:

dc
1,1 � � � dc

1,V

..

. . .
. ..

.

dc
V ,1 � � � dc

V ,V

2
664

3
775

where c is the coordinate dimension, c 2 1,2, . . . ,Cf g.C is the number of
coordinate dimensions, C = 3. V is the number of critical joints of the
infant in each frame, V = 17. dc

i,j is the Euclidean distance between the i-
th critical joint and j-th critical joint in c dimension. The input features
of each frame can be represented by a [C, V, V] tensor, while the input
features of the whole video can be represented by a [T*, C, V, V] tensor,
where T* is the number of the frames.

Definition of “bag” and “instance”
In MIL, the dataset consists of a set of “bags”with labels, wherein each
“bag” contains several “instances” without labels37. With the aim of
dividing the whole video in the Main Branch into small clips with
durations of 9.6 s, which was consistent with the length of FMs and
non-FMs clips in the Ref Branch, the split step in theMain Branch splits
the [T*, C, V, V] tensor into several [T, C, V, V] tensors with a step of Ts,
where T = 240 and Ts = 90. Therefore, the [T*, C, V, V] tensor of each
input video in theMain Branch is considered a “bag”, and the split [T, C,
V, V] tensors are considered “instances”.

Construction details and loss functions of MAM
In the Ref Branch, the FMs and non-FMs clips are converted into [T, C,
V, V] tensors after 3D pose estimation and input construction. Next,
they go through the spatio-temporal Transformer to obtain the clip
representations that integrate temporal and spatial information, and
the classifier gives their FMs probabilities. Cross-entropy loss is

calculated as follows:

Lc1 = � 1
n

Xn

i= 1

gi � log ĝi

� �
+ 1� gi

� � � log 1� ĝi

� �� �
ð1Þ

where gi represents the true label with a value of 0 or 1, ĝi represents
the predicted FMs probability, and n is the number of clips in one
training batch in the Ref Branch. Before input to the classifier, the
Triplet loss between the FMs clip representations and the non-FMs clip
representations is calculated as follows:

Lit =
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Lt =
1
n

Xn

i= 1
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where ai is an anchor thatmay be an FMs clip representation or a non-
FMs clip representation, pk is one of the n1 FMs clip representations in
the batch, and nk is one of the n2 non-FMs clip representations in the
batch (where n1 + n2 =n), D is the Euclidean distance function, and
margin is a constant that controls the distance between the two
classes. The roleof this loss function is to shorten thedistancebetween
the same classes and increase the distance between different classes.

The Main Branch is the core of the MAM. An infant’s input video
successively goes through the 3D pose estimation and the input con-
struction to generate the “bag” tensor. This tensor is then divided into
“instance” tensors in [T, C, V, V] format by the split step. Next, the
spatio-temporal Transformer converts these tensors into instance clip
representations, and the classifier further gives their FMs prediction
probabilities. We further constructed a Closeness loss function to
dynamically adjust the position of the instance clip representations in
the latent space, making them choose to be close to the FMs or non-
FMs clip representation cluster. The formulas of the Closeness loss
function are as follows:

pk =
1
n1

Xn1

k = 1

pk ð4Þ

nk =
1
n2

Xn2

k = 1

nk ð5Þ

Lic =
αi � 1� αi

� �� � � eDist bi ,pkð Þ
eDist bi ,pkð Þ + eDist bi ,nkð Þ ,αi ≥0:5

αi � 1� αi

� �� � � e
Dist bi ,nkð Þ

e
Dist bi ,pkð Þ + eDist bi ,nkð Þ ,αi <0:5

8>><
>>:

ð6Þ

Lc =
1
n*

Xn*

i= 1

Lic ð7Þ

where pk is the center of the FMs clip representation cluster, and nk is
the center of the non-FMs clip representation cluster, bi is an instance
clip representation, αi is the FMs prediction probability of bi, and n* is
the number of instances in one training batch. Dist is the Euclidean
distance function. As αi changes with training, it causes the dynamic
adjustment of the Closeness loss. Weighted summation of instance
FMs probabilities is performed by the attention-based fusion module.
The result is then processed by the softmax function to obtain the bag
prediction of normal probability.
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The Info Branch represents the processing of the basic char-
acteristics of the infants. The encoded features are subjected to a fully
connected neural network with nonlinear activation, followed by
processing via the softmax function to obtain the predicted normal
probability. Finally, the Main Branch and Info Branch predictions are
fused to obtain the final normal probability. Cross-entropy loss is again
calculated as follows:

Lc2 = � 1
N

XN

i= 1

yi � log ŷi
� �

+ 1� yi
� � � log 1� ŷi

� �� � ð8Þ

where yi represents the true label with a value of 0 or 1, ŷi represents
the predicted normal probability, and N is the number of bags (infant
videos) in one training batch. The loss in the whole MAM is calculated
as the sum of the Triplet loss, Closeness loss, and the two cross-
entropy losses, which is represented by the following formula:

loss = Lt + Lc + Lc1 + Lc2 ð9Þ

The three branchers are trained together, and the weights of the
spatio-temporal Transformer are shared in the Ref Branch and Main
Branch. Thus, the whole MAMwill be able to distinguish FMs and non-
FMs clips on the premise that the judgment of the final normal prob-
ability is correct.

Supplementary Fig. 1 shows the structure of the spatio-temporal
Transformer. The input tensors first pass through a 2D convolution
kernel (Conv2D) of size [V, 1] to fuse the spatial connection informa-
tion of each critical joint into itself. Next, the information between
each critical joint is further exchanged via the spatial Transformer. The
spatial Transformer utilizes 2 layers of Transformer encoder. The
embedding dimension is 64, the number of attention heads is 4, and
the number of feedforward networkdimension is 256. Attention-based
fusion is then implemented to integrate all spatial information,
resulting in a sequence of feature vectors arranged in time. Position
encoding is further added to this sequence to ensure that the temporal
relationship of the feature vectors is not lost in the temporal Trans-
former. Similarly, information at each moment is exchanged through
the temporal Transformer. The structure of the temporal Transformer
is identical to that of the spatial Transformer. Finally, all temporal
information is integrated by attention-based fusion to obtain the
output vector.

Supplementary Fig. 2 shows the details of the attention-based
fusion module. Each feature vector input to the module is processed
by the linear layers and Tanh activation functions to obtain the weight
value. All weight values are then processed by the softmax function to
obtain the new weights, which add up to 1. Finally, the original input
feature vectors are linearly combined according to the new weights to
create fused output features.

Hyperparameters
The instance clip length is 240 frames, and adjacent clips have 90
frames of overlap. The batchsize of the model training is 64, with half
of it being FMs or non-FMs clip features and the other half being
instance clip features in one normal group’s bag and one risk group’s
bag. The model was trained 300 epochs with an initial learning rate of
0.001, using SGD as the optimizer and CyclicLR as the Scheduler. The
Triplet loss margin is set as 0.4.

Model application
In the validation and application phase, as shown in Supplementary
Fig. 6, we used the Main Branch and Info Branch of the MAM to pro-
duce the normal and risk probability of each infant. The Ref Branch is
abandoned and the attention-based fusion step in theMain Branch can
be replaced by frequency calculations of FMs clips. Other parts are
identical to the original MAM.

Statistical analysis
All hypothesis tests were two-tailed and used a significance level of
0.01. For categorical variables, the Chi-Square test was employed,
while for continuous variables, either a t-test or Mann–Whitney test
was chosenbasedon the fulfillment of normality assumptions. Cohen’s
kappa statistic was used in measuring the reliability between the two
GMA experts, and the concordance between MAM and GMA experts
on FMs annotations.

The accuracy, sensitivity, specificity, PPV and NPV were used
to measure the model performance. These metrics are defined
as follows:

accuracy =
NTP +NTN

NTP +NFP +NTN +NFN
ð10Þ

sensitivity =
NTP

NTP +NFN
ð11Þ

specificity =
NTN

NTN +NFP
ð12Þ

PPV=
NTP

NTP +NFP
ð13Þ

NPV=
NTN

NTN +NFN
ð14Þ

where NTP, NTN, NFP, NFN represent the number of true positive, true
negative, false positive, false negative infants, respectively.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The datasets used in this study are available under restricted access
due to privacy, ethical and legal considerations. Access can be
obtained by contacting the corresponding author at gjyu@shchil-
dren.com.cnwhowill provide a responsewithin 14 days and supply the
data use agreement limiting its use to non-commercial research pur-
poses. Source data are provided with this paper.

Code availability
The code of HRNet used in this paper is available in https://github.
com/stefanopini/simple-HRNet.git. The code of VideoPose3D used in
this paper is available in https://github.com/facebookresearch/
VideoPose3D.git. The code of MAM is also available in https://github.
com/qiang-Blazer/MAM. The statistical analyses and tests were down
by R packages.
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