nature communications

Article

https://doi.org/10.1038/s41467-023-43755-5

Unveiling patterns in human dominated
landscapes through mapping the mass of US

built structures

Received: 24 February 2023 David Frantz®"?

Accepted: 17 November 2023

Published online: 04 December 2023

M Check for updates

, Franz Schug ® >3, Dominik Wiedenhofer ®°5,

André Baumgart ® °, Doris Virag ® ®, Sam Cooper?, Camila Gomez-Medina®?,
Fabian Lehmann ® 8, Thomas Udelhoven’, Sebastian van der Linden®8,
Patrick Hostert ® >3 & Helmut Haberl ®°

Built structures increasingly dominate the Earth’s landscapes; their surging

mass is currently overtaking global biomass. We here assess built structures in
the conterminous US by quantifying the mass of 14 stock-building materials in
eight building types and nine types of mobility infrastructures. Our high-
resolution maps reveal that built structures have become 2.6 times heavier
than all plant biomass across the country and that most inhabited areas are
mass-dominated by buildings or infrastructure. We analyze determinants of
the material intensity and show that densely built settlements have sub-
stantially lower per-capita material stocks, while highest intensities are found
in sparsely populated regions due to ubiquitous infrastructures. Out-migration
aggravates already high intensities in rural areas as people leave while built
structures remain - highlighting that quantifying the distribution of built-up

mass at high resolution is an essential contribution to understanding the
biophysical basis of societies, and to inform strategies to design more
resource-efficient settlements and a sustainable circular economy.

Humanity’s role in changing the face of the Earth is a long-standing
concern'?, as is the human domination of ecosystems’. Geologists are
debating the introduction of a new geological epoch, the
‘Anthropocene’™, as humans are ‘overwhelming the great forces of
nature’*”’. In this context, the accumulation of artefacts, i.e., human-
made physical objects ranging from buildings and infrastructures to
machinery, is a pervasive phenomenon, locking in material and energy
use, waste and greenhouse gas (GHG) emissions®. Variously dubbed
‘manufactured capital”, ‘technomass®®, ‘human-made mass™, ‘in-use
stocks™, or ‘socioeconomic material stocks™?, they have become a
major focus of sustainability sciences in the last decade®”*. Globally,

the mass of socioeconomic material stocks now exceeds 1000 Gt,
which is roughly equal to the dry-matter equivalent of all biomass on
Earth'®". It has been doubling roughly every 20 years, almost perfectly
in line with inflation-adjusted Gross Domestic Product (GDP)“. In
terms of mass, buildings and mobility infrastructures (here collectively
called ‘built structures’) represent the overwhelming majority of all
socioeconomic material stocks™.

Built structures are hugely important both socially as well as
ecologically. They are essential for almost all economic processes,
such as production, trade, mobility, and consumption. Buildings and
mobility infrastructures provide key services to societies, e.g., housing,
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mobility, sanitation, as well as water and energy supply™. Their con-
struction now requires almost 60% of all global resource extraction'>",
Dynamics of built structures are a strong driver of GHG emissions
and demand for resources' . Built structures seal surfaces and
increasingly cover large tracts of fertile land*>*, structure landscapes,
impede movements of species, as well as requiring increasing amounts
of resource extraction®**, thereby exerting strong pressures on bio-
diversity locally and globally®. At the same time, natural biomass
stocks play a vital role for human health, because they, for example,
lower heat stress”, while access to and time spent in green spaces
improves mental health, constituting also an issue of social fairness, as
witnessed during the COVID-19 pandemic®.

Mapping these built structures at high spatial and thematic
resolution is also key for understanding their role in (co-)determining
future resource use emerging from mobility and housing across dif-
ferent settlement patterns and urban forms, as well as to assess how
this reservoir of secondary materials can be re-used, re-purposed and
recycled to achieve a more resource-efficient circular economy'.
Spatially explicit insights also provide the evidence base for designing
climate-change mitigation strategies targeting patterns of infra-
structure and settlements'* in support of the United Nations Sus-
tainable Development Goals. Within the last decade, remote sensing-
based efforts to accurately map attributes of built structures at high
resolution and/or at a global scale made substantial progress regarding
building density and height®***. However, while globally available
datasets provide important insights, their thematic depth and spatial
resolution is still limited regarding structural types and material-
specific compositions of built structures.

Although a global issue, material usage is not distributed evenly
across the globe, and individual economies have allocated an over-
proportioned share of globally extracted resources™*. During the past
century, the USA alone have used 16% of all materials extracted
globally”. A better understanding of the role of spatial resource use
patterns would be instrumental for identifying and locating potentials
for reducing future resource use and for moving towards a more
sustainable circular economy with longer lifetimes of stocks via sub-
stantially increased re-use, re-purposing, repair and recycling****, This,
however, requires understanding spatial patterns of material stocks at
high spatial and thematic resolution, which represents a crucial miss-
ing piece of information. Past approaches to assess material stocks in
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the USA are either not spatially explicit, provided at coarse-spatial
resolution, generated with incomplete geodata, or were spatially or
thematically limited to single sectors”?°*>****2, A spatially explicit
approach with high spatial and thematic detail have so far been pro-
totyped by ref. 43, but only been applied to much smaller areas with
more homogeneous urban forms and climate.

In this work, we combine Earth Observation data and various
geodata (e.g., OpenStreetMap) with information from Industrial Ecol-
ogy and technical engineering to develop a stock-driven bottom-up
estimation of material stocks for the Conterminous United States in
2018 at 10 m resolution (CONUS, Supplementary Fig. 1). We advance
our previous method*® by adapting it to the high diversity of US set-
tlement structures, environmental conditions, and construction cli-
mates. We also modify the workflow to more accurately reflect
building footprints on the full spatial resolution, as well as to account
for unassessed parking spaces that are expected to contain a sub-
stantial share of material stocks. Our estimation is spatially explicit,
covers the entire CONUS, includes built-up structures along the entire
urban-rural gradient, is based on highly complete geodata, and covers
a wide range of stock types (buildings and mobility infrastructure),
subtypes thereof (building and road/rail types), and material cate-
gories (e.g., concrete and steel); see Fig. 1. Based on these data, we
firstly assess the geospatial distribution of the human habitat and its
mass across the US, and identify locations where either mobility
infrastructures, buildings, or plant stocks dominate. Secondly, we map
the geospatial distribution of the material intensity of mobility and
building stocks and examine which socio-economic determinants can
explain these patterns.

Results

Material density

The total mass of built structures in the US amounts to 127 + 5.8 Gt, i.e.,
~12-13% of the global total” (see Supplementary Methods 3 for the
computation of uncertainty). This is the equivalent of Manhattan, New
York City, being buried under 966 m of solid concrete. It is almost
equally divided into buildings (62.0+4.7Gt) and mobility infra-
structures (64.8 + 3.5 Gt; Fig. 2a). Ninety-eight percent of the mobility
infrastructure consists of minerals, most of which (94%) are aggregates
other than concrete (Fig. 2b). The composition of the building stock is
more diverse with 86.2% minerals (53.4 Gt, of which 61.6% are concrete
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Fig. 1| Characteristics of built structures distinguished in our study. We used
satellite and crowdsourced geodata to map dimensions (area, height, and volume)
of built structures and their categorical attributes (building types, mobility infra-
structure classes) for each 10 x 10 m pixel in the entire Conterminous US. Defini-
tions for employed categories are summarized in Supplementary Tables 4, 10, and

13. Literature-based factors of mass per m? or m*> were used to compute the mass of
14 materials in each structure category considering regionalized construction
designs, hence generating a spatially explicit multidimensional description of built
structures.
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Fig. 2 | Material stocks in the conterminous US for ca. 2018. a relative share of
material stock by categories; (b) material stock per material in buildings and
mobility infrastructure; plant biomass is shown for reference; (c) uncertainty of
material stock estimate (left y-axis), and total dimensions (right y-axis) for each
category (including climate zone stratification); error bars represent uncertainty,

which is given by the interquartile range of individual material factors, or sensitivity
analysis of assumptions (see Supplemental Methods 3); the average represents the
material factors used to produce the final material stock estimate; dimensions of
buildings are given in m3, dimensions for mobility infrastructure in m2.

and 19.6% are aggregates), 6.2% biomass, 3.6% metals, 1.5% petroleum
products, and 2.6% other materials (Fig. 2b). Uncertainty arising from
the assumed typologies and diversity in material composition of each
structural category is presented in Fig. 2c. Uncertainty is largest in cold
climates where buildings and roads need to be constructed to with-
stand repeated freeze and thaw cycles.

Material stocks are mapped in Fig. 3a-c. Unsurprisingly, the
highest stock density (i.e., mass per unit area) prevails in urban centers,
where particularly heavy structures prominently stand out, e.g., sky-
scrapers and subway tunnels in New York City (Fig. 3c). However,
skyscrapers (0.37%) and subways (0.15%) only account for a tiny frac-
tion of the mass of all built structures (Fig. 2a). Low-rise residential
buildings (34.3 Gt) and local roads (25.2Gt) are the heaviest sub-
categories overall (Fig. 2a), despite their much lower material density,
due to their pervasive occurrence across almost the entire landscape.

Dominance of human-made materials

We use our results to map human habitats across the US (Fig. 4a) by
characterizing landscapes in terms of dominance of either plant bio-
mass (gray), buildings (red) or mobility infrastructures (blue). We here
denote total stocks as the sum of these three categories, acknowl-
edging that other, quantitatively less relevant stocks do exist, e.g.,
machinery, pipelines, and human, faunal or fungal biomass. We find
that across the entire area of the US, the mass of built structures
exceeds the 48.5 Gt of plant biomass** by a factor of 2.6; buildings and

mobility infrastructures each alone outweigh plants. Most of the area
(61%) is dominated by stocks of built structures. Buildings prevail in
urban areas, while rural agricultural areas, esp. in the Midwest and
Central US, are mostly dominated by mobility infrastructures. Plants
prevail in 39% of the area, especially where forest ecosystems are
dominant, while biologically less productive (e.g., arid) regions are
dominated by plant biomass only if they are very remote (e.g., Nevada).
In 2018, only 5% of the total population lived in counties where plants
outweighed built structures (Fig. 4b, n=3,108). This finding suggests
that very few people benefit from immediate access to biomass-rich
green spaces that support human health and wellbeing: even half of
the rural population lives in counties where more than 73% of all stocks
are human-made (please refer to Supplementary Notes 1 for the
employed definition of rural and urban) and fifty percent of the urban
population lives in counties where plant biomass amount to 6% or less
of all stocks.

The building and mobility infrastructure stock densities
(tkm™) are highly correlated (R2=0.88, p<2.2x107, n=3108, see
Supplementary Methods 4), but the ratio between their respective
masses varies remarkably across the US (Fig. 4a - blue vs. red).
Mobility infrastructures outweigh buildings in 83% of the human-
dominated areas (Fig. 4a), i.e., in those where the mass of built
structures exceeds that of plant biomass. Buildings dominate only
17% of these areas, despite the fact that the total mass of buildings is
almost equal to that of mobility infrastructures. A quarter of the US
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cell. The full 2D version of this map in units of t per 10 x 10 m grid cells is available as
interactive webviewer at https://ows.geo.hu-berlin.de/webviewer/us-stocks. State
boundaries were provided by the US Census Bureau.

population (26%) is living in counties where mobility infrastructures
prevail, which is only 18% of the urban, yet 62% of the rural popu-
lation (Fig. 4c). The urban population predominantly lives in areas
where building stocks dominate.

Material intensity of built environments

Patterns of built structures differ strongly between rural and urban
areas. This becomes evident when we analyze material stocks of
built structures per inhabitant (t cap™), here denoted as material
intensity. The mass of materials piled up per person is indicative of
environmental impacts, land take, and resource requirements for
creation, use, and maintenance of built structures, which provide
services and enable socio-economic activities®’'54*¢, The average
material intensity in the US is 391t cap™. We find intriguing spatial
variations in material intensity: the densely populated Bronx, NY,
has the lowest material intensity (90 t cap™), and the least-populous
Loving County, TX, is identified as being the other extreme
(42,691t cap™). Spatial patterns, as well as county-based histograms
of the material intensity of built structures are shown in Fig. 5. For

buildings, the highest material intensities (dark red) prevail in the
northern Great Plains, whereas large geographic regions with low
material intensities (light red) are generally found in the West,
South-West, and South-East (Fig. 5a). In addition, urban counties
have particularly low intensities, e.g., the urban centers along the
Boston-Washington corridor. However, note that urban counties
are usually small in size, thus they are not easily distinguishable in
Fig. 5a, but please refer to the online version of this article where the
figure’s source data is provided as a table. The pattern for mobility
infrastructures (Fig. 5b) differs considerably. The spatial disparity is
much higher for the mobility infrastructure (595 t cap™ measured as
interquartile range on the county level) as compared to buildings
(110 t cap™), which is presumably because most buildings provide
shelter to the local population, whereas the existence of aroad does
not necessarily imply that people are living nearby. Mobility infra-
structures also serve agriculture, forestry and various other indus-
trial activities in resource extraction, material processing and trade.
Therefore, it is to be expected that those transport networks are
much more spread out so that land can be accessed.
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stocks. ¢ Cumulative total, urban, and rural population living in counties with a
given share of building stock relative to the total human-made material stock.
Please refer to Supplementary Notes 1 for the employed definition of rural and
urban. State boundaries were provided by the US Census Bureau. Plant biomass
data was retrieved from ref. 44.

Discussion

Large-scale, high-resolution mappings of societal material stocks are
an increasingly hot research topic for sustainability*’. Generating a
spatially explicit, high-resolution map of material stocks across the
US based on various geo- and satellite data, we find that the dis-
tribution of material stocks as well as the share of buildings vs.
mobility infrastructure stocks and their relation to plant biomass are
highly variable across the CONUS, and that most people are living
where built-up stocks outweigh plant biomass. The rural population
predominantly lives in areas with heavier mobility infrastructures
while more mass is in buildings where urban populations agglom-
erate, respectively. Mapping material intensity in t cap™ reveals dif-
ferent spatial patterns and disparity for buildings and mobility
infrastructures. A remarkably high variability and a pronounced
spike in intensity occurs along the 100th meridian for the mobility
infrastructures, whereas material intensity in buildings is more uni-
form across the US. These different spatial patterns suggest that the

spatial distribution of these structures have different sensitivity to
population concentrations and that different socio-economic factors
might be involved. While numerous factors introduce uncertainty
along the workflow, our conservative bottom-up estimation of
391+18tcap™ is in line with previous national-scale estimates (ca.
315-430 t cap™, Supplementary Figs. 9, 10)*"5,

This study relies on many different types of input data from dif-
ferent sources and of various vintage, as well as a complex processing
workflow. Each input dataset and processing step adds a potential
source of uncertainty, which we assess, report, and discuss; see Sup-
plementary Table 20 for an overview of relevant supplementary items.
Most potential error sources relating to the employed geodata mostly
result in an underestimation of the total material stock, e.g., omission
of small accessory buildings, or underprediction of tall buildings’
height, although we also observe a slight overestimation for short
buildings. As we combined geodata with information from industrial
ecology and technical engineering to develop a spatially explicit
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mapping of material stocks, it is required to harmonize and align the
structural types that are distinguishable in the geodata with typologies
from a material perspective. Hence, the typologies assumed for each
building and infrastructure category need to be generalized, which we
accomplish by averaging as many sources on material composition as
possible. However, there is substantial variability in published material
composition per category, which we use to estimate the uncertainty of
our final material stocks estimation (Fig. 2c). We find highest uncer-
tainty in climates that necessitate more reinforced construction due to
wet and cold conditions, as well as in the most abundant categories,
i.e., low-rise residential buildings and local roads. The assumptions
related to material stock composition itself are mostly conservative,
as all our material factors are based on minimum-standard specifica-
tions according to construction codes. Actual amounts of material
stocks are additionally affected, for example, by the local ground
conditions potentially requiring more materials, historical construc-
tion standards for older structures potentially differing from current
design specifications, as well as questions of actual compliance with
specifications by construction companies. Hence, our national-scale
estimation provides a reasonable estimate based on geodata streams.

Locally, deviations may nevertheless occur as general assump-
tions have to be made with respect to the less standardized material
composition of local and rural roads: we assume a reasonable ratio of
paved to non-paved surfaces as well as gravel to dirt composition for
both road types, stratified by climate zones (see Methods section:
Material stocks in mobility infrastructure). However, if (in a given
county) gravel and dirt roads are more prevalent than assumed, esti-
mated material stocks for these categories might be locally over-
estimated to some degree, e.g., the maximum material intensity of

42,691t capin Loving County, TX could well be 33,445 t cap™ if lower
bound estimates with smaller shares of paved surfaces and higher
shares of dirt roads would be used for local and rural roads (according
to Fig. 2c).

We find that parking surfaces amount to 11% of the total stock, or
43t cap™ (Fig. 3a). Uncertainties exist due to our definition, where we
classify all impervious areas, which are not already included in any
other above-ground built-up structure, as parking-related infra-
structure (Supplementary Discussion 5 and Supplementary Table 17).
We find that this approach is a sound approximation as results are in
good agreement with local studies: 14% of the incorporated land area
of LA county®, as well as 9.97% of the Phoenix metropolitan area*® are
covered by parking spaces, while we estimate 13.53% and 10.33%,
respectively. It is also worth noting that the localized material intensity
presented herein disregards that some built-up structures (partially)
serve purposes that are not directly related to the local (nighttime)
population. Examples are mobility infrastructure connecting distant
population centers, or government facilities, as well as industrial and
commercial buildings serving populations located elsewhere. A
spatially-explicit understanding how stock dynamics are driven by
demand elsewhere therefore constitutes an interesting new research
avenue, with similarities to consumption-based environmental foot-
printing helping to understand distant drivers and responsibilities*.

While individual error terms within our processing chain are well
understood, we acknowledge that complex interactions can occur
between different information layers, which might either aggravate or
level out uncertainties. Part of the involved uncertainty can be directly
used to estimate the effect on the final estimate (e.g., variability of
material factors), however, the uncertainty in the geospatial products
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cannot be easily translated into a final estimate of mass uncertainty.
Complex simulations would be necessary to randomly permute the
different aspects with respect to their identified uncertainty, and then
estimate their effect on the mass estimation. This would necessitate
considerable computing resources and is considered out of the scope
of this paper. However, we suggest that future research should not
only focus on applications of this dataset or extending it to other
territories, but also on reducing uncertainty across the whole proces-
sing chain, improving the temporal alignment of input data, and
assessing the combined uncertainty of the entire processing workflow.
We expect that the biggest pool of uncertainty stems from the
required assumptions and generalizations of the local and rural roads
and would suggest prioritizing future development at this point.
Especially, we consider that a reliable and spatially complete attribu-
tion of the surface type of low-grade roads would substantially reduce
uncertainty as material factors could be deployed more precisely.

We consider and map building and mobility infrastructure stocks,
as well as compare these to plant biomass stocks derived by ref. 44.
These three stock types are inarguably the largest contributors to the
entire stocks of a country. Still, other noteworthy artificial and biolo-
gical stock types do exist, e.g., vehicles, industrial machinery, pipe-
lines, electricity networks, as well as the biomass of humans, animals,
or fungi, which however are quantitatively less relevant. For example,
metal stocks in electricity infrastructures amount to ca. 0.45tcap™ in
the countries of the industrial new world (i.e., Australia, New Zealand,
Canada, and the USA)*° while material stocks of iron and steel, alumi-
num, copper, plastics and zinc in passenger vehicles in the USA
amount to 0.89 t cap™ in 2015°.. A spatially explicit inclusion of such
stock types would be a valuable next step to support studies focusing
on industrial sectors, material efficiency and climate change mitiga-
tion, and a more sustainable circular economy.

Independent of such considerations, intriguing and systematic
spatial variations in material intensity are apparent with high inten-
sities in the northern Great Plains and Central US for buildings and
mobility infrastructures, respectively. As these are not visible in the
absolute material densities, we hypothesize that the patterns might
partially be explainable by socio-economic factors (Supplementary
Table 17, and Supplementary Methods 5 for a multivariate analysis of
potential predictors). Material intensity of buildings is most strongly
associated with per-capita GDP, the percentage of urban population,
household size, as well as domestic migration, birth, and international
migration rates (with decreasing effect strength, Supplementary
Table 18). All variables but GDP are inversely related to material
intensity, which is plausible because in urban areas, housing prices are
higher and land is scarce, hence more people live in multifamily
houses, often with smaller flats, which require less materials per capita
than single family houses - although it is noted that single-family
houses are still the heaviest category in urban areas. These effects are
coupled with long-term demographic changes that might cause a
reinforcing feedback loop by further increasing material usage in rural
areas through building vacancies and large living spaces due to
population aging, whereas population gains in urban areas result in
further densification or shrinkage of housing units. GDP is positively
associated with material intensity, which is plausible, too, since
building stocks per capita are particularly high when a high share of
commercial or industrial buildings exist, which generate revenue but
do not host nighttime population as counted in the census. In future
studies, it might be beneficial to additionally analyze patterns of
material intensity related to daytime population. The material intensity
of mobility infrastructures is very strongly inversely related with
population density (Supplementary Table 19). This finding reinforces
the presumption that densely populated settlements require a lot less
infrastructures to be supplied with mobility-related services’>*, in
contrast to scattered small villages or even single houses that require
much longer roads. Other relevant variables were the 20-year domestic

migration rate, GDP, death rate, percentage of urban population, and
the birth rate (with decreasing effect strength). A particularly material-
intensive vertical strip can be discerned that includes the Dakotas,
Nebraska, Kansas, Oklahoma, and Western Texas (Fig. 5), in which
outmigration is prevalent. This suggests a strong inertia effect: while
people leave, most infrastructures remain in place, even if some of
them may become dysfunctional, which drives up the mass of infra-
structures per capita—a phenomenon also observed elsewhere™. For
buildings, the effect is similar, but much weaker, suggesting that
buildings may be more often torn down than mobility infrastructures
when people leave. GDP is positively associated again, which suggests
that many roads primarily provide services to commerce and industry.

These findings have important implications for strategies towards
more sustainable resource use and a more circular economy®. As the
internationally agreed upon Sustainable Development Goals 8 &
12 state, material use needs to become much more efficient and
associated environmental impacts need to be reduced rapidly. The
maps presented herein can therefore serve as first order information
to (a) assess potentials to utilize built structures more intensively as
well as longer via re-use, repair and repurposing, (b) to (re-)designing
them more efficiently, and (c) to inform the establishment of a fine-
scaled network of recycling facilities to enable energy-efficient and
low-emissions transport required to close material cycles with minimal
environmental impacts®. Following the material intensity’s formula-
tion as the mass of built-up stocks divided by the population using
these stocks, the intensity can either be decreased by changing
population or stocks. We recommend that the built-up environment
should be gradually modified to reflect the current and projected
patterns of the spatial distribution of population. In areas with
underutilized stocks, we suggest that the dense road network should
be thinned out or re-purposed, if it is not vital for industry or com-
merce, while recycling potentials should be leveraged. This would both
decrease costs and material input due to maintenance. In regions
experiencing population growth, re-designing and adapting existing
stocks, as well as increasing population density and improved recy-
cling would contribute to reducing primary material extraction and
industrial processing, as well as associated environmental impacts and
emissions”’. Renaturation could improve wildlife habitats, ecosystem
resilience, and help mitigate climate change in areas where stocks are
removed or re-designed*®. In many growing areas of the U.S., where net
population change is positive and material intensity is comparably
high, efficient use of new stocks should be prioritized including stra-
tegic densification around key services, including access to green
recreational areas and increased biomass stocks to mitigate heat
stress, air pollution and improve mental health. In our study, we
focused on county-level assessments, but our data would also support
neighborhood-level analyses, where it is to be expected that suburban
areas dominated by single-family houses with large carbon footprints*
would fall into this category (population growth with high material
intensity) and should be focus areas of sustainable densification.

We are aware that such ideas may be confronted with practical
challenges. Most importantly, recovery, transportation and processing
for recycling involves environmental and economic costs that need to
be considered in a spatially explicit context. Our spatially resolved
dataset can therefore be helpful for a first order assessment of
potential sources in close geographical vicinity to areas where those
materials might be reused, although siting decisions for recycling
plants would certainly require additional investigation. Also, complete
recycling is practically impossible, while current construction stan-
dards also limit the amount of recycled materials which can be used.
Clearly, this is a complex issue, which requires in-depth and inter-
disciplinary research in the future, necessitating the development of
an integrated geospatial model to simulate stock dynamics and spatial
patterns, and associated material flows of recovered materials under
different projections of population development and their
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distribution, as well as policy-relevant scenarios on the re-design of
existing stocks, and demand for new structures.

Overall, we find a huge range of human domination of landscapes
across the conterminous US. Over one-third of its area, inhabited by
only 5% of its population, is still mass-dominated by plant biomass.
Most of the land, inhabited by almost all people, is dominated by built
structures over plant biomass stocks. In most predominantly agri-
cultural areas and even many other rural areas, mobility infra-
structures, mostly roads, prevail in terms of mass—even if the
landscape appears to be visually dominated by large areas covered by
plants. Buildings outweigh mobility infrastructures only in fairly dense
urban settings, where per capita material intensity of built structures,
in particular mobility infrastructures, is substantially lower than else-
where. Our results provide important insights into the structure of
human-dominated landscapes, the drivers of the material intensity of
different settlement patterns, as well as spatially resolved information
on the potential ‘urban mines’ in a more resource-efficient circular
economy?”. In particular, the interrelations between demographic
factors, above all domestic migration, and high vs. low material
intensities along population density gradients and different settlement
patterns are strikingly clear from our US-wide analysis and are
important for designing strategies for climate change mitigation™.
Developing and implementing strategies towards lowering resource
use and GHG emissions in the USA can profit immensely from taking
spatial patterns of built structures and their drivers into account.
Beyond providing accurate and spatially explicit high-resolution esti-
mates of material stocks distribution as a key input to socio-economic
metabolism research, our study advances urban remote-sensing based
research. We here establish a strong link between remote sensing
imagery and socio-economic analysis, which has been identified as a
strategic research goal*’. Future research outside the United States can
profit from the herein presented approach, because data availability
and reference information is much lower, while the demand for
information is even higher, because unique urban morphological
patterns, e.g., planned vs. unplanned settlements as well as different
spatial patterns and densities of settlements, can have so far unknown
effects on material intensity.

Methods

In this study, we combined Earth Observation data and various geodata
with information from Industrial Ecology and technical engineering to
develop a stock-driven bottom-up estimation of building and mobility
infrastructure stocks for ca. 2018, i.e., the first year where the Coper-
nicus Sentinel-2 satellite constellation was completely ramped-up for
the US (see Supplementary Fig. 1 for a conceptual overview related to
all following sub-sections). We mapped the material stocks for the
conterminous US with high thematic (Fig. 1) and spatial detail (10 m
resolution), and distinguished different stock types (buildings and
mobility infrastructure), subtypes thereof (building and road/rail
types), and material categories (e.g., concrete and steel). The con-
ceptual foundation for this method was established in ref. 43, who
mapped material stocks for Germany and Austria.

Material stocks in buildings

We estimated the material stocks allocated in buildings by predicting
building types and height from Earth Observation data and converting
vector-based building footprints into a raster-based measurement of
area. Area [m?] and height [m] were multiplied to compute above-
ground building volume [m?3], which was subsequently multiplied by
factors for mass per volume [t m] per building type and climate zone,
thus yielding material-specific mass [t] at 10 m spatial resolution.

We rasterized Microsoft building footprints (https://github.com/
microsoft/USBuildingFootprints, version 1.1) to represent the building
coverage [%] per pixel; The used building footprint dataset is highly
complete®®; a detailed discussion on error sources is provided in

Supplementary Discussion 1. For all raster products throughout the
study, we employed a data cube structure® following the first tier of
the EQUI7 reference grid®, i.e., 100 km x 100 km tiles with a spatial
resolution of 10 m. We further applied area correction factors for all
raster-based measures of area to account for distortions of the equi-
distant projection (Supplementary Fig. 2), yielding the area [m?] per
pixel, here, the building area [m?] per pixel.

We derived building height [m] for each built-up pixel using
Sentinel-1 and Sentinel-2 data®® for 2017 and 2018, respectively. The
processing of the Earth observation data is additionally documented in
Supplementary Methods 1 with predictive variables being listed in
Supplementary Table 1. A support vector regression was trained with
predictive features derived from the Earth observation data and
building height reference information** from freely and openly avail-
able datasets (Supplementary Table 3), which cover a wide range of
settlement types, biogeographic and climatic conditions across the US.
A description and discussion of model quality is included in Supple-
mentary Discussion 2. We additionally compiled data from the tall
building database (https://www.ctbuh.org, accessed on 03.11.2020),
which contains the architectural height and coordinates of buildings
taller than circa 65 m. We matched the coordinates of the tall building
database with building geometries from OpenStreetMap (OSM) and
joined the database’s height attribute with our building height layer to
better accommodate for tall buildings. Aboveground building volume
[m3] was computed as the product of building height and
building area.

We derived the building type (see Supplementary Table 4 for
classes) for each built-up pixel using Sentinel-1 and Sentinel-2 data
(Supplementary Table 2). We classified the pre-dominant building type
(residential, commercial and industrial, residential/commercial mixed-
use, as well as lightweight buildings; Supplementary Table 5). We
performed a stratified sampling approach to manually collect refer-
ence data using visual image interpretation across the US (Supple-
mentary Table 6) and trained a random forest classifier with 1000 trees
on 70% of the reference data®*. Classification quality was evaluated on
the 30% left-out data using a confusion matrix including overall
accuracy, as well as class-wise user’s and producer’s accuracy (Sup-
plementary Table 7 and Supplementary Discussion 3). We further
refined the building type by factoring in the building height to trans-
late the mapped classes into relevant building types from a material-
specific point of view (Supplementary Table 4).

As construction standards differ between climatic zones, we
employed a climate zone classification developed to aid in climate-
specific building guidance®. We used five main climate categories, i.e.,
hot-humid, hot-dry/mixed-dry, mixed-humid, marine, and cold/very
cold (Supplementary Table 8, Supplementary Fig. 4).

Mass factors for buildings in units of mass per volume [t m™] for
all building types were developed and re-estimated based on infor-
mation on the materials’ composition of specific, typical buildings
across the US, including underground components like basements and
foundations. We sourced this information from a total of 23 studies
conducting life cycle assessments and material flow analysis for
buildings, including structural components, underground compo-
nents, as well as internal walls and furnishing (Supplementary Table 9).
Preferably, studies for the US were used to derive material factors,
although some foreign studies needed to be taken into account
(Supplementary Table 9 and Supplementary Discussion 4). Different
construction standards across climate zones are particularly relevant
for residential buildings across the US, for which we developed indi-
vidual factors for each climate zone defined in®. In the literature, mass
factors for entire buildings are usually reported per building unit or
per m? usable floor area. As remote-sensing information only tells us
about above-ground building volumes, we converted all published
information on total stocks per building to mass per volume [t m™], as
documented in detail in Supplementary Fig. 5 and Supplementary
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Methods 2, i.e., including underground components like basements
and foundations. In total, we differentiated 15 specific materials, which
we published as supplementary data to this article®®, i.e., (i) metals: iron
and steel, copper, aluminum, and other metals; (ii) non-metallic
minerals: concrete, bricks, glass, aggregate, and other minerals;
(iii) biomass-based materials: timber and other biomass-based mate-
rials such as boards; (iv) petrochemical-based materials: bitumen and
other petrochemical-based materials; and (v) other materials: insula-
tion materials and all other materials.

To estimate the mass of material stocks in buildings, we multiplied
the raster-based building volume estimates [m3] with their respective
mass factors [t m™3] - per building type, material, and if applicable per
building climate zone, which yielded the mass per 10 m x 10 m pixel
in tons [t].

Material stocks in mobility infrastructure

We estimated the material stocks allocated in mobility infrastructures
using crowd-sourced vector data on roads, railways, and airport sur-
faces, which we converted into raster-based measurement of area. The
areas of remaining impervious surfaces, mostly allocated in parking
spaces and yards, were derived by subtracting all other aboveground
infrastructure layers used in this study from impervious cover data.
The area [m?] (per mobility infrastructure type) was subsequently
multiplied by material factors of mass per area [t m?] per mobility
infrastructure, material, and climate zone, thus yielding the mass [t]
per mobility infrastructure type and material for each
10 m x 10 m pixel.

The road network was retrieved from OpenStreetMap (OSM),
including information about bridges and tunnels. The OSM road net-
work is highly complete in the US®’. The line geometries were buffered
to create a polygon dataset, wherein we defined road widths as the sum
of the widths of all driving lanes, the widths of attached shoulders on
both sides, and, if applicable, the width of a median strip (Supple-
mentary Fig. 6). The buffered road polygons were subsequently
transformed into a raster-based measurement of area [m?] producing
images for the six main road types used, as well as for motorway and
motorway link bridges, other bridges, and tunnels (see Supplementary
Table 10 for details).

Mass factors for roads [tm™] (Supplementary Table 11) were
derived from information provided by various county-level road
design manuals covering the major climatic regions of the US, and
following the road definition depicted in Supplementary Fig. 6.
Material factors for paved road types were developed by using
weighted averages across available data sources on official minimum
construction standards for each road and pavement type. We con-
sidered that paved roads are differentiated into flexible (bituminous),
rigid (concrete) and composite roads'®, which were assumed to be a
hybrid of flexible and rigid roads with a concrete sublayer and an
asphalt surface layer®®. The averages of mass factors for motorways,
primary, secondary, and tertiary roads were weighted by the share of
each pavement type in the total road length of the respective road
type®®, while it was assumed that 94% of paved local roads have flexible
pavement types’®.

The development of mass factors for local and rural roads
required additional procedures because data quality becomes a lim-
itation for these road types. Spatially explicit information on actual
road surfaces is patchy and not consistently available for most areas of
the US from OSM. Therefore, it was necessary to derive weighted and
adjusted mass factors for local and rural roads to account for differ-
ences in construction, even if these differences cannot be specifically
localized. Local roads can include paved roads, gravel roads, and dirt
roads. Mass factors for paved local roads considered asphalted local
roads. Gravel roads were defined as being constructed without asphalt
or concrete pavements, and mass factors were derived from regula-
tions on a purpose-built gravel layer”. Dirt roads were defined as

compacted local earth only, which in this study was interpreted as a
mass factor of zero. The final mass factor for local roads was then
derived by considering that 57% of local roads in the United States are
paved and that 43% are unpaved®, and the assumption that the latter
consist of 25% gravel and 75% dirt roads, which was safeguarded based
on selective screening of satellite photos and considering that low-
grade roads are commonly more abundant than high-grade roads.

Rural roads can also include paved, gravel, and dirt roads. How-
ever, in some regions the majority of OSM tracks are classified as
unknown surface. For paved rural roads, the mass factor of paved local
roads was used. For regional consistency, we combined all other track
categories into a single weighted rural road category and assumed that
they are 50:50 gravel and dirt roads. The weighted mass for rural roads
was then derived from the share of each track class in the total length
of the five track classes.

Climate-specific gravel layer thicknesses” were further used for
the development of mass factors for gravel roads as found in local and
rural roads to accommodate for different design specifications due to
moisture and freezing differences (Supplementary Table 12, Supple-
mentary Fig. 7).

Mass factors for bridges and tunnels based on their respective
widths were derived from the road on which the bridge or tunnel was
situated (e.g., a motorway bridge is wider than a bridge for other
roads). The mass factors for bridges in t m™ road surface were further
differentiated into the actual bridge structure and the road surface on
the bridge.

The railway network, including bridges, tunnels, as well as the
vertical location of subways, was also retrieved from OSM and pro-
cessed similarly to the road network. We defined total railway width as
the width of a single-track railway including steel rails, sleepers and the
underlying aggregate ballast layers (Supplementary Fig. 8), eventually
yielding the area [m?] as raster images for the employed railway types
(see Supplementary Table 13 for details).

Mass factors for railways (Supplementary Table 14) were primarily
derived from design manuals and life cycle assessment studies and
follow the definition in Supplementary Fig. 8, wherein the deepest
layer of sub-ballast, which usually consists of compacted local earth,
was not considered as socio-economic material stocks. As spatial
information on sleeper material was not available in OSM, mass factors
for railways were weighted by an average ratio of wooden to concrete
sleepers reported to be 92:8 by the Federal Railroad Administration’.

Airport mobility infrastructure was retrieved from OSM. Runways
and taxiways were buffered according to the procedure described for
roads and rails. Widths were set to 13.6 m and 9.6 m for runways and
taxiways*, respectively, unless a specific width attribute was provided
by OSM. Aprons were already available as polygon data. For airport
runways, the mass factor of motorways was used as a reasonable proxy
regarding the comparably small area of airports (Supplementary
Table 15).

Parking lot polygons were available from OSM and accordingly
transformed into raster-based measurements of area. This dataset is
far from complete, however, and only included large public parking
spaces. Thus, we additionally included impervious surface data to
include areas like private/commercial parking lots, paved yards, open
sky storage, as well as any other unspecific impervious infrastructure
as we expected these surfaces to hold a substantial amount of material
stocks. We used the 2016 National Land Cover Database (NLCD)”
imperviousness layer [%]. We eliminated all pixels with an impervious
area <50% to mitigate smearing effects due to the necessary resam-
pling (bilinear) from 30 m to 10 m spatial resolution. Subsequently, all
area layers from the roads, railways, buildings, airport, and parking
categories were subsumed (excluding underground structures, i.e.,
subways and tunnels) and subtracted from the impervious area, such
that only impervious areas not already included in any of the other
thematic layers were retained. We then subsumed parking and yard
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areas (see Supplementary Discussion 5) with the OSM-extracted
parking spaces into a parking and yards category. For parking lots
and yards, the average of various pavement lot specific mass factors
was used (Supplementary Table 15).

Biomass stocks in plants

To compare human-made material stocks to biomass stock, we
obtained global maps of above and belowground biomass carbon
density for 2010**7*, We computed the total biomass carbon den-
sity, i.e., the sum of above- and belowground components, and
converted the given values [Mg C ha™] to absolute masses [t] for
each raster cell. We additionally employed a conversion factor of
2.0 to convert the carbon equivalent mass (C) to biomass expressed
as dry matter”.

Data availability

The material stock data generated in this study have been deposited in
the Zenodo database under accession code https://doi.org/10.5281/
zenodo.8163466, and related sub-identifiers. The main material stock
layers are additionally provided as interactive webviewer at https://
ows.geo.hu-berlin.de/webviewer/us-stocks. The source data of printed
figures are provided in the Source Data file. The raw geodata used in
this study are openly available and can be obtained from the refer-
enced resources. Source data are provided with this paper.

Code availability

The code used for processing and analysis has been deposited in the
Zenodo database under accession code https://doi.org/10.5281/
zenodo.8163466, and related sub-identifiers. As an exception, pre-
processed Sentinel-1 data were accessed from the commercial Earth
Observation Data Centre (https://eodc.eu/), but the methodology for
reproducing these is given in the supplementary methods.
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