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Wildfire precursors show complementary
predictability in different timescales

Yuquan Qu 1 , Diego G. Miralles 2, Sander Veraverbeke 3,
Harry Vereecken 1 & Carsten Montzka 1

In most of the world, conditions conducive to wildfires are becoming more
prevalent. Net carbon emissions fromwildfires contribute to a positive climate
feedback that needs to bemonitored, quantified, and predicted. Here we use a
causal inference approach to evaluate the influence of top-down weather and
bottom-up fuel precursors on wildfires. The top-down dominance on wildfires
is more widespread than bottom-up dominance, accounting for 73.3% and
26.7% of regions, respectively. The top-down precursors dominate in the tro-
pical rainforests, mid-latitudes, and eastern Siberian boreal forests. The
bottom-up precursors dominate in North American and European boreal
forests, andAfrican andAustralian savannahs. Our study identifies areas where
wildfires are governed by fuel conditions and hence where fuel management
practices may bemore effective. Moreover, our study also highlights that top-
down and bottom-up precursors show complementary wildfire predictability
across timescales. Seasonal or interannual predictions are feasible in regions
where bottom-up precursors dominate.

Fire weather is becomingmore severe because of climate change1–3 and
is expected to increase the number, extent, and severity of wildfires in
many regions on Earth4,5. For example, the 2019/20 Black Summer
wildfires in Australia were initiated and intensified by consecutive
unprecedented dry years6, the unprecedented 2021 Siberia wildfires
followed record-breaking heatwave and drought7, and the 2021 British
Columbia wildfires followed widespread Northwest Pacific and Canada
heatwave8. Wildfires play an important role in ecosystem dynamics and
species preservation9,10. They can be beneficial to some ecosystems
since smaller wildfires can prevent catastrophic wildfires by consuming
fuels, or even promote species replacement and enhance their adap-
tation to climate change11,12. However, despite these positive effects,
wildfires often have a negative impact on the environment and society,
for example, through increased forest loss, carbon emissions, and
smoke exposure13,14. Moreover, they contribute to climate warming by
reinforcing a positive feedback loop15,16. In boreal ecosystems, this
feedback loop may shift the carbon balance from sink to source17.

Better understanding andmanagement of wildfires, therefore, are
necessary to mitigate their negative impacts on human livelihood and

the Earth’s natural system. The availability of fuel is highly influenced
by previous and current vegetation status and is a precondition for
wildfires, yet extensive burning only occurs when fuels are dry and
weather conditions are conducive to wildfire spread18. The Canadian
Forest Wildfire Weather Index (FWI) system19 is widely used in wildfire
studies to indicate fuel moisture, wildfire spread, fuel availability, and
wildfire intensity by integrating temperature, relative humidity, wind
speed, and precipitation over different time lags. The FWI system was
originally developed for boreal ecosystems, although it has been used
more widely3. However, the wildfire drivers vary at a global scale, and
this variability is not fully understood because of the lack of mechan-
istic knowledge of ecosystem-specific wildfire precursors (or
predictors).

Here, we apply a causal discovery algorithm considering lagged
influences to detect the relationships between top-down weather and
bottom-up fuel precursors and wildfires (in terms of burned area per
climate and land cover class). This causal discovery algorithm, the
Peter & ClarkMomentary Conditional Independence (PCMCI)20,21, uses
delayed time series to automatically and conditionally select relevant
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variables from high dimensional data sets and enable a meaningful
causal interpretation21. We focus on investigating relationships
between global wildfire occurrence, more specifically quantified in
terms of burned area (BA), and wildfire precursors, for the period
2003–2020. The wildfire precursors were separated into two groups:
(i) top-down group, including maximum air temperature (Tmax),
vapor pressure deficit (VPD), potential evaporation (ET0), wind speed
(Wind), and aridity anomaly index (AAI); (ii) bottom-up group,
including the fraction of photosynthetically active radiation (FPAR),
gross primary production (GPP), normalized difference vegetation
index (NDVI), enhanced vegetation index (EVI), and soil water deficit
index (SWDI). The details and selection of these precursors can be
found in the Methods and Supplementary Methods.

Results
Spatial pattern of dominant precursors for wildfires
To investigate the dominant wildfire precursors globally, we applied
PCMCI to build causal networks for each of the 232 ecoregions (29
climate zones multiplied by 8 vegetation types), using the top-down
weather and bottom-up fuel grouping system. Then, in each ecor-
egion, we may detect a dominant precursor belonging to either the
top-down or bottom-up group according to whether there is a causal
relationship and the strength of the causal relationship (in this case
partial correlation). High wildfire predictability is found in southeast
North America, the tropical rainforests, the Sahel of Africa, the Congo

Basin, the East European Plain and West Siberian Plain, the eastern
Central Siberian Plateau, southeast China, and central and western
Australia (Fig. 1a). Globally, the top-down group shows more dom-
inance than the bottom-up group, accounting for 73.3% and 26.7% of
the globe where causal relationships are detected (Fig. 1c). The
bottom-up dominance is found mainly in the North American and
European boreal forests, western North America, the African and
Australian savannahs, and eastern South America (Fig. 1b). The other
regions are dominated by the top-down group.

We ranked the importance (according to the dominant area
fraction/pixel number) of the precursors in each group (Supplemen-
tary Fig. 1). In the top-down group, ET0 is the most important pre-
cursor followed by VPD, AAI, Tmax, and Wind, accounting for 41.1%,
32.0%, 16.6%, 10.3%, and 0% of top-down dominant regions, respec-
tively. In the bottom-up group, SWDI is the most important precursor
followed by GPP, EVI, FPAR, and NDVI, accounting for 56.4%, 21.4%,
11.1%, 8.6%, and 2.5% of bottom-up dominant regions, respectively.
Wind speed is usually believed to play an important role in wildfire
spread, while we detected almost no dominance globally. There could
be two reasons: (1) wind speed gains dominance only when wildfires
are ignited, while our study involved both fire season and non-fire
season. A similar example is wildfires in the western United States are
decoupled from lighting activities unless weather and vegetation
conditions are considered22; (2) wind can both promote and suppress
wildfire23, and this opposite effect diminishes its dominance.

Fig. 1 | Thedominant precursor groupof globalwildfires.The causal analysis was
performed on 29 climate zones and 8 vegetation types (232 ecoregions in total) with
a 0.05 significance level. a The sum of squares of the partial correlation coefficients
of all 10 precursors to wildfires per ecoregion, with higher values meaning higher
predictability of burned area, and vice versa. b The group (top-down or bottom-up)
with the highest partial correlation in each ecoregion. White areas in a and b are
where causal relationships are not detected or insignificant. c The dominant area

fraction of each precursor group globally and on continental scales. d The prob-
ability density distribution of partial correlations for each group. For each group,
only the partial correlations where this group is dominant (higher absolute value of
partial correlation than another group) are shown. The positive or negative fractions
of the partial correlations for each group are also shown (top right and top left) to
help explain the causality. Note that the area, not theheight (y-axis value), represents
the probability. Source data are provided as a Source Data file.
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The distribution of partial correlations for the two groups is
shown in Fig. 1d. Wildfires are positively related to top-down pre-
cursors globally (91.6% positive). This positive relationship indicates
that in flammability-limited regions, BA will increase when more
energy is supplied (higher Tmax and ET0) or the environment is drier
(higher VPD and AAI). This is supported by evidence indicating that
wildfires increase with the increased frequency and intensity of sum-
mer heatwaves24, the strengthened solar radiation absorption25,26, and
the increased atmospheric water demand and drought conditions27,28

(see Supplementary Fig. 2 for ET0, AAI, and VPD dominance). Major
climate modes (e.g., El Niño–Southern Oscillation, and North Atlantic
Oscillation) also modulate the occurrence of these weather
anomalies29–33 and as such play an important role in governing global
patterns of wildfire activities32,34,35. The positive top-down dominance
in the rainforests is supported by studies showing that here wildfires
are limited to the time window when fuels are dry enough to burn36,37,
see Supplementary Fig. 2 for the AAI dominance in the tropical
rainforests.

Wildfires tend to be negatively related to bottom-up precursors
(78.9%negative, Fig. 1d). Negativepatterns prevail in boreal forests, the
BrazilianHighlands, southeastern China, Australia, and parts of African
savannahs (Supplementary Fig. 5) supporting that vegetation growth
limiting factors (such as droughts, heatwaves, and vermin outbreaks)
from the previous year or pre-fire season may suppress vegetation
growth and maintain fire-prone conditions of fuels38,39. Positive

patterns are found mostly in drier and temperate regions (e.g., the
western United States, African savannahs, northwestern India, and
western Europe, Supplementary Fig. 5), confirming wildfires there are
limited by fuels, not flammability. In these regions, wildfires will
increase when more fuels are provided (higher FPAR, GPP, NDVI, and
EVI) or there is more water supply to increase fuel accumulation by a
higher plant growth rate (higher SWDI).

Time lags between precursors and wildfires
For wildfire predictions, the lag between the time when wildfire pre-
cursors prevail and a wildfire event is important information because
appropriate wildfire-favoring environments often need time to
develop. Here, the mean time lags weighted by partial correlations
between wildfires and precursors are investigated in detail. Longer
time lags are shown in the boreal forests, African and Australian
savannahs, the Indian Peninsula, the Indochina Peninsula, and south-
eastern South America (Fig. 2a). In the other regions, wildfires are a
direct result of the precursing conditions (time lags mostly no more
than 1 week).

On a global and continental scale, the time lags of top-down
precursors are always shorter than bottom-up precursors (Fig. 2b).
These short time lags can be explained by the higher variability of top-
down conditions and their direct influence on wildfires (not through
changing the fuel accumulation). Longer time lags of top-down pre-
cursors are limited in Eastern Siberia, the Indian Peninsula, the

Fig. 2 | Time lags betweenwildfires and their precursors. a The spatial pattern of
weighted mean time lags. The time lags were weighted per ecoregion by partial
correlations of all the 10 precursors to wildfires. b The weighted mean time lags
between wildfire and each group globally and on continental scales. The time lag

for each group was calculated from the area-weighted mean where this group is
dominant. c The dominant time lag distribution of the precursor groups. For each
group, only the time lags when this precursor group is dominant are shown. Source
data are provided as a Source Data file.
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Indochina Peninsula, eastern South America, and tropical Africa
(Supplementary Fig. 6). In this case, one possible reason is that the top-
down precursors affect wildfires through their influence on fuel
accumulation and availability.

The bottom-up precursors show long time lags, especially in
Europe, Asia, North America, andAfrica (more than half a year, Fig. 2b).
One possible reason could be that the current vegetation status or
accumulated fuel is related to water supply and vegetation growth in
the pre-wildfire seasons39,40. This is supported by studies showing that
spring greening related to global warming can either be positively or
negatively related to total biomass41,42, through the carryover effect of
current vegetation states on subsequent growth caused by increased
photosynthesis or earlier soil moisture depletion38,39. The bottom-up
precursors can also come with negligible time lags, mainly in Australia
and South America (Fig. 2b and Supplementary Fig. 7), indicating that
they can serve as not only fuel accumulation (longer time lag) but also
fuel dryness (short time lag) indicators. Note that Fig. 2c shows the
dominant time lag distribution in each group, we also investigated the
weighted mean time lag distribution (no matter whether the group is
dominant or not). Interestingly, the weighted mean case (Supple-
mentary Fig. 11) shows that the time lags of bottom-up precursors are
usually short, with a peak of around no more than one week and a

second peak of around 60 weeks. We assume that bottom-up pre-
cursors serve as fuel accumulation indicators when they dominate
wildfires, and fuel dryness indicators when top-down precursors
dominate wildfires.

What controls the dominance of wildfire precursors?
To generalize the previous analysis, we evaluated the dominance
changes (according to the dominant pixel number) of top-down and
bottom-up precursors that are primarily driven by energy, dryness,
vegetation, and location (Tmax, VPD, EVI, and latitude, Fig. 3). The
dominance of bottom-up precursors peaks when Tmax is around −3°C
and 32°C, in regions where fuels are limited or take a longer time to
accumulate. When Tmax is between −3°C and 32°C, the top-down
precursors gain dominance as fuelsmay bemore readily available. The
dominance of top-down precursors decreases when dryness (higher
VPD) and sparseness of vegetation (lower EVI) rise. In arid regions,
wildfires are limited by fuel accumulation and connectivity. This cor-
roborates thepositive relationship betweenbottom-upprecursors and
wildfires in dry regions like western North America and African
savannahs (Supplementary Fig. 5). When the environment is generally
wet (lower VPD) and fuels are not limited (higher EVI), top-down pre-
cursors gain dominance, as can be seen in the positive relation

Fig. 3 | The dominance and time lags of wildfire precursors with maximum
temperature, vapor pressure deficit (VPD), enhanced vegetation index (EVI),
and latitude. The dominant fraction that is primarily driven by the group (top-
downorbottom-up), is binnedbymaximumtemperature, VPD (higher valuesmean
drier conditions), EVI, and latitude (a–d). The fractions were calculated by dividing
the number of pixels where a specific precursor group is dominant in a specific bin

by the number of pixels located in this bin and dominatedby any of the two groups.
The sumof the fractions of the twogroups ineachbin is 100%. e For eachgroup, the
weightedmean time lag in each binwas area-weighted by all the time lags located in
this bin and when this group is dominant. The x-axis for maximum temperature,
VPD, EVI, and the y-axis for latitude were all divided into 200 bins. Source data are
provided as a Source Data file.
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between top-down precursors and fire activity (Supplementary Fig. 4).
This is supported by the study conducted by Qing et al., 202243 which
indicates that flash droughts which promote wildfires caused by
heatwave or precipitation deficiency (top-down conditions) are more
likely to occur in humid and semi-humid regions.

On a global scale, the top-down precursors are more dominant in
the tropical rainforests, mid-latitudes, and boreal forests (eastern
Siberia) where the weather is humid, and fuels are abundant or less
flammable (Fig. 1b and Fig. 3d). In tropical rainforests, the environ-
mental conditions are not suitable for wildfires unless top-down con-
ditions are extreme44. Therefore, top-down precursors almost
synchronize with fire activity in these regions38,45 (Fig. 3e). In the mid-
latitudes of Eurasia, the top-down dominance may be caused by suf-
ficient fuels and reliable dry seasons. Moreover, as shown in Supple-
mentary Fig. 15, the fuel type in the mid-latitudes mainly consists of
fine fuels, which will dry out in a short time under hot and dry weather
conditions46. In North America, the top-down precursors dominate
wildfires through, e.g., earlier winter snowpack melting caused by
temperature increase, droughts related to summer transpiration
increase40,47, and plant growth or photosynthesis changes influenced
by VPD through stomatal closure48. The dominance of top-down pre-
cursors in eastern Siberia boreal forests is supported by the study
conducted by Kim et al., 202049 which shows that in southeastern
Siberian boreal forests, the length of the wildfire season is
temperature-limited. Moreover, here the changes in top-down condi-
tions may alter thaw depth50 and cause early snow-melting above the
frozen soil, but this melted water converts to surface runoff and can-
not supply soil and vegetation. This process and the low-pass filtering
effect of soils51 (i.e., filtering out high-frequency variations of

precipitation and showing longer persistence) may explain the long
time lag of top-down precursors (Fig. 3e).

Three peaks of bottom-up dominance show around 60°N, 10°N,
and 20°S which corresponds to North American and European boreal
forests, andAfrican andAustralian savannahs (Fig. 1b and Fig. 3d).Note
that wildfires in North American and European boreal forests show
bottom-up dominance while in eastern Siberian boreal forests show
top-down dominance. This could be explained by the fact that in
eastern Siberia, boreal forests consist of fire-resistant species, and
wildfires there are prone to low-intensity surface fires, while in North
American boreal forests where fire-embracing black spruce forests are
dominant, wildfires are prone to high-intensity crown fires which
consume more fuels52. A study conducted by Alvarado et al., 202053

indicated that wildfires in Australian savannahs are mainly controlled
by fuel load, while in African savannahs they are equally controlled by
fuel loadand fuel dryness. Thismay explain the overwhelmingbottom-
up dominance in Australian savannahs and approximately equal
dominance of top-down and bottom-up precursors in African savan-
nahs (Fig. 1b). In African savannahs, evidence also shows that pre-
cipitation reduction and cropland expansion reduce fuel
accumulation, connectivity, and flammability, and thus prevent the
ignition and spread of wildfires54–56, as can be seen in the positive
partial correlations of bottom-up precursors in this region (Supple-
mentary Fig. 5).

We further investigated the influence of climate zone and vege-
tation type on the dominance of wildfire precursors, the results are
shown in Fig. 4. The top-down precursors show more dominance in
tropical, temperate, and continental zones than in arid zones. This is
supported by the top-down dominance in Fig. 3a, bwhen the climate is
cold and humid. In arid zones, including sparse vegetation and
shrubland, the dominance of top-down precursors is weaker as wild-
fires are limited by fuels, which is in line with Fig. 3b (high VPD). In
grassland, the top-down precursors show dominance as the seasonal
grass dies every year and turns to dead fine fuels, whose dryness
quickly responds to changes in top-down precursors46. In cropland
where the fuel load is more stable, wildfires are more likely controlled
by top-down precursors. The top-down precursors show more dom-
inance in broad-leaf forests than in needle-leaf forests. Needle leaves
generally have lower water content and are more flammable than
broad leaves, which makes the ignition and spread of wildfires less
limited by top-down precursors. In needle-leaf forests, especially
needle-leaf evergreen forests, wildfires are coupled with bottom-up
precursors as needle leaves decompose slower than broad leaves57.
Wildfires in broad-leaf evergreen forests are more affected by top-
down precursors. For example, in the Amazon rainforests, the forests
have generally large and bulky leaves, which makes them less flam-
mable, and wildfires tend to be surface fires while dead fuels cannot
accumulate because of the high decomposition rate58, decoupling the
wildfires from bottom-up precursors.

Discussion
Globally, top-down weather dominance on wildfire activity is more
widespread than bottom-up fuel dominance. As bottom-up conditions
can be directly influenced by wildfire management decisions59, our
precursor attribution highlights areas where fuel management is able
to effectively mitigate wildfires. Fuel management could be effective
where the bottom-up conditions dominate wildfires, while it will likely
be less influential where wildfires are dominated by the top-down
conditions60. Our results show that fuel management may be more
efficient inmitigatingwildfires inNorth American and European boreal
forests, and African and Australian savannahs. Removing or altering
fuels in these regions may increase landscape heterogeneity and
reduce wildfire spread61. Outside of these bottom-up dominant areas,
building large fuel breaks, mechanical thinning, and controlled burn-
ing are also increasingly being applied e.g., in temperate forests of

Fig. 4 | The dominance of the top-down and bottom-up groups according to
climate zones and vegetation types. The dominant fractions were calculated by
dividing the dominant pixels of each group by the total number of pixels domi-
nated by any of the twoprecursor groups in climate zones (a), and vegetation types
(b). There are five main climate zones on Earth: tropical, arid, temperate, con-
tinental, and polar. Here we only focused on the first four climate zones because
there is only one ecoregion in the Polar zone with limited wildfires. The eight
vegetation types include sparse vegetation, grassland, cropland, shrubland, tree
cover broad-leaf evergreen (TBE), tree cover broad-leaf deciduous (TBD), tree
cover needle-leaf evergreen (TNE), tree cover needle-leaf deciduous (TND). Source
data are provided as a Source Data file.
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North America, theMediterranean, and Australia3. However, in tropical
rainforests, mid-latitudes, and eastern Siberian boreal forests where
the weather is humid, fuels are abundant, or less flammable, wildfires
are largely decoupled from the bottom-up status making fuel man-
agement less efficient60,62.

Fuel monitoring and management become more important in
future climate change scenarios. Drier and warmer conditions may
suppress fuel accumulation and likely convert the fire regimes from
flammability-limited to fuel-limited37. In Amazonia, deforestation
changes the local weather system at forest edges which facilitates the
replacement of rainforestswithflammableherbaceous species37. In the
eastern Siberian boreal forests, global warming gives rise to the inva-
sion of more flammable tree species and thereby increases the prob-
ability of wildfires63. In boreal forests, climate warming increases
lightning activities and the occurrence of overwintering fires, and
hence the number of large wildfires would likely increase if these fire
starts are combinedwith sufficient fuels37,64. Prescribed burning before
the fire seasonpotentially reduces wildfire risk in bottom-up dominant
African and Australian savannahs65. However, this type of fuel man-
agement strategy is challenging under global warming, as the safe
weather window suitable for prescribed burning is shortened66. Simi-
larly, attention should also be paid to fire management strategies like
long-term fire suppression, as the consequent excessive fuel accu-
mulation increases the risk of high-intensity wildfires, especially in
North American boreal forests where wildfires are dominated by
bottom-up conditions15.

There are three limitations of this study that could be addressed
further. First, although benefiting from the big data era, the number of
precursors included in this study is still limited. Major climate modes
(e.g., El Niño–Southern Oscillation, and North Atlantic Oscillation)
modulate regional top-down and bottom-up conditions and dominant
wildfires67,68. Therefore, wildfire prediction could benefit from the
achievable predictability of El Niño–Southern Oscillation69 and other
major climate modes. Human behavior (e.g., ignition, cropland expan-
sion, and fire suppression) is also an important wildfire impact factor
that may alter causal relationships. However, limited by the availability
of high temporal resolution climatemode and human behavior indices,
we currently cannot conduct such an analysis. Second, a better wildfire
precursor grouping system may be beneficial. While we divided the
precursors into top-down and bottom-up groups which are con-
ceptually clear70, sometimes, the top-down precursors dominate wild-
fires through their influence on fuel accumulation that is deduced from
their long time lags, making the causal inference complex. Third, we
assumed the causal relationship to be constant throughout the whole
studyperiod. However, extreme events or humanbehavior can alter fire
regimes and potentially change causal relationships.

In conclusion, this is the first globally consistent study partition-
ing top-down weather and bottom-up fuel precursors of wildfire
activity. On a global scale, top-down weather precursors dominate in
73.3% of regions where causal relationships are detected. In the
remaining 26.7% of regions, bottom-up fuel precursors are dominant,
which coincides with North American and European boreal forests,
and African and Australian savannahs. In these regions, fuel manage-
ment practices may be the most efficient. In addition to exploring
wildfire causal relationships, we also focused on time lags between
wildfires and their precursors. The time lag identified in this study is
the time delay when wildfire precursors and BA show the highest
partial correlation (highest predictive power). This information is
helpful for wildfire prediction by implying that (1) we cannot make
reliable wildfire predictions beyond these time lags in advance; (2)
when tracing the causes of a wildfire that has already occurred, we
should at least consider the timedelay as time lags show, otherwise, we
will miss critical information. Our study also highlights that global
wildfire precursors show complementary timescales of predictability:
bottom-up precursors show long-term predictability serving as fuel

accumulation indicators; top-down precursors show contemporary or
short-term predictability serving as direct fire weather indicators.
Seasonalor interannualwildfireprediction is feasible in regions like the
boreal forests, African and Australian savannahs, the Indian Peninsula,
the Indochina Peninsula, and southeastern South America when
bottom-up precursors are considered.

Methods
Datasets
The wildfire indicator used in this study is the burned area (BA) taken
from FireCCI5171. FireCCI51 is based on spectral and thermal informa-
tion from the Moderate Resolution Imaging Spectroradiometer
(MODIS) near-infrared band and active wildfire products. It is a global
and monthly BA product with two different spatial resolutions (250m
of pixel level and 0.25° of grid level). Here we used the pixel-level data.
The main information is included in three layers, i.e., the first fire
detection day, the confidence level, and its corresponding land cover.
A quality control process was applied to mask low-quality BA pixels
whose confidence level is lower than 70%. A logarithmic transforma-
tion was applied to transform skewed BA data to a normal Gaussian
distribution to make the detected causal relationship reliable72,73.

The top-down precursors include maximum air temperature
(Tmax), vapor pressure deficit (VPD), potential evaporation (ET0),
wind speed (Wind), and aridity anomaly index (AAI). The bottom-up
precursors include the fraction of photosynthetically active radiation
(FPAR), gross primary production (GPP), normalized difference vege-
tation index (NDVI), enhanced vegetation index (EVI), and soil water
deficit index (SWDI). A detailed description of the precursors -
including which products were used, their spatial and temporal reso-
lution, how they were calculated, and how these precursors were
selected - can be found in the Supplementary Methods.

All the above-mentioned data sets span from 2003 to 2020. We
performed the causal analysis at the ecoregional level considering that
top-down weather and bottom-up fuel conditions are relatively similar
within the same ecoregion74. We believe that this spatial aggregation is
appropriate to generalize findings at a global scale, yet still allows for
sufficient spatial variation when analyzing global fire regimes. In addi-
tion, we can generate a “look-up table” based on ecoregions that pro-
vide basic insights needed to develop a wildfire warning/predicting
system for locations where we do not have enough in-situ or field data.
In each of the 232 ecoregions (29 climate zones and 8 land cover clas-
ses), BA and precursors were resampled to a spatial resolution of 0.25°
and averaged (precursors) or summed up (BA) to weekly values. Then,
we calculated the ecoregional mean (precursors) or sum (BA) values by
averaging or summing up all the pixels located in the ecoregions. Note
that even though FireCCI51 is a monthly dataset, it includes a layer
recording the first fire detection day. Therefore, we computed the
weekly summed BA from this daily information. For the precursors, we
calculated the weekly mean from their original temporal scale.

The climate zone data used in this study is the global digital
Köppen-Geiger map75 from the University of East Anglia and the Ger-
man Weather Service representing the climate classification of the
period from 1986 to 2010 at the spatial resolutionof 5 arcminutes. The
vegetation type used in this study is from the land cover layer of
FireCCI51.

Causal Analysis
The Peter & ClarkMomentary Conditional Independence (PCMCI)20,21 is
implemented in this study. It is basedon time series analysiswhich takes
lagged variables into account to detect spatiotemporal dependency. It
consists of two stages: a Peter&Clark (PC) condition selection stage and
a Momentary Conditional Independence (MCI) test stage. In the first
stage, for each variable, the irrelevant conditions that do not pass the
iterative independence test are removed based on a Markov set dis-
covery algorithm. In the next stage, a false-positive control was adapted
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to highly relevant interdependent conditions from the first stage. In
applications, twomain assumptions of PCMCI are causal sufficiency and
time series stationarity. The first assumption can be satisfied by con-
sidering as many relevant variables as possible. Normally, causal dis-
covery ismore reliable whenmore variables are included. But when too
many irrelevant variables are included, the dimensionality increases,
and the effect sizes become smaller. The above-mentioned condition
selection and condition independence test stages in PCMCI mitigate
this causal discovery dilemma21. The second assumption can be
approximately satisfied by removing the seasonal cycle and trend in the
time series. However, real-world applications can violate this assump-
tion when the seasonal cycle is not fixed like some climate modes such
as El Niño-Southern Oscillation. Experiments show that PCMCI is effi-
cient evenwhen this assumption is violated, e.g., the time series is highly
autocorrelated or has a nonstationary trend21. We aimed to achieve (a)
causal sufficiency by involving a wild range of wildfire precursors, and
(b) time series stationarity by detrending and calculating anomalies.We
used linear regression to remove the trend over the entire period and
calculated anomalies to remove the seasonal cycle and alleviate tem-
poral autocorrelation. The formula for the anomaly calculation can be
found in the Supplementary Methods. We used a linear condition
independence test, partial correlation, in PCMCI (both the condition
selection and condition independence test stages) and set a significance
level of 0.05 and a maximum time lag of 156 weeks. In each of the 232
ecoregions, we input wildfire activity indicator (BA), top-down pre-
cursors (Tmax, VPD, ET0, Wind, and AAI), and bottom-up precursors
(FPAR, GPP, NDVI, EVI, and SWDI) and applied PCMCI to get causal
networks showing causal links, directions, strengths, and time lags. In
this study, we only focused on causal links and the time lags from
wildfire precursors to BA. In each ecoregion, after getting the causal
network, only the precursors that show causal links to BA are ranked by
causal strength (partial correlation), and the precursor ranked first is
called the dominant precursor, and its time lag is called the dominant
time lag.

Data availability
All relevant data generated in this study have been deposited in the
Zenodo database under accession code https://doi.org/10.5281/
zenodo.8421505. Source data are provided with this paper.

Code availability
All codes used in this work for causal inference and data analysis are
available from the corresponding authors upon request.
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