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Incentive based emergency demand
response effectively reduces peak load
during heatwave without harm to vulnerable
groups

Zhaohua Wang1,2,3, Bin Lu 1,2,3 , Bo Wang 1,2,3 , Yueming (Lucy) Qiu 4 ,
Han Shi1,2,3, Bin Zhang 1,2,3 , Jingyun Li1,2,3, Hao Li 1,2,3 & Wenhui Zhao5

The incentive-based emergency demand response measure serves as an
important regulatory tool during energy systemoperations.However,whether
people will sacrifice comfort to respond to it during heatwave and what the
effect on heat vulnerable populations will be are still unclear. A large-scale
emergency demand response pilot involving 205,129 households was con-
ducted in southwestern China during continuous extreme high temperatures
in summer. We found that the incentive-based emergency demand response
causes a statistically significant decline in electricity use with no additional
financial burden on vulnerable groups. The electricity conservation potential
of urban households was higher than that of rural households. Households
with children did not respond to the emergency demand response, while the
response of households with elderly individuals proved to be more positive.
The repeated and frequent implementation of this policy did not result in an
attenuation of the regulatory effect. This research can serve as a reference for
countries with similar regulated power markets.

The world is experiencing climate change characterized by global
warming, and effective ways to reduce greenhouse gas emissions
through energy conservation are actively being explored. High tem-
peratures in summer are one of the main causes of peak loads on the
power grid1, which lead to increases in social energy infrastructure
investments and carbon emissions. With the development of the glo-
bal economyand improvements in electrificationprocesses, electricity
consumption has increased sharply2. In 2019, the total global final
electricity consumption reached 22,848 TWh, of which growth in the
residential sector accounted for 26.6%3 (Supplementary Fig. 4). The
Intergovernmental Panel on Climate Change (IPCC) Sixth Assessment
Report also advocated accelerated electrification. The surge in

household demand for electricity is an important reason for the
double-digit growth in power peak loads and the increased peak-valley
difference, leading to the problems associated with an insufficient
power supply during peak times; additionally, power rationing occurs
from time to time4. China and other countries are now faced with the
dual pressures of the underutilization of new installed capacity on the
power grid supply side and increasing energy consumption on the
demand side, creating challenges in matching supply with demand.
The traditional approach is to increase the output of the generator set
when the load demand is high, but the peak load tends to last for a
short time (the peak load duration in a year is only 5% or less; see
Supplementary Figs. 5–7). Increasing energy investment is costly, and
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the installation of new power plants will increase carbon emissions.
Therefore, power departments have begun to explore demand
response (DR) measures to reduce or delay the peak load on the
demand side, especially in the residential sector, to achieve a balance
between supply and demand.

DR measures have been widely used worldwide and mainly
include two categories: price-based DR measures and incentive-based
DR measures (Supplementary Fig. 1)5,6. Time-of-use (TOU) is a price-
basedDRmeasure that induces households to shift electricity use away
fromon-peak times by using a fixed rate schedulewithmore expensive
on-peak times7,8. Effective pricing is a powerful tool to economically
adjust the load curve9–11. Pilots carried out in California12, Washington
D.C.13, the Netherlands14, and other places have proven that price-
based DRmeasures are stable and provide sizable demand reductions.
Users are price responsive, and enabling technologies can improve
responses15.

Incentive-based DR measures, such as the emergency demand
response (EDR), provide extra rewards to reduce demand during on-
peak times and are more flexible. Some advanced economies have
carried out practical research, and the existing relevant empirical
results are mostly institutional reports that prove the effectiveness of
the EDR16–19. However, large-scale trials have not been carried out, and
it is unclear whether the EDR is still effective in countries with a
regulated power market such as China.

Furthermore, the effect of DR measures on vulnerable groups,
such as low-income households, young children, and elderly indivi-
duals have been examined. Low-income households is defined as per
capita disposable income below 50% of the national average, which is
the threshold used in China’s National Bureau of Statistics definition
of low income, and they face pressure to curtail their energy costs,
often with negative impacts20. The primary strategy adopted by low-
income households to cope with financial constraints is to reduce
spending, including spending on essentials such as food and
energy21. Elderly people require a narrower temperature range for
health22 and are associated with a higher likelihood of mortality in
extreme heat events23–25. Young children are also negatively affected
by household energy insecurity26,27. Price-based EDR policy (such as
TOU), for households that already struggle with electricity bills, TOU
could be detrimental20,21,28. Specifically, households suffering from
energy poverty are forced to make trade-offs between paying their
electricity bills and paying for other necessities such as food and
medicine4,29–31. Notably, price-based DR measures have been imple-
mented under a deregulated electricity market and with the instal-
lation of smart equipment requiring high costs32,making it difficult to
implement such measures in countries with a partially monopolized
power market such as China or on a large scale in low income
households. In contrast, incentive-based EDR, compared to TOU, are
friendly to these groups since it provides additional rebates which
adds no additional financial burden to households who are heat
vulnerable. How these groups respond to incentive-based EDR are
issues that remain to be clarified before promoting the policy on a
national or district scale.

We carried out a series of incentive-based EDR trials involving
205,129 households in southwestern China during continuous
extremely high-temperature weather in summer. The trials pro-
vided DR enabling technology at no cost to these households, that
is, high-speed power line communication (HPLC) meters, which
aimed to collect high-frequency electricity use data. We explored
voluntary electricity reduction behaviors induced by the EDR,
namely the effect of EDR random assignment selection. Then, we
further investigated the effect of EDR rebate coverage and hetero-
geneous effects among vulnerable groups. Finally, we analyzed the
sustainability of the EDR effect. This pilot was a large-scale trial in
China that analyzed electricity conservation options in an inflexible
energy pricing market, and the results can serve as a reference for

countries with similar regulated power markets, which have
received insufficient attention from previous studies on demand
response practices.

Results
Effect of the incentive-based EDR on electricity use reductions
We initiated large-scale incentive-based EDR trials in southwestern
China (Fig. 1), drawing 205,129 households by random assignment
frompilot areas.Whenour policy rolls out, all householdswill receive
an EDR invitation message, but not all households receive a rebate,
this rebate is only available for thosewho choose to participate in this
EDR program. In our trial design, those who received messages and
replied “confirmed” after receiving the messages are called EDR
group. Those who received messages but provided no effective
feedback are named no-reply group and others who never received
any messages are named no-notification group (Supplementary
Fig. 3). This random assignment presents us an opportunity to study
the effects of EDR randomassignment selection and the effect of EDR
rebate coverage with a randomized controlled design. It allows us to
isolate the causal effect of how effective is the experimental EDR
policy at motivating peak reductions through intent-to-treat (ITT)
estimate. This random assignment can also be used to study the local
average treatment effect (LATE) of EDR rebate coverage on elec-
tricity saving without the problem of confounding factors that might
otherwise differ between with- and without-reply populations. For
households that only receivedmessages anddidnot respond,we also
evaluated the spillover effect of the incentive-based EDR, that is,
whether these households would actively reduce their electricity
consumption when they were only aware of the EDR message and
did not receive monetary rebate (see the details in Supplemen-
tary Note 6).

We compare outcomes between the treatment group (EDR group
and no-reply group who were randomly selected in the assignment
procedure) and the control group (no-notification group). This can be
seen as a relevant parameter for gauging the effect of the households
winning permission to apply for EDR program. Supplementary Table 9
presents the mean electricity use and descriptive statistics for all
groups across the baseline and treatment periods. Our ITT analysis,
comparing the outcomes in the treatment and control groups by fit-
ting difference-in-difference regressions, provides an estimate of the
causal effect of winning the assignment. Being selected in the random
assignment decreases the electricity consumption during our study
period by 0.0155 kWh (p < 0.001; Table 1) during on-peak times, a 1.02
percent (p <0.001; Supplementary Table 10) reduction relative to the
control mean.

In the pilot area, we have no evidence that the EDR had spillover
effects. Compared to the no-notification group, the electricity usage of
the no-reply group did not change significantly (coef. = −0.0024;
p =0.149; Table 1) during on-peak times. This means that a mere
message notification did not lead to a reduction in electricity usage in
this trial.

The intent-to-treat provides an estimate of the net impact of
expanding access to EDR,whichmay lead to conservative effects of the
rebate coverage. Not everyone selected by the random assignment
enrolled in the EDR program, some did not respond to apply for
coverage. We show visual evidence from the raw data in Fig. 2, which
plots the electricity conservation for various populations during the
EDR trials. The figure indicates that usage in the pretreatment hours
was essentially the same for all groups on the benchmark day and
treatment day (see the complete figure in Supplementary Fig. 12). EDR
group had more electricity conservation on average than the no-
notification group during our trial period. EDR rebate coverage
increases the probability of saving behavior by 3.68 times for 0.1297
kWh relative to the control mean of 0.0352 kWh (Supplementary
Table 9).
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To estimate the causal effect of EDR rebate coverage, we use a
standard instrumental-variable approach with assignment selection as
an instrument for EDR rebate coverage. This estimates the local aver-
age treatment effect capturing the causal effect of EDR for those who
were covered because of the random assignment, under the assump-
tion that winning the assignment only impacts the outcomes studied
through EDR rebate coverage. It could be seen as the relevant para-
meter for evaluating the causal effect of EDR rebate for those who
participated in the EDR program because of receiving the message.
Imperfect (and non-random) take-up of EDR among those selected in
the random assignment reduces statistical power, but does not con-
found the causal interpretation of the effect of EDR. As shown in
Table 2, EDR rebate coverage decreases electricity consumption by
0.1145 kWh (p <0.001; Table 2) during on-peak times, a 7.32 percent
(p < 0.001; Supplementary Table 11) reduction relative to the control
mean of 0.04 kWh. In addition, we obtained robust results by using
matchingmethods to solve the problemof parallel trends between the
treatment group and the control group. A series of robustness tests,
including the Heckman two-step method test and placebo test, have
also confirmed this conclusion (see Supplementary Note 6 for details).

Discrepancy among vulnerable groups in sensitivities to the EDR
We also examine how the effects of EDR program on electricity con-
servation differ among heterogeneous groups. Tables 1 and 2 report
the effect of assignment selection and EDR rebate coverage, which
confirm the more conservative effect of intention-to-treat. For EDR
rebate coverage, urban households participating in the EDR program
saved 0.0545 kWh (p <0.001; Table 2; 2.19% peak load reduction,
Supplementary Table 11) more than rural counterparts. In addition,
considering that electricity use was expected to be driven by cooling
needs during heatwave, our main estimation strategy followed the
same logic as a standard difference-in-difference-in-difference (DDD)
strategy to examine whether the EDR still worked when the tempera-
ture increased among heterogeneous groups (more details in Sup-
plementary Note 4). We find that EDR weakens the effect of
temperature on electricity consumption (Supplementary Tables 3,
7–8), which has the same performance in urban and rural households.
Contrary to expectations, compared to households without children
counterparts, households with children participating in the EDR saw
no significant effect (coef. = −0.0138, p = 0.940; Table 2). Compared to
households without elderly individuals counterparts, households with

Fig. 1 | Regional distribution of EDR trials. a, c, edepict the distributionof the no-
notification group, and b, d, f represent the distribution of the EDR group. Each
subgraph corresponds to a specific trial region (a/b, c/d, and e/f indicate regions
with temperature rise (measured on the treatment day relative to the benchmark
day) of 0.6 °C, 1.2 °C, and 3 °C, respectively). Electricity conservation indicates the

difference in electricity consumption (kWh) between the treatment day and the
benchmarkdayduring the EDRperiod. In each subgraph, individual households are
represented by data points, and the color of the point reflects the level of electricity
conservation achieved. A greener color indicates a greater amount of electricity
saved. Source data for this figure are available on GitHub.

Article https://doi.org/10.1038/s41467-023-41970-8

Nature Communications |         (2023) 14:6202 3



Table 1 | Estimations examining the effect of EDR assignment selection (intent-to-treat test)

EDR assignment selection Heterogeneous effect

Main effect Spillover effect Urban Children Elderly
(1) (2) (3) (4) (5)

Treatment×Post×Indicator −0.0284*** (0.0036) −0.0041 (0.0733) −0.0559** (0.0264)

Treatment×Post −0.0155*** (0.0023) −0.0024 (0.0016) 0.0063** (0.0027) −0.0144 (0.0710) −0.0289* (0.0165)

Indicator×Post −0.0010 (0.0094) 0.1053 (0.0866) −0.0327 (0.0391)

Indicator × Treatment 0.0113** (0.0044) −0.0211 (0.0561) −0.0034 (0.0224)

Treatment −0.0315*** (0.0039) −0.0226*** (0.0017) −0.0401*** (0.0048) 0.0016 (0.0527) −0.0165 (0.0166)

Post −0.0355*** (0.0090) −0.0372*** (0.0093) −0.0437*** (0.0122) −0.1436* (0.0838) −0.0302 (0.0344)

Indicator −0.1209*** (0.0245) 0.0486 (0.0756) 0.1540*** (0.0440)

Cluster in group Yes Yes Yes Yes Yes

Controls Yes Yes Yes Yes Yes

Observation 410,258 378,114 410,258 7,466 10,322

F 61.98 79.73 51.94 2.692 11.24

R2 0.0085 0.0082 0.0094 0.0077 0.0147

This table reports theestimatedcoefficients andcluster-robust standard errors (in parentheses). Thedependent variable in all columns is electricityusageduringon-peak times.Columns (1) and (3–5)
estimate theeffectof assignment selection comparing the averageoutcome for households selected in the randomassignment (EDRgroup andno-reply group,whichwecalledassignmentwinners)
to the average outcome for control households (no-notification group those not selected by the assignment) among heterogeneous groups. Column (2) compares the difference between the no-
reply group and the no-notification group. The standard errors are clustered at the household-group level. Significance is at ***p < 0.01, **p < 0.05, *p < 0.1.

Fig. 2 | Effects of the incentive-based EDR on electricity usage among hetero-
geneous groups. a–d depict the electricity conservation of the EDR group and no-
notification group among heterogeneous groups. The ordinate represents the
difference in electricity usage (measured in kWh) between the benchmark day and
treatment day. A positive value indicates a reduction in electricity use. a represents

the overall effect, with the red line representing the EDR group, and the purple line
representing the no-notification group. b, c, d demonstrate the heterogeneous
effects on urban households, households with children, households with elderly
individuals and the control group, respectively. Source data for this figure are
available on GitHub.
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elderly individuals participating in the EDR saw a larger effect and
saved 0.1638 kWh (p =0.026; Table 2). We also obtained robust results
by using a DID approach within the heterogeneous populations (Sup-
plementary Table 12). According to the smart socket data collected
from some participants (Supplementary Note 10), we show the elec-
tricity conservation behaviors that the households may carry out
in Fig. 3.

Sustainability of the incentive-based EDR effect
A central question for policymakers designing EDR is whether
appealing to intrinsic and extrinsic motivations can generate persis-
tent effects on electricity conservation behavior33. After all, EDR poli-
cies are meant to be implemented repeatedly for the long term. To
estimate the sustainability of the incentive-based EDR effect, we
repeated our interventions over six treatment days in the summer
(Supplementary Note 8). We examined the sustainability of the treat-
ment effect through ordinary least squares (OLS) estimations with
treatment phases (see “Methods”). As shown in Table 3, the EDR pro-
duced muchmore persistent effects with repeated stimuli. Column (1)
indicates that themore times the households participating in the EDR,
the greater the amount of electricity that was saved during on-peak
times in general (coef. = 0.0406; p <0.001). In our trial, the treatment
effect was the largest in the fifth phase (coef. = 0.1326; p <0.001).
Columns (5) and (7) indicate that urban households (coef. = 0.0407;
p <0.001) were slightly more affected by the number of times parti-
cipating than rural households (coef. = 0.0381; p <0.001). We also
need to be cautious about the treatment effect with almost no decay
results, which may be related to the limited number of trials.

Our findings on sustainability have four key policy implications,
particularly for policymakers aiming to generate persistent policy
impacts over repeated interventions. The incentive-based EDR is likely
to produce a sizable effect on households that have participated
multiple times, and after being stimulated many times, its spillover
effect (after the 2nd phase) shows slight electricity conservation.
Repeated interventions do not result in an attenuation of electricity
conservation, and monetary incentives induce larger treatment
effects.

Discussion
We conducted the EDR pilot involving 205,129 households from
southwestern China during heatwave.We estimated the intent-to-treat
effects of the incentive-basedEDRduringon-peak times and isolate the
causal effect of EDR rebate coverage on electricity conservation
among vulnerable groups using the random assignment of the study
design. In addition, we examined the sustainability of the incentive-
based EDR effect.

The results suggest that incentive-based EDR decreases peak-
loads considerably during heatwave. In 2019, the National Develop-
ment and Reform Commission and National Energy Administration of
China requires all provinces to form a demand response capacity to
reach 3% of the annual maximum electricity load to deal with summer
energy spikes. This is a crucial task for China every summer especially
with the accelerating electrification process after 2020. Our EDR pro-
gram can adjust the peak load reduction of 7.32% for the covered
households, and can achieve a 1.02% peak load reduction even when
reaching a wide audience (those receiving the EDRmessage). We have
examined varying treatment effects across different electricity prices
and the results show that households with higher electricity prices
tend to respondmore actively to EDR (Supplementary Note 11). This is
from the residential sector alone, which has reduced orderly power
consumption pressure in industries. This is meaningful from the per-
spective of system management.

From a cost-benefit point of view, the program helps slow down
the need to build new power plants to meet short-term spikes in
summer and reduce the electricity consumption loss proportion fromTa
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the industrial sector. Compare to power plant construction cost and
corporate profits and tax, our cost is minimal. Besides, our EDR pro-
gramonly pays a rebate for householdswho choose to participate. Our
findings speak to the rebate cost of expanding incentive-based EDR, as
well as its net effect on the peak load reduction, and may thus be a

useful input for informed decision-making balancing the costs and
benefits of peak load reduction.

Thepolicy is intrinsically different from thosebasedonTOU rates,
which are a common DR measure that might worsen the heating or
eating dilemma of vulnerable groups, and that can also be inoperable

6.0% 44.0% 22.0% 3.3% 36.7%

3.4% 25.0% 12.6% 1.9% 20.9%

9.9% 72.8% 36.4% 5.4% 60.7%

Air conditioner
(Bedroom) Refrigerator Washing machine Water heater Television

Urban
housedolds

Rural
housedolds

Households
with elderly

Electricity conservation by heterogeneous groups participating in the EDR

5.4 min 39.6 min 19.8 min 3.0 min 33.0 min

3.1 min 22.5 min 11.3 min 1.7 min 18.8 min

8.9 min 65.5 min 32.8 min 4.9 min 54.6 min

Fig. 3 | Electricity conservation resulting from the incentive-based EDR in
terms of the number of minutes that home appliances can be turned off. The
data in the layout of the house above the horizontal line indicates the specific time
intervals corresponding to the electricity saved by the EDR in terms of home
appliances. Each subgraph below the horizontal line represents the duration in
minutes that home appliances need to be turned off to achieve the average elec-
tricity reduction in urban, rural, and elderly households participating in the EDR.

Each circle encompasses 60min, and the value above each circle represents the
percentage of time that home appliances are turned off during on-peak periods.
The power of home appliances comes from the smart sockets thatwe installed in 15
households, and the behaviors that householdsmay carry out are calculated based
on the average electricity conservation of each group. Source data for this figure
are available on GitHub.
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in countries with a regulated power market such as China. Incentive-
based EDR can promote voluntary reductions in electricity usage with
extra incentives, which is effective in shifting demand away from on-
peak times during heatwave and has no extra financial burdens related
to trade-off pressures within vulnerable groups. Furthermore, EDR
becomesmore effective after repeated stimuli. As a supplementaryDR
measure, the EDR is one of the few treatment options to have under-
gone multiple trials. It provides a practical, economical and flexible
solution for relieving the contradictions in seasonal power supply and
demand and for reducing carbon emissions in the context of global
warming, especially for countries with a regulated power market.

Heterogeneity analysis indicates that there are differences in EDR
effects among vulnerable groups, which highlights the importance of
considering specific subpopulations in the design and rollout of EDR
policies to avoid creating new inequities. We found that the electricity
saving potential of urban households is higher than that of rural
households, which may be related to household income and the
number of home appliances34. Compared with rural low-income
households, urban households have a higher disposable income, lar-
ger houseareas, andmorehomeappliances35, leading tomore demand
for electricity use and thus a greater electricity conservation potential
(The per capita disposable income of rural households in 2018 was
14,617 yuan, only 37% of that of urban residents, and 20% of themwere
even <3666 yuan.). In addition, the efficiency of home appliances and
electronic devices is critical for electricity conservation, and high-
income households have the ability to purchase smart devices and to
install home power management systems that will help them save
more electricity36. Both urban and rural households can reduce their
electricity usage under stimulation by economic incentives. Con-
sidering that some low-income households can afford only light bulbs,
even if they were willing to participate in the EDR, the electricity
conservation potential was very limited. In the case of high efficiency
and limited costs, power departments might be more willing to carry
out EDR in urban areas because the electricity conservation of urban
households is greater than that of rural households (Tables 1 and 2).
The money used to incentivize EDR could be disproportionately dis-
tributed to urban households, which find it easier to reduce their
electricity use. These types of transfer payments may be unfavorable
for low-income groups. We also conducted a sub-group regression

analysis to estimate the differences between the self-owned houses
and tenants. Our findings indicate that EDR has a more significant
effect on owner’s electricity savings behavior during peak hours
compared to tenants (Supplementary Note 12).

For households with children, parents tend to provide their chil-
dren with a comfortable living environment because children are
young and have weak physical resistance to fluctuations in
temperature37. In addition, Chinese children have a considerable
amount of homework in summer, and parents are willing to provide a
cool study environment for children during heatwave38. The comfort
and learning efficiency of children outweigh the limited financial
incentives to reduce electricity usage. The fact that the EDR had a
significant effect on elderly households could be due to the thriftiness
of older generations in Asian countries. According to the theory of
continuity, a person lives and develops in specific environmental
conditions, and the lifestyle formed has continuity, which guides the
activities of elderly individuals. Since elderly Asian individuals have a
frugal lifestyle39, they are more inclined to save electricity when sti-
mulated by economic incentives. However, they can choose to parti-
cipate or give up doing so voluntarily based on their own conditions
after evaluating their comfort and benefits. Therefore, we still need to
consider that the potential threat of elderly people overheating or
suffering other health hazards out of thrift is probably worse.

Economic incentives can generate persistent impacts on elec-
tricity reduction40. There are two potentialmechanisms. One is related
to “learning by doing”41. In the beginning, households might not know
how to reduce their electricity use, but as trials are carried out
repeatedly, they begin to plan ahead and engage in practices such as
turning off the air conditioner, preheating the water heater, and
refrigerating the room to a lower temperature in advance (empirical
evidence fromSupplementary Note 10). The other possibilitymight be
related to investments in smart energy-efficient appliances42. We do
not expect such investments to bemade extensively anytime soon, but
we can expect them to becomemore commonplace over the long run.

Methods
Participants
The data are from households that participated in the EDR pilot
administered by researchers and power departments in southwestern

Table 3 | Estimations examining the sustainability of the incentive-based EDR effect

EDR effect Heterogeneous effect

EDR rebate coverage EDR spillover effect Rural Urban

(1) (2) (3) (4) (5) (6) (7) (8)

Treat_cnt 0.0406***
(0.0031)

0.0095***
(0.0010)

0.0381***
(0.0049)

0.0407***
(0.0032)

1st phase 0.0822***
(0.0161)

0.0131 (0.0242) 0.0797**
(0.0375)

0.0829***
(0.0167)

2nd phase 0.0952***
(0.0086)

0.0224***
(0.0034)

0.0852***
(0.0133)

0.0970***
(0.0091)

3rd phase 0.1159***
(0.0160)

0.0230***
(0.0069)

0.1066**
(0.0422)

0.1173***
(0.0159)

4th phase 0.1295***
(0.0275)

0.0355***
(0.0129)

0.0919**
(0.0351)

0.1310***
(0.0345)

5th phase 0.1326***
(0.0336)

0.0332***
(0.0116)

0.0969***
(0.0367)

0.1246***
(0.0353)

Cluster in group Yes Yes Yes Yes Yes Yes Yes Yes

Controls Yes Yes Yes Yes Yes Yes Yes Yes

Observation 249,953 249,953 394,531 394,531 56,366 56,366 172,105 172,105

F 59.65 49.49 59.04 49.02 24.20 19.94 48.27 38.65

R2 0.014 0.014 0.0119 0.0119 0.010 0.010 0.015 0.015

This table reports the estimated coefficients and cluster-robust standard errors (in parentheses). The dependent variable in all columns is electricity conservation during on-peak times. We include
household fixed effects and time fixed effects. The standard errors are clustered at the household-group level to adjust for serial correlation. Significance is at ***p < 0.01, **p <0.05.
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China.We randomly assigned permission to apply for the EDR trial. We
sent EDRmessages to all households except the no-notification group
(those not selected by the assignment); therefore, only assignment
winners (the EDR group and the no-reply group) were selected in the
assignment households. Those in the EDR group who replied to the
message to confirm participation were seen as targeted participants.
Those in the no-reply group who did not reply or replied “no” were
seen as untargeted participants. Those in the no-notification group
who did not receive any treatment were as seen as the pure compari-
sion group. We preprocessed the electricity use data (vacant homes
that were always at 0 kWh were removed) and deleted the households
with missing values caused by collection and transmission by HPLC
smartmeters. The final sample retained 205,129 households, including
53,129 rural households and 152,000 urban households. The survey
sample retained 7774 households, including 3203 households with
children and 2991 households with elderly individuals.

Procedures
EDR rebate program. We carried out this research with the state grid.
We first adopted the clustered randomization method to randomly
select the region of the EDR trial (divided by communities, a total of
205,129 households were selected) and then installed HPLC smart
meters, which can collect electricity consumption data at 15-minute
intervals. We used the exact sameprocedures to conduct six EDR trials
based onmonetary rebate in southwestern China from July 18, 2019, to
August 21, 2019 (Supplementary Table 1).

The peak load hours usually appear between 8 and 9:30 pm in
southern China in July–August (Supplementary Fig. 8). The power
infrastructure is sized based on the system peak load. Thus, reducing
the peak hour demand is more critical than reducing the demand in
other hours, which helps improve grid stability and lower the like-
lihood of blackouts. In order to reduce peak load and explore the
energy-saving potential of households during the on-peak times, we
set the period for emergency demand response trial to 8–9:30 pm. On
the morning of the treatment day, we sent a phone message (see the
English translation of the recruitment message in Supplementary
Note 2) to inform households that we were going to carry out the EDR
trial from 8pm to 9.30 pm that day. Of these households, those that
replied “yes” confirmed their participation. Those that did not reply or
that replied with an irrelevant message were not considered to be
treated. Similar to previous field experiments in electricity
demand13,43,44, we still need to solve some potential endogeneity pro-
blems, although the random assignment of the treatment guarantees
the internal validity of the experiment. To explore the external validity
of our sample, we collected data from a random sample of the popu-
lation in the corresponding geographical area. We analyzed the
observables betweenour sample and the randomsample. Three pieces
of sample data were collected from the households as follows. For
sample A, the EDR group, the 16,072 households in this group installed
an advanced HPLC meter and received EDR messages. Those in this
group confirmed their participation. For sample B, the no-reply group,
the 93,852 households in this group installed an advancedHPLCmeter
and received EDR messages. Those in this group did not confirm their
participation. For sample C, the no-notification group, the 95,205
households in this group installed an advanced HPLC meter. This
group received no other treatment (Supplementary Fig. 3).

Economic incentives. For households participating in the EDR trial, if
electricity use during the declared on-peak times (8 pm to 9.30 pm on
the treatment day) was 1 kWh lower than that during the same period
on the day before (benchmark day), the saved electricity generated a
cash incentive of $0.143/kWh (Equivalent to RMB as ¥1), given as bill
credits. The pilot provinces in Southwest China adopt the increasing
block price for residents (Supplementary Fig. 19) and the incentive is
greater than the block prices and average electricity prices.

We examine varying treatment effects across varying electricity prices
and the results show that households with higher electricity prices
tend to respond more actively to EDR, resulting in greater electricity
savings during peak hours. In addition, we find that EDR has more
substantial effects on households with higher marginal electricity
prices, which is consistent with the conclusion in heterogeneous
treatment effect analysis. The detailed analysis can be found in Sup-
plementary Note 11.

Different types of housing occupancy. In the pilot study,weobtained
the renter and owner information from the survey. Among those who
returned valid surveys, 6462 households are self-owned and 1312 are
tenants. Whether people live in their own house may lead to differ-
ences when they are choosing to participate (or not) in the EDR pilot.
We adopt an instrumental variable two-stage approach to estimate the
effect of the treatment—not just assignment to treatment—that can
account for noncompliance. To adjust for noncompliance, one can use
the random assignment to treatment as an instrument for treatment
receipt since the initial assignment was random. We estimate the
effects of EDR rebate coverage by fitting two-stage least squares
regressions on the subsample of survey respondents who reported
self-owned and tenant information. Our findings indicate that EDR has
amore significant effect on owner’s electricity savings behavior during
peak hours compared to tenants (coef. = −0.1472, p =0.028, Supple-
mentary Table 25). The detailed analysis can be found in Supplemen-
tary Note 12.

Other data.We also collecteddata on the historicalmonthly electricity
use of the households and hourly meteorological data from nearby
monitoring stations, source data can be found at Data availability
section. Importantly, there were persistent high temperatures in the
pilot area, with daily maximum temperatures above 35 °C during the
trial period.

Survey
A survey investigating the demographic characteristics of the house-
holds and assessing their electricity consumption habits was admi-
nistered between July and December 2019 (see Supplementary
Note 13). We conducted this survey mainly through online forms, and
the scope of the survey was randomly selected households in the EDR
pilot. After the surveys were collected, we tested the validity of the
surveys through a rigorous screening process. For the full sample
(n = 7774), 41.2% of the participating households had children, and
38.5% of the participating households had elderly individuals.

Analyses
Matching. EDR rebate program can be seen as an exogenous shock;
however, the selection of the treatment group might not be com-
pletely random. For example, some low-income households, house-
holds with energy conservation potential, or households that aremore
sensitive tomonetary incentivesmight bemore inclined to participate
in the EDR, which might result in self-selection bias. First, we apply
household-level fixed effects to control for time-invariant and unob-
served characteristics, such as income, occupation, energy preference,
and money sensitivity. The fixed effects model can only partially
control for endogeneity problems, and the correction effect is very
limited if the omitted variables contain time-varying and unobservable
factors. Second, we use amatchingmethod. It is difficult for traditional
matching methods (such as propensity score matching) to capture all
of the factors that affect the electricity use behavior during the
declared on-peak times through the covariates. We thus adopt a
dynamic time warping (DTW)-based matching method to control for
the parallel trend between the treatment and control groups45. This
method integrates the households’ 15-min high-frequency and
monthly low-frequency electricity use data on a microscale. From the
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perspective of behavioral results, we believe that the historical elec-
tricity use fluctuation trend contains known, unknown, or difficult-to-
measure variables with traditional methods that affect the willingness
to participate in the EDR. The households with similar electricity use
patterns in the long term (36 months) and short term (15min) before
the trial should be comparable. However, there might be other self-
selection bias based on other unobserved factors other than that can
be capturedby long- and short-termpattern (although the likelihood is
low since the parallel trends assumption is satisfied, Supplementary
Fig. 15).We apply thismethod to divide all samples into different types
of electricity use patterns to ensure that the potential results are ran-
domly distributed within the group (for details, see Supplemen-
tary Note 6).

Difference-in-difference. As a classic method of causal inference, the
DIDmethod has beenwidely used46–49. TheDID analysis of the effect of
the EDR is defined as follows (Eq. (1)):

Elecit =β0 +β1 Treatmenti × Postt
� �

+β2Treatmenti +β3Postt +Xit + εit ð1Þ

where Elecit is the electricity usage of households during the declared
on-peak times. Treatmenti is an indicator of Assignmenti, EDRi and
Messagei when estimating the effect of assignment selection, EDR
rebate coverage and the spillover effect, respectively. Assignmenti is a
dichotomous variable set to 1 if the householdwas assigned to the EDR
programand0 for others. EDRi is a dichotomous variable set to 1 if the
householdparticipated in the EDRprogramand0 for others.Messagei
is a dichotomous variable set to 1 if the household only received the
EDRmessage and0 if the household did not receive themessage.Postt
is a dichotomous variable set to 1 if the datewas the treatment day and
0 for the benchmark day. Treatmenti ×Postt controls for the effect on
electricity use due to the EDR program during on-peak times. β1 is the
DID estimate of the treatment effect. The term Xit represents
the control variables, including wind direction, wind speed, relative
humidity, pressure, the average monthly electricity use of households
and other factors related to household characteristics. εit is the
idiosyncratic error term. In addition, we cluster standard errors at the
cluster-group level to allow for arbitrary serial correlation and
correlation across households within the cluster groups by using
DTWmatching method. We validate the parallel trends assumption in
Supplementary Note 9.

Difference-in-difference-in-difference. To examine the hetero-
geneous effects of the EDR program, we built the DDD model defined
as follows (Eq. (2):

Elecit =β0 +β1 Treatmenti × Postt × Indicatori
� �

+β2 Treatmenti ×Postt
� �

+β3 Treatmenti × Indicatori
� �

+β4 Postt × Indicatori
� �

+β5Treatmenti +β6Postt +β7Indicatori +Xit + εit

ð2Þ

where Indicatori is a dichotomous variable for households set to 1 if
the household is a certain type of household (an urban household, a
household with children, a household with elderly individuals) and 0
for other households. Indicatori ×Postt controls for the differences
experienced during on-peak times by heterogeneous households
regardless of the EDR program. Indicatori ×Treatmenti controls for
the differences in heterogeneous households for the EDR regardless of
whether the trial had begun or not. The term of interest is
Treatmenti ×Postt × Indicatori, which indicates the effect of the
EDR during on-peak times among heterogeneous households. All
other variables are as defined in Eq. (1).

Instrumental variable two-stage approach test. We adopt an
instrumental variable two-stage approach to estimate the effect of the

treatment— not just assignment to treatment—that must account for
noncompliance. To adjust for noncompliance, one can use assignment
to treatment as an instrument for treatment receipt since the initial
assignment was random.We estimate the effects of EDR by fitting two-
stage least squares regressions (with assignment selection as an
instrument for EDR coverage) and estimating the local average treat-
ment effect of EDR coverage. We model this as follows (Eq. (3)):

Elecit =π0 +π1Treatmentit +Xit +αi + uit ð3Þ

where Treatmentit is defined as participating in the EDR trial during
the study period. All other variables are as defined in Eq. (1). We esti-
mate Eq. (3) by instrumental variable regression using the following
first-stage equation:

Treatmentit =β0 +β1IV assignmentit +Xit +αi + vit ð4Þ

in which the excluded instrument is the variable IV assignment that is
a dichotomous variable set to 1 if the household was assigned to the
EDR and 0 for others.

We interpret the coefficient on Treatmentit from the instru-
mental variable estimation as the local average treatment effect of
EDR. In other words, our estimate of π1 identifies the causal effect of
EDR among the subset of households who participated in the EDR
upon winning the assignment but who would not participate in EDR
without winning the assignment (i.e., the compliers).

Sustainability of the incentive-based EDR effect. We examined the
sustainability of the treatment effects through OLS estimations with
the treatment phases.

Elec conservationit = δ0 + δ1Treat cntit + γXit +αi + λt + εit ð5Þ

Elec conservationit =
X

t2T
βtEDRit +φtSpilloverit
� �

+αi + λt + εit ð6Þ

where Elec conservationit is the electricity conservation of house-
holds during the declared on-peak times. Treat cntit refers to the
cumulative number of times participating in the EDR of household i in
phase t. βt and φt are the effect of EDR rebate coverage and the
spillover effect in treatment phase t, respectively. The term αi is
individual fixed effects, and it captures the time-invariant character-
istics of household i. The term λt is time fixed effects, and it captures
the time-variant characteristics of phase t.

Robustness test. Parallel trend test. An important hypothesis for the
DID method is that the parallel trend between the treatment and
control groups is consistent and that there is no systemic difference
over time.We selected the electricity usedata of the samedeclaredon-
peak times for six continuous days (8 pm–9.30 pm from August 15,
2019, to August 20, 2019) to generate interaction terms using time
dummy variables and treatment group dummy variables. The inter-
action termswere used as explanatory variables for the regression, and
the coefficients reflect the difference between the treatment and
control groups. We found that the EDR had a significant effect only on
the treatment day, and there were no systematic differences between
the treatment and control groups before the trial (Supplemen-
tary Fig. 15).

Heckman two-stepmethod test. We collected factors thatmay affect
households’ participation in the EDR through a survey. In the first
stage, the selection equation was constructed, and some factors
causing the participants’ potential motivation were selected as the
exclusive constraint variables. Other factors that may affect the
response were controlled for, such as the house area, the number of
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family members, whether the occupation is in the energy and envir-
onmental protection industries, income, electric vehicles, the region,
the community type, the number of air conditioners, the number of
major appliances, and the average monthly electricity use. In the sec-
ond stage, the inverse Mills ratio was added for regression. We found
that Heckman’s coefficient was significant (coef. = −0.1239, p = 0.027;
Supplementary Table 16), and the coefficients of other similarmethods
were also significant (OLS coef. = −0.0844, p = 0.060; HeckMLE
coef. = −0.1627, p =0.033; Heck2SLS coef. = −0.1626, p = 0.033). These
results are consistent with the conclusion of the paper (for more
details, see Supplementary Note 6).

Placebo test. We performed a placebo test to conduct a counter-
factual test by changing the implementation time of the EDR. Specifi-
cally, we set up hypothetical treatment and control groups and a
hypothetical EDR trial implementation time. We selected the elec-
tricity use data of the same households on non-EDR days (August 15,
2019, and August 16, 2019, that is, assuming the EDRwas implemented
some days in advance). We took the households that actually partici-
pated in the EDR as the hypothetical treatment group, and the
remaining households were used as the hypothetical control group.
The regression results (SupplementaryTables 17–18) show that the key
estimated coefficients in eachgroupwere not significant, whichmeans
that following the removal of the EDR trial, there were no systematic
differences in the changes in electricity use between the treatment and
control groups. This finding proves that our previous estimation
results are robust.

Inclusion and diversity statement
We value diversity in our research and strive for a culture of inclusion.
We pledge to cultivate an environment and culture that promotes
inclusion and values the respectful participation of all individuals who
help advance the mission.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The individual electricity consumption data were obtained from the
State Grid through the high-speed power line communication (HPLC)
smart meters. We are restricted by a non-disclosure agreement and
cannot share the individual data publicly, but information about the
aggregated statistics generated during the study can be found
on GitHub at https://github.com/BinLu-leo/Emergency-Demand-
Response-effect. Other data used for this study are all retrieved from
publicly available sources and the sources for each variable can be
found in the final compiled datasets (excluding the individual elec-
tricity consumption data) and source data can be found on GitHub at
https://github.com/BinLu-leo/Emergency-Demand-Response-
effect. Source data are provided with this paper.

Code availability
All code used to process data and generate the figures, tables, and
results in this study are publicly available on GitHub at https://github.
com/BinLu-leo/Emergency-Demand-Response-effect.
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