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Predicting in-hospital outcomes of patients
with acute kidney injury
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Acute kidney injury (AKI) is prevalent and a leading cause of in-hospital death
worldwide. Early prediction of AKI-related clinical events and timely inter-
vention for high-risk patients could improve outcomes. We develop a deep
learningmodel basedon a nationwidemulticenter cooperative network across
China that includes 7,084,339 hospitalized patients, to dynamically predict the
risk of in-hospital death (primary outcome) and dialysis (secondary outcome)
for patients who developed AKI during hospitalization. A total of 137,084 eli-
gible patients with AKI constitute the analysis set. In the derivation cohort, the
area under the receiver operator curve (AUROC) for 24-h, 48-h, 72-h, and 7-day
death are 95·05%, 94·23%, 93·53%, and 93·09%, respectively. For dialysis out-
come, the AUROC of each time span are 88·32%, 83·31%, 83·20%, and 77·99%,
respectively. The predictive performance is consistent in both internal and
external validation cohorts. The model can predict important outcomes of
patients with AKI, which could be helpful for the early management of AKI.

Acute kidney injury (AKI) is a leading cause of in-hospital death
worldwide, with a prevalence of about one-fifth in hospitalized
patients1–4. A previous meta-analysis of more than 77 million hospita-
lized patients from 952 studies showed that the pooled incidence of
AKI was 21%, and the in-hospital mortality rate of AKI patients was
approximately 21%1. Among them, patients with AKI stage 3 and those
receiving renal replacement treatment had amortality rate of 42% and
46%, respectively1. Two large-scale inpatient studies in China also
showed that the prevalence of AKI was 2·3% and 11·6%, respectively5,6.
Because of the high prevalence and mortality of in-hospital AKI, early
recognition and treatment are critical to successful outcomes1.

The International Society of Nephrology launched the 0by25
Initiative that aims to eliminate preventable deaths from AKI by 20251.
Meanwhile, despite extensive efforts in recent years, no efficient
treatments can obviously increase or accelerate kidney recovery4. The
American Society of Nephrology has launched a new initiative (AKI!
Now) to promote excellence in the prevention and treatment of AKI by

building a foundational program, to reduce morbidity and associated
mortality and to improve long-term outcomes7.

Following AKI, morbidity andmortality can be decreased through
early detection and intervention. Our previous study revealed that in-
hospital AKI is caused by heterogeneous causes in various depart-
ments, resulting in about three-quarters of patientsmissing diagnosis5.
It increased the risk of clinical adverse events in those overlooked AKI
patients. Artificial intelligence (AI) could be useful for time-sensitive
applications in recognizing, alerting, and providing treatment sug-
gestions for AKI8. Machine learning-based models could detect
AKI early and provide clinicians with much earlier intervention
opportunities9–14. Previous predictions were conducted in special set-
tings, including in patients with hospital-acquired AKI15, postoperative
AKI13, AKI secondary to cancer8, critical illness in the intensive care unit
(ICU)16,17, and patients admitted to the emergency department18. Few
prediction models can cover general patients as well as critically ill
patients or those undergoing major surgery in general hospitals. Due
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to the high heterogeneity of patients, it is difficult to independently
validate these prediction models in general hospitals.

However, the patient’s status is constantly changing, so the pre-
diction of a machine-learning model should be automatically adjusted
based on emerging clinical information and new changes. Tomašev
successfully developed a deep learning model for the continuous risk
prediction of AKI in hospitals based on a large dataset9. Continuous
anddynamic prediction canoffer prompt opportunities for identifying
patients at risk within a window that enables early treatment. We have
previously reported a machine-learning model for AKI using a recur-
rent neural network (RNN) algorithm based on parameters within
three days prior to hospitalization; it effectively predicted AKI and
performed significantly better with time features than without it19.

Although there are many models that can identify patients at risk
for AKI, however, once patients develop AKI, few models predict the
risk of clinically important outcomes (such as hospital deathordialysis)
in AKI patients20. Predictive models for clinically important outcomes
could be helpful in guiding the early management of AKI patients.

In this work, based on a nationwide multicenter cooperative
network across China, we present a deep learning model to dynami-
cally predict the risk of in-hospital death and dialysis for patients who
developed AKI during hospitalization.

Results
Participants
Of the 7,084,339 patients in Chinese Renal Disease Data System
(CRDS), 5,514,410 with ≤1 serum creatinine (SCr) measurement during
hospitalization were excluded. Overall, 200,881 patients developed
AKI during hospitalization. After applying the exclusion and inclusion
criteria, the final dataset consisted of 137,084 patients (Fig. 1).

Characteristics of the cohorts
Table S1 showed the baseline characteristics of the derivation, internal,
and external validation cohorts. The external validation cohort had a
higher percentage of patients with AKI stage 0, higher incidence of
mortality, need for dialysis, use of mechanical ventilation, hyperten-
sion, and diabetes, higher Charlson comorbidity scores, and a lower
percentage of patients who underwent major surgery and ICU admis-
sion than the other cohorts. For laboratory parameters, SCr, C-reactive

protein, chloride, procalcitonin, and erythrocyte sedimentation rate
were higher in the external validation group.

We compared the baseline characteristics between the death and
survival cohorts (Table S2). Overall, 1864 patients with AKI (1.38%) died
in hospital. These dead patients had higher baseline SCr and protei-
nuria, aswell asmore severeAKI stage. Theprevalence of hypertension
and diabetes in the death group was higher than that in the survival
group, and Charlson’s complication score was also higher than that in
the survival group. In the death group, more patients received dialysis
or mechanical ventilation, and stayed in the ICU (Table S2).

Performance of the prediction model for death
In the derivation cohort, the AUROCs for predicting 24 h, 28 h, 72 h,
and 7d mortality were 95.05%, 94.23%, 93.53%, and 93.09%, respec-
tively. The internal validation cohort’s AUROCs were 93.58%, 92.45%,
93.02%, and87.03% at 24 h, 48h, 72 h, and 7d. In the external validation
cohort, the AUROCs at 24 h, 48 h, 72 h, and 7d were 92.43%, 92.16%,
88.36%, and 88.32%, respectively. We presented the accuracy, F-score,
precision, and recall in Fig. 2.

Performance of the prediction model for dialysis
Figure 3a showed the AUROCs for predicting dialysis. In derivation
cohorts, the AUROCs for 24 h, 28 h, 72 h, and 7d were 88.32%, 83.31%,
83.20%, and 77.99%, respectively. The internal validation cohort’s
AUROCs were 88.33%, 82.73%, 83.09%, and 77.25% at 24 h, 48 h, 72 h,
and 7d, respectively. In the external validation cohort, the AUROCs for
dialysis were 74.18%, 77.58%, 75.21%, and 69.34% at 24 h, 48h, 72 h, and
7d, respectively. Other evaluation indicators were presented in Fig. 3.

Comparing with baseline algorithms
The results of baseline comparison were provided in Supplementary
Table S3. Whether predicting death or dialysis, BiLSTM (original) and
BiSingleLSTM (appending single-direction LSTM) both had relatively
poor predictive capacity.

Subgroup analysis of the prediction model
We also conducted a subgroup analysis of previously reported risk
factors related to the mortality or dialysis, including, age, gender,
hypertension, diabetes, AKI stage, baseline SCr, length of ICU stay, and
major surgery. Figure 4 had shown the AUROC curve at 24-h, 28-h, 72-
h, and 7-day for predicting death and dialysis. All AUROCs of various
subgroups were almost more than 80% in predicting death and more
than 75% in predicting dialysis, which indicated that AKI event pre-
diction model (AKIEPM) performed well in the above-mentioned
clinical situations.

Discussion
The early prediction of disease progression could improve healthcare.
An estimated 11% of in-hospital deaths are due to the failure to
promptly recognize and treat deteriorating patients9. Improving the
prediction ability of deep learning models remains a challenge in AKI
prediction8,9,21–23. AI-driven health interventions have been successfully
used to diagnose and assess patients’ morbidity or mortality risk,
predict and surveillance diseaseoutbreaks, andplanhealth policies21,24.
Contemporary AI applications can accurately predict the onset of AKI
before notable biochemical changes occur and the need for future
dialysis to some extent8,9,19,21–23,25. Additionally, a clinical decision sup-
port system can result in a small but sustained decrease in-hospital
mortality, dialysis use, and length of hospitalization26. In this study, we
developed AKIEPM based on deep learning to predict in-hospital
outcomes of patients with AKI. AKIEPM had good predictive perfor-
mance for in-hospital death and the need of dialysis, which may
prompt preventive action to reduce the risk of unfavorable outcomes.

AKIEPM predicted the outcome of patients with AKI at 24 h,
48 h, 72 h, and 7d by extracting latent features from patient data at

Fig. 1 | Flow chart of the study population selection. We selected patients who
developed AKI during hospitalization for further screening. The exclusion criteria
were as follows: (1) patients who had less than two SCr results during hospitaliza-
tion; (2) patients <18 years old; (3) patients who had HIV or AIDS; and (4) patients
who had end-stage kidney disease (ESKD, defined as maintenance dialysis, kidney
transplantation, or eGFR<15ml/min per 1.73m2). SCr, serum creatinine. HIV human
immunodeficiency virus, AIDS acquired immunodeficiency syndrome.
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Fig. 2 | Various evaluation indicators of the prediction model of death. It
showed the AUROC curves (a), accuracy (b), F-score (c), precision (d), and recall (e)
for predicting 24-h, 28-h, 72-h, and 7-day mortality in derivation, internal, and

external validation cohorts. In this study, we train the deep learning model in
derivation cohort and test in internal validation cohort with 100 epochs and vali-
date in external validation cohort to obtain the results.
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Fig. 3 | Various evaluation indicators of the prediction model of dialysis. It
showed the AUROC curves (a), accuracy (b), F-score (c), precision (d), and recall (e)
for predicting 24-h, 28-h, 72-h, and 7-day dialysis in derivation, internal, and

external validation cohorts. In this study, we train the deep learning model in
derivation cohort and test in internal validation cohort with 100 epochs and vali-
date in external validation cohort to obtain the results.
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various times and learning the association between features.
Through context embedding, which can make greater use of each
variable’s semantic properties, the model took the values of each
variable into account. Bidirectional long- and short-term memory
units were simultaneously adopted to learn bidirectional temporal

correlations from patient data. It meant that the outcome of the
patient may be predicted by using the forward and reverse corre-
lation of data collected in the past and in the present. Our
continuous prediction model was developed from a large, retro-
spective, and longitudinal dataset that covers diverse clinical
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environments in general hospitals. Experimental results demon-
strated the effectiveness of our predictive model.

To further verify the performance of the model, we used BiLSTM
and BiSingleLSTM27 as a comparison. We considered that BiLSTM and
BiSingleLSTM gained poor performancemight be because they do not
encode the clinical variables or they were stuck in local optimality and
stopped early.

For predictive alerts to be effective, theymust empower clinicians
to act before a major clinical event occurs28. Therefore, we used
dynamic prediction methods to predict the future in-hospital out-
comes at each time point. In addition, to achieve generalization, we
developed and validated AKIEPM in different hospital patient cohorts.
Results demonstrated that the transportability of our prediction
model between different hospitals was good.

We projected four time periods in this study (24 h, 48 h, 72 h,
and 7d). The results revealed that as the time breadth was
increased, the prediction performance gradually decreased, which
was a projected outcome. Furthermore, the model’s performance
in predicting the need of dialysis was lower than that of death. One
possible reason was that different physicians make different deci-
sions about whether and when to initiate dialysis for a patient
based on factors, including disease status, personal willingness,
and accessibility to dialysis.

The advantages of AKIEPM included its novelty for predicting the
occurrence of death or dialysis by creating a bidirectional LSTM unit.
Additionally, AKIEPM could contain all data before the time point for
prediction, which was useful for dynamically assessing changes in a
patient’s condition. Moreover, we projected four time periods, which
provided a window of up to 72 h for clinical intervention. Finally,
AKIEPM could predict the occurrence of outcomes, allowing patients
to be stratified for targeted treatment and management to reduce
mortality.

There were several limitations in our study. First, AKI is a
clinically complex condition with various causes, which may influ-
ence the disease course and outcomes of AKI; however, we did not
conduct a thorough subgroup analysis andmodel establishment for
the different AKI subgroups. Second, AKIEPM had difficulty deter-
mining which factors were responsible for the increased risk of in-
hospital death; hence, it was difficult to suggest targeted treatment.
Third, AKIEPM was conducted on previous data, and whether it
could help improve prognosis must be confirmed in prospective
controlled trial29. Despite the performance of our model when
compared to those in the literature, future studies should evaluate
and independently validate our model to establish its clinical utility
and effects on decreasing unfavorable in-hospital and outpatient
outcomes as well as to explore the role of AKIEPM in researching
strategies for delivering preventive care for patients with AKI.
AKIEPM could potentially become a crucial part of routine clinical
pathways for AKI management.

In summary, we introduced a deep learning approach for the
dynamic prediction of in-hospital death or need of dialysis in patients
with AKI. The model was validated using a large number of patients
with AKI as an internal cohort and an external cohort. Those who were
at risk for AKI could be identified through AKIEPM.

Methods
The conceptual framework for our developing dynamic prediction
model was presented in Fig. 5.

Data description
The study protocol was approved by the Medical Ethics Committee of
Sichuan Provincial People’s Hospital (approval number: 2022-83), and
Nanfang Hospital, Southern Medical University (approval number:
NFEC-2019-213), which waived the requirement for patient informed
consent due to the retrospective nature of the study. This study was
also approved by the China Office of Human Genetic Resources for
Data Preservation Application (approval number: 2021-BC0037) and
was performed by the Strengthening the Reporting of Observational
Studies in Epidemiology (STROBE) guidelines.

The study population was derived from CRDS, a large multicenter
retrospective study cohort of 7,084,339 patients hospitalized at 19
medical centers throughout China from 1 January 2000 to 26May 2021.
The dataset consisted of information from hospital electronic health
records in digital format. The number of independent entries in the
dataset was ~2.8 billion, including 37,224 features. We extracted adult
patients’ data, including outpatient visits, admissions, diagnoses as
International Statistical Classification of Diseases and Related Health
Problems codes, surgical procedures (including date, names, and codes
[ICD-9-CM-3]), vital signs, stay-in ICU, mechanical ventilation, labora-
tory results (including—but not limited to—biochemistry, hematology,
cytology, microbiology, and histopathology), medications and pre-
scriptions, orders, dialysis (including hemodialysis, peritoneal dialysis,
continuous renal replacement therapy), and in-hospital death.

Patients who developed AKI during hospitalization (including
community-acquired AKI) were selected for further screening. The
exclusion criteria were as follows: (a) patients who had less than two
SCr results during hospitalization; (b) patients <18 years old; (c)
patients who had human immunodeficiency virus or immunodefi-
ciency syndrome; and (d) patients who had end-stage kidney disease
(ESKD, defined as maintenance dialysis, kidney transplantation, or
eGFR <15ml/min per 1.73m2). Patients who had undergone dialysis
prior to developing AKI were also excludedwhen dialysis was analyzed
as an in-hospital outcome. The flowchart of study enrollment is shown
in Fig. 1.

Definitions
AKI was defined according to the Kidney Disease Improving Global
Outcomes (KDIGO) clinical practice guideline3. Due to the lack and

Deep LearningSequential Representation Prediction

T
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Fig. 5 | Conceptualmodelof continuouslypredictingAKI in-hospitaloutcomes.
First, we collect the patient information, such as laboratory, procedure, medica-
tion, etc. Second, we construct a sequential representation of electronic health

records by merging patient data in 24 h. Third, we propose AKIEPM based on deep
learning. Fourth, we predict the occurrence of death or need for dialysis at 24 h,
48h, 72 h, and 7d.
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accuracyof urine output, we employed SCr todefineAKI as an increase
by 0.3mg/dLwithin 48 h or a 50% increase frombaselinewithin 7 days.
The definition of AKI was based on the dynamic criteria described by
Nanfang Hospital6. The SCr data collected during hospitalization were
sorted in increasing order by sequential test time. For any time point t,
a baseline average SCr was dynamically defined as the average value of
SCr within 7 days before the point t, then each available SCr value
within 7 days after point twas comparedwith this baseline average Scr.
The date of AKI diagnosis was defined as the earliest day on which the
SCr change met the KDIGO criteria. The baseline value for further
analysis in patients with AKI was defined as the value at the time of AKI
diagnosis. AKI stages were determined by the peak SCr level after AKI
detection, with a rise of less than 100% indicating stage 1, a riseof 100%
or more indicating stage 2, and a rise of 200% or more over baseline
indicating stage 3.

The primary and secondary outcomes were in-hospital death
and the need for dialysis, respectively. In this study, dialysis included
temporary or maintenance hemodialysis and peritoneal dialysis, and
continuous renal replacement therapy (CRRT).

Diagnosis codes for admission and discharge were used to iden-
tify comorbidities. The Charlson comorbidity score was used to cal-
culate the burden of comorbidity30. The Chinese surgical operation
grading system was used to classify the procedure from grade 1 to
grade 4basedon its difficulty, complexity, and risk. In this study,major
surgery was defined as grade 4 surgery, as well as grade 3 invasively
surgical operation in major body cavities (heart, intracranial, chest,
abdomen, or pelvic).

Construction of derivation and validation cohorts
To train and validate the performance of the prediction model, we
divided the patients into the derivation, internal validation, and
external validation cohortswith a 7:2:1 ratio. For the external validation
cohort, we adopted a traversal strategy to enumerate different com-
binations of hospitals and chose one hospital-combination (including
three hospitals) wherein the number of patients was the closest to 10%
of the overall cohort (14,610 patients). From patients in the remaining
hospitals except for the three hospitals, 27,217 patients (20% of the
total) were randomly selected as the internal validation cohort, then all
other patients, ~70%of the total, were selected as thederivation cohort
(Fig. 6). For classification imbalance problems (death/no death; dia-
lysis/no dialysis), we adopt a random oversampling strategy to
decrease the imbalance problem.

Construction of sequential representation
We first constructed a sequential representation of electronic health
records by merging patient data in 24 h. Although the onset of
symptoms, laboratory results, operations, prescriptions, medications,
diagnoses, and eventsmay be different, theymay happen within a day.
If we constructed sequential data at each time point, this will result in
several missing data. For example, if the operation time was 14:02
whereas others were different, the record with this operation will miss
other data at this time. To decrease the amount of missing data, we
merged the data in 24 h to construct a sequential representation for
dynamically predicting death or dialysis within the next 24 h, 48 h,
72 h, and 7 days (d).

P= p1, . . . ,pi, . . . ,pN

� �
denoted the set of patients, where pi

was the i-th patient and N was the number of patients. We used
tp = ftp1 , . . . , tpt , . . . ,tpTg, tpt 2 RV to represent all variables at time t of
patient pi 2 P (in this paper, we adopted the patient data after AKI
diagnosis), where T denoted the number of days in admission of
patients and V denoted the number of variables. We set binary
label yp 2{0, 1} to represent the outcome of death or dialysis pre-
diction in 24 h, 48 h, 72 h, and 7d. The merge rules were as follows,
wherein we took the detection time of creatinine as the standard
time (Fig. 7):

(1) If therewas no SCr result within 24 h, all laboratory values were
combinedwith that record at the latest SCrmeasurement. If therewere
multiple values for the same indicator, the latest value was taken.

(2) If there was one creatinine value within 24 h, other laboratory
values were combined with that record at the time of SCr measure-
ment. If there were multiple values for the same indicator, those
simultaneous with the SCr measurement or the closest were taken.

a. If there were multiple laboratory values, the maximum tem-
perature, lowest (<50) and highest (>50) pulse rates, minimum blood
pressure, maximum respiration rate, and laboratory values closest to
the time of SCr measurement were taken.

b. If there were multiple values for the operation, medications,
prescriptions, diagnosis, and events per day, we obtained those closest
to when the SCr levels were measured.

(3) and (4) If there were two SCr values within 24h, laboratory
values before and after the first SCrmeasurementwere combinedwith
the first and second SCr measurements, respectively. If there were
multiple values for other laboratory indicators, refer to (2).

Prediction model
We proposed a novel AKI event prediction model with bidirectional
LSTM unit31 for predicting the occurrence of death or need for dialysis
at 24 h, 48 h, 72 h, and 7d. Table S4 showed the parameters included in
AKIEPM. AKIEPM includes three steps: embedding, feature extraction,
and output (Figure S1). We first developed 8 models to predict 24 h,
48 h, 72 h, and 7doutcomesof death/nodeath, dialysis/nodialysis, and
then we integrated them into AKIEPM.

(1) Embedding. Capture the dependence of different variables by
encoding their values into a continuous vector32.

(2) Feature extraction. RNN was widely used to deal with
sequential data problems; however, its prediction performance
dropped when the length of the sequence increases by 24 h33. An
LSTM unit was adopted to construct a bidirectional LSTM layer to
capture the relevance among the sequential representation of

19 hospitals

16 hospitals

77 2

Derivation
Cohort

Internal Validation 
Cohort

…

1

External Validation
Cohort

3 hospitals

…

Fig. 6 | Flow chart of the construction of derivation, internal validation, and
external validation cohorts.To train and validate the performance of AKIEPM, we
divided the patients into the derivation, internal validation, and external validation
cohorts with a 7:2:1 ratio. For the external validation cohort, we chose three hos-
pitals wherein the number of patients was the closest to 10% of the overall cohort
(14,610 patients). From patients in the remaining hospitals, 27,217 patients (20% of
the total) were randomly selected as the internal validation cohort, then all other
patients (~70% of the total) were selected as the derivation cohort.

Article https://doi.org/10.1038/s41467-023-39474-6

Nature Communications |         (2023) 14:3739 6



patients before and after the time, energizing the dynamic predic-
tion every 24 h. Thus, the bidirectional LSTM layer extracted the
features from the forward and reverse inputs. The next one-way
LSTM layer fused the bidirectional output and obtained the hidden
representation of all variables.

(3) Output. The hidden representation was fed to the softmax
layer, which predicted death or dialysis within 24 h, 48 h, 72 h, and 7d.

Evaluation
We adopted precision, recall, F-score, and AUROC to evaluate the
performance of the proposed model. To evaluate the effectiveness of
ourmodel, we compared it with algorithms BiLSTM and BiSingleLSTM
that had similar deep learning architecture. Compared with baselines,
AKIEPM encoded the values of patient data into a continuous vector,
which can capture themeaning of different indexes to a certain extent.
Meanwhile, feature extraction can capture the relevance among the
sequential representation before and after the time to extract valuable
hidden features concerned with the outcomes of patients with AKI.
The time of external verification cohort concentrates on 2016–2020,
which is close to the current time, with respect to derivation and
internal validation cohorts, we can consider that the performance in
ultimate deployment can be estimated by the performance in external
verification cohort to a certain extent.

Statistical analyses
The Chi-square test was used to compare categorical variables that
were presented as frequencies and percentages. The t-test was used to
compare normally distributed variables that were reported as mean
and standard deviation. Non-normally distributed variables were
expressed as median and interquartile range and compared using the
Kruskal–Wallis H test. P-values were two-tailed, and p <0.05 was con-
sidered significant. R software v3·1·1 was used for all analyses.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Data for figures are provided with this paper and are available at
https://github.com/yunzhangwww/AKIEPM. Currently, CRDS data is
only free to sharewith participating collaborators who have signed the
cooperation agreement. If you are willing to cooperate, please contact
the CRDS database administrator via the official email address:
ncrckd@163.com (http://www.crds-network.org.cn/#/joinUs/joinus),
and they will respond within 1 month.

Code availability
The data analysis by AKIEPMwas coded by TensorFlow 1.15 and Python
3.7 with patient data, whose code is available at https://github.com/
yunzhangwww/AKIEPM.
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