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Small watersheds may play a disproportionate
role in arctic land-ocean fluxes

J. E. Vonk, N. J. Speetjens & A. E. Poste Check for updates

While over 99% of coastal arctic rivers drain
small catchments, future projections of land-
ocean fluxes are based on data from large rivers.
We encourage inclusion of and increased focus
on smaller catchments to support representa-
tive assessments of arctic ecosystem change.

Inland waters integrate terrestrial, oceanic, and atmospheric
reservoirs1 and contribute to the storage, processing, and emission of
large amounts of terrestrial carbon. The arctic climate iswarming three
to four times faster than elsewhere on Earth2. Permafrost soils in the
region, which store two atmospheres worth of carbon, have become
vulnerable to thaw and decomposition3. Enhanced permafrost thaw,
alongwith glaciermass loss and changing hydrological regimes, alter—
and often increase—continental fluxes of freshwater and terrigenous
material to the ocean4,5. Altered fluxes of organic matter, con-
taminants, nutrients, and sediments can impact the fishing, hunting,
infrastructure, and subsistence of local communities, arctic coastal
ecosystem functioning, and global climate feedbacks3,6.

While increased temperature and precipitation are occurring
across the Arctic, the landscape response to these changes is far from
homogeneous owing to differences in relief, ground ice content, soil
properties, and presence of glaciers7. Despite their diversity a few
apparent trends seem to emerge. There is a regime shift from snow-
dominated to snow and rain-dominated systems, which causes an
increase in fluvial transport during summer and early autumn8, when
permafrost thaw and disturbance is at its maximum. Further, intensi-
ficationof extreme summer rainfall increases the frequency and size of
permafrost thaw slumps9, thaw depth10 and generally increases stream
power and terrestrial-aquatic connectivity8,11. Smaller catchments in
flat permafrost-dominated tundra, with polygonal landscape patterns
caused by icewedge formation12 (so-called ice wedge polygons; Fig. 1),
are particularly sensitive to changes in summer precipitation and thaw
depths11. In glaciated catchments, warming is driving increased land-
ocean delivery of meltwater, inorganic sediments, and bedrock-
derived material. The vastly different character of the northernmost
small catchments along with the sharp hydrological shifts induced by
climate change, causes fundamentally different and accelerated
landscape-scale change here compared to larger river basins fur-
ther south.

Coastal catchments smaller than 1000 km2 cover <10% of the
entire pan-arcticwatershed, and yet dominate land-ocean inputs along
vast swathes of the arctic coastline13 (Fig. 1). These smaller coastal
watersheds are highly abundant, experience rapid change, and have
fundamentally different topography, climate, and geochemistry than
the larger drainage basins. While we are beginning to understand the
timing, magnitude, and geochemistry of lateral fluxes to the Arctic

Ocean from the six largest arctic rivers14, known as the big six, we still
know relatively little about the smaller northern catchments and what
controls their fluxes of water and terrigenous input. Available studies
of smaller watersheds e.g.8,10,11,15 suggest that simple extrapolation of
large river fluxes likely underestimates total land-ocean export16. Such
extrapolations introduce large uncertainties in climatic projections
and in our understanding of current and future fluxes of carbon,
nutrients, sediments and contaminants into theArcticOcean, and their
roles in driving arctic marine ecosystem change.

The smaller, northern catchments are warming faster than
their larger, more southernly neighbours, with +3.4 ± 1.8 °C
warming between 1990 and 2019 in the north of Eurasia com-
pared with +1.7 ± 0.65 °C further south13. Strong warming causes
ground ice to melt which, in these flat coastal systems, sharply
increases hydrological drainage and further thaw12. Spatial cov-
erage of ice wedge polygon terrain also varies, with 38 ± 43% in
the smaller northern catchments, versus just 2.0 ± 4.3% in the
larger southern systems. At the same time, carbon stocks in the
upper 30 cm of northern catchment soils are estimated to aver-
age 88 ± 13 tonnes/ha, compared to 67 ± 3.7 tonnes/ha for larger
southern systems13. Soil carbon stocks between 30 and 200 cm
are also higher for northern catchment soils, and these deeper
stocks are still mostly contained within the permafrost. Warming
could therefore turn these carbon sink landscapes into sources of
carbon to the atmosphere, further complicating international
efforts to keep the global temperature increase below 1.5 °C.

In order to understand the impact of warming and gain a
realistic and representative view of the impact of this warming on
the coupled pan-arctic terrestrial-aquatic carbon cycle, it is
imperative that we move away from the dominant focus on
catchment size. Although large catchments naturally integrate a
multitude of smaller catchments, at the point where a large river
meets the ocean all headwater stream variability is gone, as well
as the possibility of obtaining a comprehensive assessment of the
evasion and storage processes upstream in the watershed. Fur-
thermore, the lack of knowledge on quantity and quality of fluxes
from small coastal watersheds hampers our understanding of how
these fluxes impact coastal ecosystem functioning, which is par-
ticularly important since these ecosystems support high biodi-
versity and are a source of food and livelihoods for coastal
communities6. At present, a lack of long-term hydrological mon-
itoring is the key limitation in understanding hydrology and lat-
eral fluxes from smaller catchments across the pan-arctic.

We need to focus more attention on the smaller northernmost
coastal watersheds. Increased efforts to monitor hydrology in these
smaller arctic catchments is critical for estimating land-ocean fluxes,
especially when paired with high-resolution sensor and sampling-
based field monitoring17. To build process-understanding and an
improved capacity for upscaling, field observations should be
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combined with hydrological and biogeochemical modelling of catch-
ment behaviour and land surfacemodels that include lateral fluxes. On
regional scales, this process-understanding combined with available
high-resolution remote sensing datasets, in-situ measurements and
increasingly advanced machine learning algorithms could be turned
into near-real-time predictions of lateral fluxes. These observational,
monitoring, and experimental efforts must also be aggregated into a
well-structured database so that they can become valuable assets to
earth system modelers.

A new arctic is emerging, with a warmer, wetter, and less pre-
dictable climate. Pan-arctic projections and models use only large
drainage basins, and coastal regions experiencing accelerated change
are not included. It is time for us to shift our focus away from just the
large arctic catchments and to instead act with synergised efforts to
gauge the northern, coastal systems, in order to reliably upscale land-
ocean fluxes and assess coastal arctic ecosystem change. These
advances are needed for improving climate and earth system under-
standing and building adaption capacity for communities along the
rapidly-changing pan-arctic coastline.
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warming occurs more than two times faster than the larger catchments to the
south. Northern catchments (B) have high coverage of ice wedge polygon terrain,
glacial coverage, and soil carbon stocks, and are often data poor18. Warming leads

to (C) melting of ground ice and increased hydrological drainage and thaw and
decomposition of carbon. Both processes increase transport and emission of car-
bon, accelerating greenhouse gas emissions. Polygon landscape images
from ref. 12.
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