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Domain adapted brain network fusion
captures variance related to pubertal brain
development and mental health

Dominik Kraft 1 , Dag Alnæs2 & Tobias Kaufmann 1,2,3

Puberty demarks a period of profound brain dynamics that orchestrates
changes to amultitude of neuroimaging-derived phenotypes. This complexity
poses a dimensionality problemwhen attempting to chart an individual’s brain
development over time. Here, we illustrate that shifts in subject similarity of
brain imaging data relate to pubertal maturation in the longitudinal ABCD
study. Given that puberty depicts a critical window for emergingmental health
issues, we additionally show that ourmodel is capable of capturing variance in
the adolescent brain related to psychopathology in a population-based and a
clinical cohort. These results suggest that low-dimensional reference spaces
based on subject similarities render useful to chart variance in brain devel-
opment in youths.

Recent availability of big data in the neurosciences and sparking
technical advances have opened doors toward a system level under-
standing of high-dimensional, multimodal data, integrating informa-
tion from genetic, behavioral, and neuroimaging sources, amongst
others1. Such deep phenotyping avenues are holding great promise to
unravel the complexity andheterogeneity ofmental disorders,where a
multitude of factors have been identified as contributors to the risk
architectures and clinical phenotypes2–4.Multimodal bigdata, however
comes with the curse of dimensionality5 or hurdles regarding how to
efficiently and effectively integrate different information sources in
biologically meaningful manners6,7.

Previous research has approached the task of data integration
from various angles, from data concatenation to sophisticated
modeling7 such as similarity network fusion (SNF8). First application
attempts of SNF to common brain disorders have illustrated its
potential for deriving insights from heterogeneous populations such
as thosewith psychiatric (e.g.9) or neurological (e.g.6) disorders. SNF is
an unsupervised technique that integrates unique and complementary
information from different data sources, thus placing individuals in a
comprehensive and biologically informed feature space, which is
defined by the similarity between subjects across all data modalities.
To achieve this, SNF exploits the covariance between data modalities.
Subsequent dimensionality reduction methods such as diffusion map

embedding10 may reveal dominant axes of inter-subject similarity on
which subjects can be localized by a single score.

Similar attempts of charting an individual’s position on a data
continuum have recently shown success in psychiatry, wheremapping
dimensions of psychopathology can yield advantages over categorical
systems, e.g.11,12.

A key challenge in dimensions that are based on inter-subject
similarity is that newly added samples can inevitably result in a
change to the overall similarity structure. Consequently, the
score that localizes an individual on the dimension is not stable as
would be desirable in biomarker utilities, thus marking a dis-
advantage compared to other data-derived markers such as
polygenic risk scores or measures of brain structure. To over-
come this, we here propose a machine learning (ML) framework
that learns the mapping from raw structural MRI features to the
low-dimensional brain embedding score and through supervised
domain adaptation allows to transfer this mapping into new
datasets without the need to recalculate the fused network. Fig-
ure 1A describes the framework schematically. Our approach
comes with advantages over modeling fused networks indepen-
dently for individual datasets and timepoints: First, our ML model
establishes a subject similarity reference space in an independent
training sample, allowing for robust predictions at an individual
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subject’s level in unseen data. Second, domain adaptation offers
flexibility to adapt the model to other datasets that have unique
characteristics, such as repeated measures in a longitudinal
design or heterogeneity that is commonly found in patient sam-
ples. To this end, we trained our model in the Philadelphia Neu-
rodevelopmental Cohort (PNC)13 and withheld data from the
target datasets that was used for domain adaptation. We vali-
dated our approach in an unseen longitudinal sample from the
Adolescent Brain Cognitive Development (ABCD) Study14 and on a
clinical population of subjects from the Healthy Brain Network
(HBN)15 sample. Both datasets allow to investigate unique pro-
cesses shaping the human brain in development, specifically
pubertal maturation, and emerging psychopathology.

Puberty depicts a phase of biological and psychological changes
potentially mediated by neurodevelopment beyond the effect of
age16–18. Variables assessing pubertal status can thus be more
sensitive measures than age for studying brain maturation in youth
(e.g.,19). Previous work revealed global reductions in cortical gray
matter volumes and thickness with advanced pubertal maturation,
with evidence from both, cross-sectional and longitudinal data.
These effects appear to be distributed across the whole cortex rather

than being circumscribed to a specific set of regions (see ref. 17 for a
review). However, as different studies use different approaches to
account for age and sex, inconsistencies exist in terms of effect sizes
and effect directions, including those of opposing effect directions in
males and females20,21. These conflicting observations might arise
from certain methodological choices but also from individual varia-
bility in pubertal timing and progression through maturational
stages.While all adolescents undergo the samepubertal stages, there
is quite some variability regarding pubertal onset and tempo of
changes, which has been linked to mental health conditions22–24. In
females, earlier pubertal timing appears to be associated to worse
mental health conditions (e.g.,22,25), while for boys both very early and
very late onset has been linked to worse psychological outcome
(e.g.,26,27).

Given the close interplay between pubertal maturation, brain
development, and its link to emerging psychopathology, we aimed at
investigating the sensitivity of brain embeddings toward these two
entities. We show that our model captures variance of pubertal brain
development and allows to capture biological variance related to
emerging psychopathology, suggesting its utility in investigating
within-person changes in youths.
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Fig. 1 | Inferring a reference space using domain adaptation on brain network
embeddings. A Schematicworkflow of the prediction framework. Step 1: Similarity
network fusion is followed by diffusion map embedding to extract individual
subject scores of the first brain embedding. Step 2: A machine learning model is
trained to learn the mapping between raw features and the first brain embedding
score. Using domain adaptation, held-out subsets of the target data (yellow) from

ABCD or HBN are added to the training, respectively. Step 3: Such domain adap-
tation enhances out of sample prediction for unseen (gray) data in both datasets.
B Predicted brain embeddings for the ABCD baseline (x-axis) and 2-years follow-up
(y-axis) data reveal a sex gradient. PNC Philadelphia Neurodevelopmental Cohort,
ABCD Adolescent Brain Cognitive Development, HBN Healthy Brain Network.

Article https://doi.org/10.1038/s41467-023-41839-w

Nature Communications |         (2023) 14:6698 2



Results
Model performance
We applied SNF with subsequent diffusion map embedding to data
from N = 1594 individuals spanning a wide developmental age range
(8–21 years, PNC13).

Akin to other dimensionality reduction approaches, the first brain
embedding captures most variance and was therefore used to build
the reference space, referred to as brain embedding. We trained a
machine learning model with an instance-based domain adaptation
procedure (Transfer AdaBoost for Regression)28 in a combined sample
comprising the PNC sample and held-out data from ABCD or HBN to
learn themapping between rawMRI features—specifically cortical area
and volume—and the brain embedding. This yielded a domain adapted
reference model that could be applied to independent data in the
ABCD and HBN samples. For the ABCD test sample, we applied the
model on baseline and 2-years follow-up data, yielding two predictions
per participant. For the cross-sectional HBN sample, themodel yielded
one prediction per participant. Model performance was calculated by
comparing the predicted brain embeddings in the ABCD and HBN
dataset to the ‘ground truth’ brain embeddings after performing SNF
and diffusion map embedding on the respective test datasets. Our
model achieved high performance in unseen data, both for the ABCD
and HBN sample (Table 1). Brain maps illustrating the associations
between brain embeddings and raw features showed similar patterns
in both samples (Supplementary Fig. 1).Model performancewas better
in the ABCD sample, whichmight bedriven by the fact, that the sample
for domain adaptation in the ABCD dataset was approximately 5×
larger than the one used for HBN, allowing for a more efficient shift
towards the target distribution. Furthermore, the HBN set comprised
data from patients, thus the lower accuracy may to some degree also
reflect pathological variance. Moreover, within the ABCD sample,

baseline performance was slightly better compared to the follow-up
data, since the data used for domain adaptation was also from the
baseline study visit. Given successful performance of the model, we
proceeded to validating the biological signal in the predictions.

Biological validation of the model
We validated the biological utility of the predictions in capturing
developmental brain dynamics by targeting puberty andmental health
as twophenotypes that are closely related to each other. They both lay
off their dynamics during adolescence and therefore are also inter-
twined with (developmental) brain trajectories24,29. We hypothesized
that these phenotypes should be related to our brain embedding
score. To assess the models‘ ability to capture variance cross-section-
ally, we first calculated puberty associations for both timepoints and
their respective brain embeddings in the ABCD sample, accounting the
statistical model for age and scan site. We observed associations
between the average puberty score measured with the Pubertal
Development Scale (PDS)30 and the predicted brain embedding at both
timepoints for the caregiver reports (baselinefemale: b = −0.34,
p = 6.88 × 10−16, η2 = 0.02, N = 3344; baselinemale: b = −0.36,
p = 5.53 × 10−10, η2 = 0.01, N = 3920; follow-upfemale: b = −0.27,
p = 1.94 × 10−15, η2 = 0.03, N = 3316; follow-upmale: b = −0.17, p = 1.39
× 10−15, η2 = .008, N = 3910). In youth reports we observed similar
effects although some did not survive Bonferroni correction
(baselinefemale: b = −0.17, p =0.005, η2 = .006, N = 1479; baselinemale:
b = −0.06, p =0.34, η2 = 0.0005, N = 2264; follow-upfemale: b = −0.20,
p = 2.66 × 10−9, η2 = 0.02, N = 3271; follow-upmale: b = −0.14, p =0.0003,
η2 = 0.006, N = 4056; see Fig. 2). Aiming at replicating these puberty
associations in the clinical HBN sample, we performed two additional
analyses in which we subsampled the HBN sample to the age of the
ABCD baseline and the ABCD follow-up data. Calculating the same
cross-sectional puberty models in these HBN subsets did not yield
statistically significant results (Supplementary Data 1).

Beyond the cross-sectional associations, the framework allows to
apply the model to longitudinal data of the same subjects and inves-
tigate change scores between timepoints, as the predicted brain
embedding ismodeled with respect to the reference and thus remains
stable compared to fused networks derived from individual time-
points, which might introduce additional variance when computing
the difference score. Accordingly, we argue that the difference
between two predicted brain embeddings (Δ brain embedding) is
capable of tracing brain trajectories and thusmay serve as amarker for

Table 1 | Model performance for unseen data in the ABCD and
HBN sample

RMSE MAE R2 r

ABCDbaseline 0.95 0.85 0.79 0.94

ABCDfollow-up 1.02 0.91 0.78 0.94

HBN 1.50 0.95 0.65 0.92

RMSE root-mean-squared error, MAE mean absolute error, R2 coefficient of determination, r
Pearson correlation coefficient.

beta

Fig. 2 | Associations between brain embeddings and puberty, both in cross-
sectional and longitudinal data. First two columns in (A) and (B) refer to asso-
ciations between predicted brain embeddings and the respective pubertal score

(PDS mean) per timepoint. Δ refers to the association between the Δ brain
embedding and theΔ PDSmean score. Annotations refer to effect sizes (betas) and
hashed cells indicate non-significant results.
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brain dynamics. Hence, we were particularly interested whether the Δ
brain embedding captures biologically meaningful pubertal variance
and is thus sensitive to biologically relevant processes shaping the
human brain. Consequently, we repeated the linear models with Δ
brain embedding as dependent and the Δ PDS scores (i.e., the puberty
difference between baseline and 2-years follow-up) as independent
variable (caregiver report: female mean =0.77, male mean=0.38,
youth report: female mean=0.70, male mean= 0.21). For age adjust-
ment of this longitudinal analysis, we included the age difference
between baseline and the 2 years follow-up (Δ age) as a covariate.

Whereas cross-sectional effect sizes were comparable between
sexes across both timepoints, change association appeared to bemore
pronounced in females. For females we observed significant associa-
tions between Δ PDS and Δ brain embedding for both caregiver
(b = −0.06, p = 2.37 × 10−10, η2 = 0.02, N = 3135) and youth report
(b = −0.08, p = 3.79 × 10−11, η2 = 0.04, N = 1375) whereas for males,
associations did not pass adjustment for multiple comparison (Bon-
ferroni-adjusted α =0.05/12 = 0.004; caregiver: b = 0.01, p =0.19,
η2 = 0.0002, N = 3700; youth: b = 0.01, p = 0.36, η2 = 0.0003, N = 2204;
see Fig. 2). These effects for females were evenmore pronounced after
controlling for baseline puberty status (caregiver: b = −0.08,
p = 7.88 × 10−20, η2 = 0.02, youth: b = −0.11, p = 2.38 × 10−18, η2 = 0.04). It
is worth noting that whereas age explained some variance in the brain
embedding scores, significant pubertal effects were always larger than
the respective age effects (Supplementary Data 2), supporting that the
brain embedding captures variance relevant to pubertal development
beyond age related brain changes. After accounting for Body Mass

Index (BMI), socioeconomic status (SES), and race/ethnicity in the
puberty association models, associations between Δ PDS and Δ brain
embedding remained significant whereas cross-sectional associations
did not (Supplementary Fig. 2 for methodological details and Sup-
plementary Data 2 for exact model outcomes), further supporting
sensitivity of the approach to longitudinal contexts.

Related, we observed that Δ brain embeddings are distributed
quite equally across males and females for early pubertal stages,
whereas from the ‘midpubertal’ period onwards distributions start to
diverge with respect to earlier developmental stages but also with
respect to between group differences (Fig. 3). Interestingly, deviations
between sexes get even more pronounced with females‘ menarche,
that marks the onset of the late pubertal state.

Puberty and adolescence depict a time of cascading changes
ranging frombiological, emotional to social domains and this phase of
transition also constitutes a sensitive and critical period for emerging
psychopathology and mental disorders24,31,32. Assuming that mental
disorders emerge as deviations from a brain ‘norm’33 we argue that our
approach of modeling the low-dimensional representation anchored
to a population sample may allow to exploit the resulting reference
space (i.e., the brain embedding) in a normative fashion. To validate
this, we tested in a sample of patients drawn from the HBN15 cohort for
associations between thepredictedbrain embedding score andmental
health. We calculated a proxy measure for psychopathology severity,
that is the sum of all diagnoses per subject. Participants had between 1
and 10 diagnoses (meanmale= 2.71, stdmale = 1.62, meanfemale = 2.71,
stdfemale = 1.55). Using this proxy measure as independent variable

Fig. 3 |DistributionofΔbrain embedding in theABCDsample stratified for sex andpubertal categoriesatone-year follow-up.Pubertal categories are basedon youth
report, but caregiver-based categories follow the same pattern (Supplementary Fig. 3). Vertical dashed lines indicate the mean Δ brain embedding per group.
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together with age and site as covariates, we did not observe a sig-
nificant effect of psychopathology on the brain embedding for males
(b =0.04, p = 0.05, η2 = 0.001, N = 1487), but for females the effect
survived multiple comparison correction (b =0.07, p = 0.007,
η2 = 0.007, N = 784; Bonferroni-adjusted α =0.05/2 = 0.025). The
identified association remained significant when covarying for PDS
(females: b = 0.07, p =0.01, η2 = 0.01, N = 589), yet PDS itself was not
significant in this cross-sectional sample, nor were interaction terms
between puberty and psychopathology (see Supplementary Data 1 for
all effects). Replacing the sumof diagnosiswith a dimensionalmeasure
of psychopathology, i.e., the CBCL total score (Child-Behavior
Checklist34) we replicated the effects from the previous analysis. Spe-
cifically, we did not observe a significant effect of psychopathology on
the brain embedding for males (b =0.002, p =0.06, η2 = 0.004,
N = 1269), however, for females the effect reached statistical sig-
nificance (b =0.004, p =0.008, η2 = 0.01, N = 635). The identified
association for psychopathology operationalized via the CBCL total
score in females remained significant when controlling for puberty
(PDS): b = 0.005, p = 0.002, η2 = 0.02, N = 471. Since dimensional
measures of psychopathology allow to test these associations also in a
non-clinical sample, we aimed at validating these findings in the cross-
sectional and longitudinal data from the ABCD sample. Here, we
observed significant effects (allp <0.005) between theCBCL score and
the brain embedding, for all cross-sectionalmodels (males and female)
and the longitudinal model in males (Supplementary Fig. 4 and Sup-
plementary Data 2 for details and exact effect sizes).

Discussion
The present work illustrates a proof of concept for an approach that
allows to map high high-dimensional brain imaging data into a low-
dimensional brain embedding score which can be then transferred to
newdatasets bymeans ofdomain adaptation andmachine learning. By
doing so, our framework builds upon similarity network fusion8 inte-
grating information from different data sources, but does not suffer
under the instability of similarity measures and thus can be translated
to datasets with unique features such as longitudinal study designs or
clinical cohorts without the need to recalculate a fused network in the
new sample.

To validate our framework and to test its applicability to other
datasets, we trained ourmodel in a sample of subjects spanning a wide
age range from the PNCcohort13 with simultaneous supervised domain
adaptation and tested it on two independent validation samples, that is
longitudinal data from the ABCD Study14 and a clinical population of
subjects from the HBN sample15. Domain adaptation in both datasets
was enhanced with independent data that was later not used in the
prediction process, such as data from ABCD subjects for whom only
baseline data was available and participants in the HBN cohort without
clinical diagnoses.Model performancewas high for unseen test data in
both datasets, confirming the model’s ability to generalize to other
cohorts. Our approach thus proved useful in two unseen datasets that
both displayed unique sample characteristics.We hypothesize that the
good model performance also relies on choosing the PNC sample as a
source task which stores a rich repertoire of (dis)similarities between
participants, fromwhich the domain adaptation procedure for the two
newdatasets couldhavebenefitted.However,we consider it important
to further investigate the frameworks‘ boundaries in terms of sample
characteristics of the source and target datasets, that is, under which
condition the model performance diminishes.

Beyond model building, we aimed at investigating whether brain
embedding scores are sensitive to capture biologically meaningful
variance in processes shaping the brain and thus may represent a
useful imaging phenotype for (developmental) brain dynamics. Rela-
ted to work suggesting a close link between pubertal dynamics and
neurodevelopment19,29,35, we observed significant cross-sectional
associations between the predicted brain embedding scores and

puberty measures for all models at all timepoints except for baseline
data based on youth reports, which might have been biased by the
difficulty to rate one´s own pubertal maturation at these early ages.
Such bias appears to be particularly true for males at baseline (see
Supplementary Fig. 5). In addition, we observed higher correlations
between caregiver and youth reports for the 2-year follow-up, sug-
gesting an overall better alignment between reports, potentially
minimizing biases. Of note, all analyses were performed stratified for
sex, because the brain embeddings span a sex-gradient (Fig. 1B), and
pubertal timing and trajectories are known to vary between females
and males36. Moreover, for models in which we observed significant
puberty effects, these effects were always larger than the respective
age effects, supporting its sensitivity to puberty specific dynamics
beyond age.

After adding BMI, SES, and race/ethnicity37,38 as covariates into
our model, cross-sectional effects diminished. This aligns with
reports suggesting a close link between those factors and pubertal
timing and duration (e.g.,38,39). Given the high inter-correlation
between the studied variables, it may be difficult to disentangle
variance to distinct components. Therefore, we argue, that long-
itudinal analyses may help to resolve the ambiguity of the cross-
sectional analyses. Since the ABCD study offers an unprecedented
resource for granular investigations of child and adolescent brain
and pubertal maturation, we leveraged the longitudinal data of the
ABCD cohort and investigated whether the Δ brain embedding, that
is the difference between the two predicted brain embedding scores
for baseline and the 2-years follow-up data, can serve as an additional
marker for brain trajectories. Pubertal associations with the Δ brain
embeddings were significant for females, but not for males, which
appeared to align with the pubertal maturation in females in the
studied time period. The same pattern was observable when con-
trolling for BMI, SES, and race/ethnicity, supporting that the reported
cross-sectional puberty effects do not simply represent differences
in these confounding factors either.

Moreover, it appears that the Δ brain embeddings for both sexes
follow a comparable distribution in early pubertal stages, whereas
from females´ menarche onwards, both patterns start to deviate from
each other. Given the narrow age range in the ABCD study, pubertal
categoriesmay serve as a proxy for pubertal timing with females often
undergoing earlier puberty. Greater pubertal stage for a given age has
been related tomoremature, i.e., thinner cortices (e.g.22), whichmight
be a putative explanation for the divergence in theΔ brain embedding.
Upcoming releases of the ABCD data may help to further investigate
the Δ brain embedding and its ability to capture subtle biological
processes like pubertal maturation. With additional longitudinal data
one would also expect to have access to more datapoints that repre-
sent male participants in later pubertal stages potentially allowing to
better disentangle the putative brain trajectories encoded by the Δ
brain embedding. While studies on normative brain development
generally report overarching brain trajectories across different brain
measures40, recent work by Bottenhorn and colleagues41 highlight a
high degree of intra- and interindividual variability in brainmaturation
across imagingmeasures. Identifying andunderstanding these sources
of variance depict an important step towards population-level neu-
roscience, which however may complicate downstream analyses
because of the heterogeneity across regions and imaging measures.
Because of its sensitivity to pubertal processes shaping the human
brain, we suggest that our approach may help to unify those different
sources of variance into a condensed score that does not only serve as
a dimension reduction technique but places individuals in a biologi-
cally meaningful feature space.

Since puberty is a critical time window for emerging mental
disorders24,31,32, we aimed at additionally exploiting the models pre-
dictions as a ‘normative’ score and tested its association to psycho-
pathology in the HBN sample. In females only, we observed small yet
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significant effects of psychopathology severity on the brain
embedding score.

By accounting these analyses for age, we ruled out that these
associations simply mimic a larger number of diagnoses with
increasing age. Since descriptive statistics of the number of diagnoses
were almost identical across sexes (Supplementary Fig. 6), we deem it
unlikely that such subtle variances might have driven differences in
association strength. Amore likely explanationmight be the diagnoses
themselves, as we observed diagnosis distributions matching the
known patterns of more male-prevalent (e.g., ADHD) vs. more female-
prevalent (e.g., mood or anxiety) disorders. Thus, it may be possible
that the derived brain embeddings are more sensitive to female-
prevalent disorders. Even though puberty associations did not reach
statistical significance in the HBN sample, they pointed towards higher
effects in females. As many female-typical mental disorders emerge
during puberty42 our brain embedding may also have a higher sensi-
tivity towards those disorders. However, sincewe were not able to test
this directly because of sample size restrictions, this line of reasoning
should be considered as hypothesis generating and needs to be
investigated in future research. When extending the model with pub-
ertal variables, we did not observe additional effects, which may be
related to prevalence of emerging psychopathology in the HBN sam-
ple, which may interfere with puberty and may thus explain, why we
were not able to replicate the cross-sectional puberty associations in
the HBN sample. Furthermore, subsampling the HBN sample to the
respective age ranges of the ABCD visits decreased the available
sample size in a way that has not sufficient statistical power to detect
small to moderate effects.

We acknowledge that the sum of diagnoses in the HBN sample
rather depicts a coarse measure of psychopathology, however, by
expanding our work with a dimensional measure (the CBCL total
psychopathology score), we did observe similar associations. Fur-
thermore, both measures were moderately correlated (r ~ 0.3) sup-
porting our initial approach to operationalize sum of diagnosis as a
measure of psychopathology severity. Future research may leverage
more fine-grained quantities, such as hierarchical representations of
psychopathology (HiTOP43) or different syndrome scales to better
disentangle associations between the (Δ) brain embedding score and
emerging mental health conditions during puberty. For example,
dimensional approaches may further help to investigate whether the
brain embedding scores are sensitive to capture neuronal variance of
early pubertal timing (e.g., early menarche in females44 and their
relationship to internalizing psychopathology45). To overcome sample
size restrictions often observed in clinical samples, leveraging the
longitudinal data from ABCD may further help to investigate the
marker’s sensitivity to capture refined, but biologically meaningful,
mental health processes related to brain dynamics46. Our validation
analyses in the ABCD sample yielded small—yet significant—effect for
the psychopathology associations, indicating that our model may also
be sensitive to subtle psychopathological manifestations that do not
(yet) exceed a clinical threshold. These initial results suggest that our
approach may also render useful to study psychopathology in future
releases of the ABCD sample.

Potential limitations might stem from the fact that only two
imaging modalities, that is brain volume and surface area, were inte-
grated in our framework. Since brain volume and area follow a com-
parable normative developmental trajectory from late childhood into
late adolescence40, building similarity networks on bothmeasuresmay
result in robust and non-sparse reference space that allows to better
disentangle sex effects, since additional heteroscedasticity of different
imaging measures may be mitigated41.

However, beyond the proof-of-concept of the current study, we
nevertheless deem it important to extend our approach with addi-
tional (imaging) modalities to tests its generalizability beyond the two

imaging features. Furthermore, integrating additive data sources may
result in a more holistic (i.e., multimodal) phenotype representing
brain development or dynamics which may help to explain additional
variance in behavioral or mental health measures and thus may sub-
stantiate the brain embedding score utility in capturing brain trajec-
tories. In addition, focusing on more than the first brain embedding
might also help to explain additional variance in the tested associa-
tions. However, we consider it essential for future work to system-
atically test how modality-specific information is encoded in the brain
embeddings before testing if later embeddings contain biologically
meaningful between or within subject variances. Lastly, since our
model results in a single brain embedding score, our current approach
is limited in its spatial interpretability. While univariate analyses may
yield the highest interpretability, they come at the cost of methodo-
logical hurdles, such as multicollinearity, high dimensionality, or
conflicting feature importance despite similar model performances
(e.g.,47,48). Beyond those hurdles, modeling brain maturation and sex
differences introduces additional variance, which might be difficult to
model in an univariate fashion41,49. Our approach of integrating high-
dimensional data into a single score may facilitate the modeling of
developmental slopes and might thus be better suitable for tracking
within-subject changes. To address limitations in interpretability, we
provided brain maps illustrating the correlation of each brain feature
to the brain embedding (Supplementary Fig. 1). Similarity in these
maps between cohorts supports robustness of the observed patterns.
Other approaches, such as feature deletion50 may further increase
post-hoc interpretability.

We introduced an approach which allows to integrate high high-
dimensional imaging data into a coherent feature space in which
subjects can be localized by a single brain embedding score. We sug-
gest that transferring this mapping to other datasets results in a new
imaging phenotype which inherits a sensitivity to capture meaningful
and biologically relevant processes shaping human brain dynamics.

Methods
Sample descriptions
PNC. As source model we used imaging data from the Philadelphia
Neurodevelopmental Cohort (PNC), a large-scale cross-sectional
population study of child and youth between 8- and 21-years age
dedicated to study (brain) development. All PNC study procedures
were approved by institutional review boards of the University of
Pennsylvania and the Children’s Hospital of Philadelphia. All partici-
pants or their caregiver providedwritten informed consent. Data in the
PNC sample was acquired from a single site13. We included data from
N = 1594 individuals with available T1-weighted imaging (females =
834, age: M= 14.95, SD = 3.69; sex was obtained from electronical
medical records). We used brain area and volume of 68 cortical brain
regions matching the Desikan-Killiany atlas51 estimated from T1 MRI
images using FreeSurfer (version 7.1.1)52.

ABCD. TheAdolescentBrainCognitiveDevelopment (ABCD)Study is a
10-year longitudinal study of children recruited at age 9 to 10 aiming at
characterizing brain developmental trajectories. Overall ~11.000 chil-
dren were recruited across 21 different sites in the United States14.
Study procedures have been approved by either the local site Institu-
tional Review Board (IRB) or by local IRB reliance agreements with the
central IRB at the University of California. All participants and their
parents providedwritten informed consent. Data for the current study
was obtained fromABCD release 4.0 utilizing phenotypic and imaging
data from the baseline and 2-years follow-up study visit. Preprocessed
imaging data from the Desikan-Killiany atlas (68 regions)51 were
downloaded from the NIMH data archive. Since we were interested in
the longitudinal data, we included only children having MRI data from
both baseline and 2-years follow-up visit (N = 7776, females = 3587,
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agebaseline: M = 9.90, SD =0.62; agefollow-up: M = 11.90, SD =0.65; sex is
defined as biological sex assigned at birth).

HBN. The Healthy Brain Network (HBN) is a community sample of
children and adolescent (ages 5–21) in the New York area aiming at
capturing and investigating the heterogeneity in developmental psy-
chopathology and its biological underpinnings15. Imaging data was
acquired across four different scanning sites and study procedures
were approved by the Chesapeake IRB. All participants or their care-
giver provided written informed consent. Brain area and volume of 68
cortical brain regions fromT1MRI imageswere estimated according to
the Desikan-Killiany atlas51 using FreeSurfer (version 7.1.1)52. Based on
clinical diagnostic information and the presence of a primary diag-
nosis, we integrated data from N = 2271 (females = 784, age: M= 10.43,
SD = 3.45; sex is defined as biological sex assigned at birth)
participants.

Model building and testing
Brain volume and area from the Desikan-Killiany atlas51 were used to
construct fused similarity networks with snfpy (version 0.2.2, https://
github.com/rmarkello/snfpy). In the following we will briefly describe
the SNF workflow but refer the reader to Wang et al.8 for a more
detailed description: First, we generated subject x subject affinity
networks for MRI area and volume by converting between-subject
(squared euclidean) distances to similarities with a scaled exponential
kernel, respectively. Next, SNF iteratively fused each feature affinity
matrix resulting into one symmetric similarity matrix integrating
information fromall data sources.Bothprevious steps are governedby
the hyperparameters K (i.e., the number of neighbors to consider) and
μ (i.e., weighting of between subjects’ edges) with K∈ [1, 2,…, i], i ∈ ℤ
and μ ∈ ℝ+. Markello et al.6 performed a grid-search across 10.000
hyperparameter combinations and reported consistent embeddings
across all combinations (rmean = 0.97), suggesting a neglectable effect
of extensive hyperparameter tuning for consecutive analyses aiming at
continuous representations. We thus set K = 30 and μ = 0.8 in accor-
dance with the suggested range of values in snfpy. The fused matrix is
full rank and can then be either subjected to clustering or dimen-
sionality reduction to achieve continuous representation of the data in
a low-dimensional space. Since we were interested in the latter, we
performed diffusion map embedding on the fused network to derive
low-dimensional representations of the imaging data using BrainSpace
(version 0.1.3)53. Diffusion map embedding is a non-linear dimension-
ality reduction technique that projects the raw data onto dimensions
(i.e., brain embeddings) that encode the primary axes of between-
subject similarity. The resulting embeddings are unitless and subjects
can be localized according to their inter-subject similarity along these
dimensions6. Critically, diffusion map embedding has been shown to
be sensitive to non-linear relationships and robust against noise per-
turbations compared to other techniques, such as Principal Compo-
nent Analyses (PCA)10,54. The diffusion time parameter twas set to zero
to model the most global relationship of the input data10. For further
analyses the first brain embedding was used, as it captures the highest
variance akin to PCA.

For our machine learning framework we then trained an Elastic
Net in scikit-learn (version 1.0.2)55 to learn themappings between the
raw feature space (i.e., area and volume MRI data, each with shape
1594 × 34 after averaging features across both hemispheres) and the
first brain embedding. Since our goal was to maximize out of sample
generalizability, we (1) trained the model with default parameters
(l1_ratio = 0.5 balancing L1 and L2 norm regularization, alpha= 1.0
which tunes the overall penalty strength) aiming at minimizing
overfitting to the training set and (2) utilized an instance-based
supervised domain adaptation (Transfer AdaBoost for Regression;
TrAdaBoostR2)28 implemented in ADAPT (version 0.4.1)56.

TrAdaBoostR2 combines a source (PNC) and target data set into a
single set and performs reverse boosting in which weights of the
source instances poorly predicted decrease at each iteration while
the ones of the target instances increases, thus shifting the relative
importance towards the target set28. Thus, the algorithm makes use
of those source instances that are similar to the target domain and
ignores the ones that are more dissimilar. Since increasing the
boosting iterations may lead to overfitting, the algorithm per default
uses the weightedmedian of the last N/2 iterations for prediction. To
avoid data leakage, we used held-out data from the ABCD and HBN:
For the ABCD data we used N = 3984 (females = 2027, age: M = 9.95,
SD = 0.63) children for which only baseline imaging data was avail-
able at release 4.0. In the HBN sample we used imaging data from a
healthy sample of N = 389 (females = 162, age: M = 10.45, SD = 3.81)
for which no primary diagnosis was reported. Of note, for the latter
we did pool subjects with the label ‘no diagnoses’ either based on a
complete or aborted evaluation. For both datasets we used brain
volume and area from the Desikan-Killiany atlas51. Since MRI data was
acquired on different scanners both for the ABCD and HBN data, we
harmonized both the volume and area imaging data individually
using neuroCombat (version 0.2.12)57. Of note, batch correction was
performed on individual timepoints for the ABCDdata and separated
for train and test set.

After fitting with domain adaptation, we applied the model to
unseen test data from theABCDandHBN, respectively. To quantify the
quality of predictions we additionally also performed SNF and diffu-
sionmap embedding on theABCD andHBN test sample and calculated
errormetrics (MSE;MAE; RMSE) andR2 and correlation values between
the predicted and ‘true’ first brain embedding after orthogonal Pro-
crustes alignment with mapalign (version 0.3.0, https://github.com/
satra/mapalign)58. A schematic representation of the workflow is
depicted in Fig. 1A. In addition, Supplementary Fig. 1 depict the cor-
relation between the raw features and the first brain embedding in the
HBN and ABCD sample, respectively.

Modeling puberty
Pubertal development in the ABCD andHBN sample was assessed with
thePubertal Development Scale (PDS)whichwasdesigned to resemble
the Tanner stages without the need of a physical examination30,38. The
child’s pubertal development is rated on a four-point Likert scale
ranging from ‘has not begun’ to ‘completed’with one exception, that is
a binary response item regarding females’menarche. Overall, there are
general and sex-specific items that are administered with respect to
the biological sex, e.g., voice-deepening or breast development. The
rating can be conducted by the children or their caregivers, thus
reflecting self or other-perceived pubertal maturation. In the ABCD
study both children and caregiver report are available for both
timepoints38, whereas in the HBN study only participant responses are
available15. Individual sex-specific item scores were used to calculate
the average PDS score (PDSmean) in line with procedure described in
Herting et al.37. For longitudinal associations, we additionally calcu-
lated a Δ PDS score as a marker for pubertal maturation, that is the
difference between baseline and 2-years follow-up PDS score. More-
over, pubertal category scoreswerederived formales and females. For
males, the sumof three items related to pubic and facial hair growth as
well as voice deepening was calculated. For females, pubic hair growth
and breast development was summed and information about the
menarche was additionally incorporated. Eventually, pubertal scores
were converted into pubertal categories ranging from prepubertal to
post pubertal based on the ABCD conversion scheme (see Supple-
mentaryTable 1). The frequency of pubertal categories for the baseline
and follow-up data is shown in Supplementary Table 2. PDSmean scores
were also calculated in the HBN sample to test for out-of-sample
replicability and generalizability.
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Modeling psychopathology
In the HBN sample each participant and their caregiver underwent an
online version of a semi-structured DSM-5 based psychiatric interview
(K-SADS)59 to derive clinical diagnoses. Consensus diagnoses for each
participant are made based on the overlap of the child and caregiver
interview by a research clinician15. We calculated the sum of all con-
sensus diagnoses per subject as a proxy for psychopathology severity.
Frequencies of psychopathology measures can be derived from Sup-
plementary Table 3.

Association analyses
All association analyses were performed with statsmodels (version
0.13.2)60. To test for associations between pubertal development and
the predicted brain embeddings in the ABCD study, we implemented
linear models for each timepoint (i.e., baseline and 2-year follow-up)
with the respective brain embedding as dependent variable (DV) and
the PDSmean score as independent variable (IV) with two-sided sig-
nificance testing. For all associations we additionally report partial-eta-
squared (η2) per predictor of interest. Since we were particularly
interested whether the difference between both brain embeddings (Δ
brain embedding) captures biological variance that is associated to
brain dynamics, we performed an additional linearmodel with Δ brain
embedding as DV and the Δ PDSmean score as IV. Analyses were stra-
tified for sex and youth and caregiver reports accounting for differ-
ences how pubertal development might be perceived38. Despite the
rather narrow age range at each study visit, age or Δ age (i.e., the
difference in age between baseline and 2 years follow-up accounting
for variance in between-visit durations) was added as a covariate to the
linear model in ABCD, to rule out that putative pubertal effects merely
represent aging effects. For the ABCD sample the number of obser-
vations varies between models as the amount of missing data is dif-
ferent per timepoint and depends on whether the participants
themselves or their caregiver provided the data. In theHBN sample, we
tested the association between the predicted brain embedding (DV)
and the sum of diagnoses (IV), which we introduced as a proxy for
psychopathology severity. Based on the close relationship between
puberty and emerging mental disorders, we additionally calculated
linear models which included both the summed diagnoses and the
PDSmean score as IVs and one model containing an interaction term
summed diagnoses: PDSmean score next to the main effects. PDSmean

score was based on participant reports. For the HBN sample the
number of observations varies between models as missing data was
excluded on a model-by-model bases, i.e., dependent on the IVs of
interest. Linear models were stratified for sex and age and site were
added as covariates of no interest. All linear models were Bonferroni
corrected for multiple comparisons61.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Data used in this study was accessed under data use agreements of the
respective study cohorts (ABCD, PNC, HBN). Raw data must not be
shared directly by the study authors, but researchers can get access
through own data use agreement and use our shared scripts to
reproduce the results.

Code availability
All code used in this manuscript is available on github (https://github.
com/dominikkraft/DomAdapt_BrainNetFusion) and Zenodo (https://
doi.org/10.5281/zenodo.8223987; release v1.0.0) and builds upon
python 3.7.11. Basic data handling relied on pandas (version 1.3.5)62 and
numpy (version 1.21.5)63. Data visualization relied on matplotlib (ver-
sion 3.5.1)64 and seaborn (version 0.11.2)65.
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