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Seasonal catchment memory of high
mountain rivers in the Tibetan Plateau

Haiting Gu1, Yue-Ping Xu 1 , Li Liu1, Jingkai Xie1, Lu Wang1, Suli Pan1 &
Yuxue Guo1

Rivers originating in the Tibetan Plateau are crucial to the population in Asia.
However, research about quantifying seasonal catchment memory of these
rivers is still limited. Here, we propose a model able to accurately estimate
terrestrial water storage change (TWSC), and characterize catchmentmemory
processes and durations using the memory curve and the influence/domina-
tion time, respectively. By investigating eight representative basins of the
region, we find that the seasonal catchment memory in precipitation-
dominated basins is mainly controlled by precipitation, and that in non-
precipitation-dominated basins is strongly influenced by temperature. We
further uncover that in precipitation-dominated basins, longer influence time
corresponds to longerdomination time,with the influence/domination timeof
approximately six/four months duringmonsoon season. In addition, the long-
term catchment memory is observed in non-precipitation-dominated basins.
Quantifying catchment memory can identify efficient lead times for seasonal
streamflow forecasts and water resource management.

The Tibetan Plateau, known as the roof of the world, is the source of
many major rivers1. These rivers nurture people in East Asia, South
Asia, and Southeast Asia, where about half of the world’s population
lives2. However, with the changing frequency and severity of hydro-
logical extremes under climate change, the risks of water disasters,
such as floods and droughts, are increasing in the Tibetan Plateau3.
Therefore, it is crucial to study seasonal hydrological forecasts to
manage water resources and ensure food security in the wide regions
of the Tibetan Plateau. Seasonal forecast refers to the prediction of
land surface hydrologic variables at sub-seasonal to seasonal time-
scales and the forecasting of persistent land surface hydrologic
anomalies4. The concept of seasonal catchment memory, which
extends the lead times and predictability of streamflow compared to
rainfall forecasts5, is often used in seasonal forecasts. To improve the
skill of seasonal forecasts and water resource management, it is
necessary to understand the response mechanism of a catchment to
incoming precipitation6.

Incoming precipitation can be retained in various forms, such as
soil water, snow and ice, lake water, groundwater etc., and can

subsequently be released as streamflow and evapotranspiration (ET).
The storage ofwater can impact a catchment’s response to subsequent
precipitation, as if the catchment area possesses a memory and can
memorize past information7. Catchment memory can be categorized
into two types based on the duration, namely multiyear (long-term)
memory and seasonal (short-term) memory8. The former is usually
analyzed on an annual time step9, and the latter on a monthly or daily
time step10. The lagged correlation is themost commonlyusedmethod
for describing catchment memory, such as Pearson’s correlation
between selected river flow signatures and the average river flow in
antecedent months11, and Spearman’s correlation between ground-
water storage, precipitation and runoff12. The lagged correlation
method is straightforward to use and understand, focusing mainly on
exploring correlations between different hydrologic variables, but is
unable to establish a function between them. Recently, alternative
methods have been proposed for studying catchment memory. A
popular way in hydrological forecasting is to calculate the potential
parameter for water retention (or memory capacity) and the rate of
water release, such as the baseflow index and the groundwater
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recession coefficient, as discussed in the study of Sutanto and Van
Lanen13. However, this approach primarily focuses on the catchment
state to assist hydrological forecasting, with little consideration of the
catchment memory process and its duration. Hysteresis loops
between hydrologic variables canvisualize catchmentmemory and are
typically used for qualitative analysis of catchment memory14, which
provides a tool for analyzing the relationships among precipitation,
streamflow, and water storage. In the study of de Lavenne et al.8, the
Gamma distribution-based catchment forgetting curve was proposed
to quantify multiyear catchment memories via precipitation, stream-
flow, and ET. Thismethod describes how the catchmentmemory fades
over time (i.e., the catchmentmemoryprocess) rather thanproviding a
single value of catchmentmemory like othermethods, but at the same
time it neglects the assessment of memory duration. Generally, for
seasonal catchment memory, there is currently a lack of a well-defined
method for characterizing its process and duration.

Catchment memory is typically associated with water storage,
which is often simulated using hydrological models in previous
studies12,15,16. Since 2002, the Gravity andClimate Recovery Experiment
(GRACE) satellite and its Follow-on (GRACE-FO) satellite have mon-
itored terrestrial water storage (TWS), which includes land surface
hydrological fluxes such as streamflow, soil moisture, and
groundwater17,18. Like in other fields of hydrology, the GRACE TWS
anomalies (TWSA) data is used as an observed water storage dataset in
the study of catchment memory19. For instance, Opie et al. used the
correlation between the GRACE-derived changes in groundwater sto-
rage and precipitation to describe the long-term and short-term
catchment memory20; Xie et al. employed GRACE TWSA data to cal-
culate the Flood Potential Index21, which describes memory capacity.
Compared to model-derived TWS data, GRACE TWS data can provide
more accurate anddirectmeasurements of TWSwithout relyingon the
assumption that changes in TWS are insignificant on annual and longer
timescales22. Previous studies have demonstrated the applicability of
GRACE data to the Tibetan Plateau23,24. Li et al. found that that JPL-M
likely provides reliable TWS estimates for the Tibetan Plateau25.

Based on the above literature, it is evident that two issues about
seasonal catchmentmemory still need to be addressed. First, there is a
need to disentangle the linkage among precipitation, streamflow and
TWS to understand how catchments memorize precipitation. Second,
there is a need to quantify seasonal catchment memory with both
process and duration.

In this work, we focus on investigating the transformation rule
among precipitation, streamflow, and water storage for the Tibetan
Plateau on a seasonal scale. We propose a precipitationmemory curve
to address seasonal catchment memory. The precipitation memory
curve allows us to describe how precipitation is memorized by
catchments and quantify the impact of precipitation on TWS change
(TWSC) for different river basins and different months. To consider
both the process bywhich catchmentsmemorize precipitation and the
intra-annual precipitation distribution, we introduce two metrics, the
influence time and the domination time, to describe the duration of
seasonal catchment memory.

Results
River basins and their classification in the Tibetan Plateau
We analyzed eight upstream rivers in the Tibetan Plateau (Fig. 1),
namely the upper Brahmaputra River (UBR), the Salween River (SWR),
the Lancang River (LCR), the upper Yangtze River (YTR), the upper
YellowRiver (YLR), the upperTarimRiver (TRM), theupper IndusRiver
(UIR), and the upper Amu Darya (AMU). Among these rivers, the UIR
basin has the largest percentage of glacier area (14.91%), while the YLR
basin is the least affected by glaciers. Supplementary Table 1 shows the
basic information of the gauge stations used for hydrological model
calibration and validation in this study. The basins can be categorized
into two groups. The first group is the precipitation-dominated area,
including UBR, SWR, LCR, YTR and YLR, which are mainly influenced
by the southwest monsoon26. According to monsoon variations, we
divided the climate into four seasons: pre-monsoon season (April to
May), monsoon season (July to September), post-monsoon season
(October to November), and winter season (December to March)27,28.

Fig. 1 | Major river basins and gauge stations in the Tibetan Plateau. The
precipitation-dominated basins are the upper Brahmaputra River (UBR) basin, the
Salween River (SWR) basin, the Lancang River (LCR) basin, the upper Yangtze River

(YTR) basin, and the upper Yellow River (YLR) basin. The the non-precipitation-
dominated basins are the upper Tarim River (TRM) basin, the upper Indus River
(UIR) basin, and the upper Amu Darya (AMU) basin.
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The second group is the non-precipitation-dominated area or the
westerlies-dominated area, including TRM, UIR, and AMU, where the
water supply depends more on glacier and snow melt than on
precipitation-generated runoff29.

Hydrological model calibration and validation in high-elevation
rivers
Weutilized amodified versionof theVariable InfiltrationCapacity (VIC)
Macroscale Hydrological Model30,31, a distributed hydrological model,
to simulate runoff and evapotranspiration (ET) in eight high mountain
river basins. The configuration and meteorological forcing data of the
VIC model are described in the Methods section. In this study, we
compared the model-simulated streamflow and ET with the observed
streamflow and model-based terrestrial ET from National Tibetan Pla-
teau Data Center (see “Methods”). It should be noted that the calibra-
tion and validation periods are different among stations due to the
limitation of observed streamflow data (see Supplementary Table 1).
We used the multi-objective optimization algorithm, ε-NSGA-II, to
calibrate the model (see “Methods”). Table 1 shows the results of cali-
bration and validation in the eight basins, indicating that the VICmodel
can simulate streamflow and ET accurately, with NSE values mostly
greater than0.8, andBIAS values less than±20% in both calibration and
validation periods.

We also compared the VIC-derived TWSC of the eight basins with
the GRACE-based TWSC estimates from 2003 to 2018. We used the
ensemble mean of TWSA from two different GRACE/GRACE-FO mass
concentration (mascon) solutions, namely the Center for Space
Research mascon products (CSR RL06) and Jet Propulsion Laboratory
mascon solutions (JPL RL06). The data gap between GRACE and
GRACE-FO in 2017 was filled with reconstructed terrestrial water sto-
rage data (see Data and data processing). The VIC-derived TWSC
estimates are generally consistent with GRACE-derived TWSC esti-
mates, with the AMU basin showing the highest value of r at 0.93, and

the SWR basin showing the lowest value of r at 0.44. Figure 2 indicates
that the VIC-derived TWSC values in the eight study basins are well
enveloped by the uncertainty intervals of GRACE-derived TWSC,
demonstrating a reasonable reproduction of TWSC in these high-
elevation rivers.

Relationship among basin water storage, streamflow, and
precipitation
The VIC-simulated streamflow, GRACE-derived TWSA, and precipita-
tion from 2003 to 2018 were employed to investigate the seasonal
catchmentmemory (Fig. 3). In the precipitation-dominated basins, our
analysis revealed a positive correlation between streamflow and pre-
cipitation, and an increase in TWSA accompanied an increase in pre-
cipitation. The annual TWSA-streamflow (S-Q) clockwise hysteresis
loops, the annual precipitation-TWSA (P-S) anticlockwise hysteresis
loops, and the annual precipitation-streamflow (P-Q) anticlockwise
hysteresis loops were observed in the five precipitation-dominated
basins (Fig. 3). These three loop types illustrate the transformation rule
among precipitation, streamflow, and stored water.

Two possible explanations have been identified for the P-Q
anticlockwise hysteresis loops. One possible explanation is attributed
to the difference in evapotranspiration (ET) between MAM and SON.
However, the relative bias of ET between MAM and SON for the UBR,
SWR, LCR, YTR, and YLR basins are merely 2.42%, −1.04%, −11.97%,
0.78%, and 4.60%, respectively, which suggests that ET may play a
minor role in this hysteresis phenomenon.

The other explanation hypothesizes that the precipitation in the
pre-monsoon and monsoon seasons is retained within the basin, and
subsequently, the stored water is gradually released into the stream-
flow. The P-S anticlockwise hysteresis loops confirm the temporary
storage of precipitation within the catchment. The observed change in
TWSA provides insights into the destination/source of the missing/
excess streamflow associatedwith the sameamount of precipitation in

Table 1 | Nash–Sutcliffe efficiency (NSE) and relativebiasvalues (BIAS) betweenVIC-simulated streamflow/evapotranspiration
and observed streamflow/evapotranspiration for calibration and validation periods at gauge stations in eight basins

Basin Station Streamflow Evapotranspiration

Calibration Validation Calibration Validation

NSE BIAS NSE BIAS NSE BIAS NSE BIAS

UBR NGS 0.87 0.10 0.73 0.20 0.92 −0.06 0.90 −0.02

YC 0.91 −0.12 0.83 −0.05 0.92 −0.12 0.91 −0.13

NX* 0.92 −0.08 0.88 −0.01 0.87 −0.18 0.83 −0.21

SWR JYQ 0.92 −0.03 0.87 0.10 0.81 −0.15 0.78 −0.21

DJB 0.92 0.04 0.93 0.02 0.81 −0.20 0.76 −0.24

LCR CD 0.86 −0.18 0.78 −0.20 0.75 −0.26 0.79 −0.25

JZ 0.77 −0.08 0.71 −0.15 0.78 −0.25 0.81 −0.22

YJH* 0.90 −0.02 0.85 0.08 0.88 −0.15 0.87 −0.15

YTR ZMD 0.81 0.15 0.78 0.18 0.89 −0.07 0.87 −0.11

GT 0.84 0.08 0.82 0.08 0.89 −0.10 0.86 −0.13

BT 0.87 −0.09 0.89 −0.08 0.86 −0.17 0.83 −0.19

SG* 0.84 −0.16 0.86 −0.17 0.82 −0.21 0.77 −0.24

YLR JM 0.70 0.25 0.54 0.39 0.72 0.16 0.76 0.08

MQ 0.82 0.13 0.81 0.12 0.89 0.04 0.87 0.00

JG 0.83 0.16 0.82 0.15 0.91 −0.01 0.89 −0.04

TNH* 0.74 0.06 0.82 0.21 0.92 −0.05 0.90 −0.08

TRM KQ* 0.90 −0.04 0.85 0.12 0.77 −0.08 0.68 −0.23

UIR TB* 0.81 −0.05 0.75 0.13 0.60 −0.26 0.64 −0.25

AMU NN* 0.64 −0.22 0.54 0.05 0.40 −0.39 0.46 −0.38

UBR the upper Brahmaputra River basin, SWR the Salween River basin, LCR the Lancang River basin, YTR the upper Yangtze River basin, YLR the upper Yellow River basin, TRM the upper Tarim River
basin, UIR the upper Indus River basin, AMU the upper Amu Darya basin.
Note: Starred stations are the outlet stations of the basins.
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the pre-monsoon andmonsoon seasons. Thisfinding is consistentwith
ref. 15, where TWS is used as a catchment memory module. The S-Q
clockwise hysteresis loops indicate that the processing of water sto-
rage and releasewithin the catchment can affect the rate of streamflow
increase and decrease, although precipitation remains the primary
driver of streamflow variability.

Moreover, in the same basin, the P-Q loop exhibits a narrower
range of variability than the P-S loop, which suggests that streamflow
responds to changes in precipitation more rapidly than TWSA. This
implies that a larger proportion of precipitation generates runoff
within a month, while only a small fraction of precipitation is mem-
orized through water storage. The shape of hysteresis loops for a
basin can represent the feature of the precipitation-runoff relation-
ship. From the hysteresis loops, we found that the catchment can
store a portion of precipitation and then release the stored water to
influence the streamflow on a monthly scale. This confirms the exis-
tence of seasonal catchment memory in precipitation-dominated
basins.

There are still certain exceptions in the annual hysteresis loops in
some years, i.e., no clear hysteresis loop, the S-Q anticlockwise hys-
teresis loop, the P-S clockwise hysteresis loops, and the P-Q clockwise
hysteresis loop. Supplementary Figs. 2–6 display the annual hysteresis
loops from 2003 to 2018 for the five precipitation-dominated basins.
S-Q clockwise hysteresis loops, P-S anticlockwise hysteresis loops and
P-Q anticlockwise hysteresis loops are observed in the majority of
cases (Fig. 4). It is worth noting that the S-Q loops aremost susceptible
to exceptions, as both TWSA and streamflow are dominated by pre-
cipitation. In the UBR basin, all three loops in 2015 are abnormal.
Although the rotation directions of three loops in 2009 can be iden-
tified, they resemble more of a curve than a loop. The precipitation
anomaly is the primary contributor to the loop anomaly in 2009 and
2015. Specifically, the precipitation in 2009 is the lowest in 16 years,
representing a 26% reduction compared to the 16-year average (Sup-
plementary Fig. 7). In 2015, the precipitation is approximately 16% less
than the 16-year average, with precipitation in July being 58% less than
the 16-year average precipitation in July. In the SWR basin, the
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hysteresis loops are relatively narrow, and their direction is most
susceptible to changes among the five basins. In 2006, the S-Q antic-
lockwise hysteresis loop is observed in the SWR basin, with pre-
cipitation during monsoon season being ~21% less than the 16-year
average precipitation. In some years, such as 2005, 2009 and 2015, a
dry September (19%, 39%, and 29% less than the average, respectively)
may cause the loop line to cross. The intra-annual changes in pre-
cipitation distribution may also result in the disappearance of the
hysteresis loops, as demonstrated by the case of 2010 and 2011. In the
YTRbasin, the directionof S-Qhysteresis loop of 2015 is anticlockwise,
which can also be attributed to the precipitation anomaly. The pre-
cipitation is ~22% less than the average during monsoon season, with
precipitation in July being 50% less than the average in 2015. In the YLR
basin, TWSA and streamflow show no clear hysteresis loop and an
anticlockwise hysteresis loop in 2010 and 2015, respectively. TWSA in

2010 and 2015 decreases rapidly from July to August, with the pre-
cipitation being ~40% less than the 16-year average precipitation in July
and August. It is observed that TWSA in 2006 has a decrease from
10.1mm in January to −9.9mm inDecember,which continues intoMay
of 2007 (Supplementary Fig. 8). This phenomenon may be associated
with a 45% reduction of precipitation but a 77% increasing of ET inMay
of 2006 (Supplementary Fig. 7).

Generally, the relationship between TWSA and streamflow in the
precipitation-dominated basins follows a clockwise hysteresis loop. In
the S-Q anticlockwise hysteresis loops, we observed that TWSA in July
was greater than TWSA in August, which means that TWSC in July
needs to be less than 0. According to Eq. (4), a decreasing precipita-
tion, an increasing streamflow, or an increasing ET can result in a
negative TWSC. Our results demonstrate that ET remained relatively
constant, particularly during monsoon season, whereas streamflow
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varied in the same trend as precipitation (Supplementary Fig. 7). Fur-
thermore, we found that a decrease in precipitation during July is
frequently associated with a S-Q clockwise hysteresis loop. Therefore,
we supposed that a reduction in precipitation, particularly in July, can
lead to S-Q anticlockwise hysteresis loops, while the rotation direc-
tions of P-Q and P-S hysteresis loops are relatively stable.

In the non-precipitation-dominated basins, the relationships
among basin water storage, streamflow, and precipitation differ from
those of the precipitation-dominated basins (Fig. 3). In the UIR and
AMU basins, increasing precipitation does not correspond to increas-
ing streamflow. We observe that precipitation in the UIR and AMU
basins is concentrated from January to April. Despite large precipita-
tion, streamflow does not increase, but TWSA rises sharply. This sug-
gests that a substantial proportion of precipitation is stored in the
basins as ice and snow. A similar pattern is found in the TRM basin,
where TWSA shows a clear increase from January to April, but
streamflow does not. Unlike the other two basins, the continued
increase in precipitation in the TRM basin has resulted in a clear
increase in both streamflow and TWSA. However, the TRM basin still
differs from the precipitation-dominated basins, as the direction of the
P-S hysteresis loop is clockwise. This implies that the amount of stored
water from the large precipitation in July is less than the amount of
released water (i.e., melting water). The anticlockwise S-Q loops in all
three non-precipitation-dominated basins suggest that a large portion
of streamflow originates from TWSA during June to September.
Nonetheless, the observed positive correlation between streamflow
and precipitation, coupled with the presence of an anticlockwise P-Q
hysteresis loop in the TRM basin, suggests the potential existence of a
precipitation memory effect during the warm season (from June to
September). We also verified the relationships among TWSA, stream-
flow, and temperature in the three basins (see Supplementary Fig. 1).
Our analysis shows a high correlation between temperature and
streamflow with almost no hysteresis. The temperature-TWSA (T-S)
loops show that substantial quantities of water are stored in the basins
as ice and snow from January to April (when the temperature is below
0 °C), and then released from June to September (when the tempera-
ture is above 0 °C). Generally, in the non-precipitation-dominated
basins, changes in TWSA and streamflow are mainly influenced by
temperature. In the TRM basin, the seasonal catchment memory of
precipitation may exist in warm seasons, whereas in the UIR and AMU
basins, meltwater controlled by temperature substantially weakens
this seasonal catchment memory of precipitation.

Curve for a catchment memory process
Here, we utilized the newly proposed precipitation-to-TWSC model
(see “Methods”) to obtain the precipitation memory curve, which
describes the catchment memory process. In the non-precipitation-
dominated basins, we employed a revised model with a temperature-

index function (see “Methods”) to account for the critical role of
temperature. As shown in Fig. 5, the precipitation-to-TWSC model
accurately reproduces the basin water storage variability with pre-
cipitation data. The analysis of themodel’s uncertainty can be found in
the Methods section. Comparing the VIC-derived TWSC in Fig. 2, the
precipitation-simulated TWSC demonstrates clear improvement in
most basins, with the correlation coefficients increasing from >0.5 to
>0.8. This result suggests that the precipitation memory curve
obtained from the model for both precipitation-dominated and no-
precipitation-dominated basins can be deemed reliable.

Based on the precipitation memory curves, the five precipitation-
dominated basins are grouped into two categories. The first category
includes the UBR, SWR, and LCR basins, where the forgetting ratio of
precipitation at 0-month lag is relatively low and the catchment
memory lasts for a long time. The YTR and YLR basins belong to the
second category, with a short precipitation memory duration of less
than 4 months. Although the two categories of basins differ in their
precipitationmemory durations, less than 10% of the precipitation can
be memorized in the catchment after 4 months for all five basins.
Interestingly, basins in the first category all have a positive additional
flux, εt, while those in the second category all have negative values
(Fig. 6b). The Mann–Kendall method32 was used to investigate the
cause of this phenomenon by examining the trends of GRACE-
derived TWSA, VIC-simulated streamflow, surface precipitation, and
VIC-simulated areal evaporation (Supplementary Table 2). The first
category corresponds to the decreasing TWSA, while the second
category corresponds to increasing TWSA. The detected mass loss
signals in the UBR, SWR, and LCR basins are in agreement with the
findings of previous work33,34. The trend test results show that there is
no significant decreasing or increasing trend in the corresponding
streamflow, precipitation and ET in the UBR, SWR, and LCR basins.
However, the joint effects of insignificant decreasing precipitation,
insignificant increasing ET and rising temperature are supposed to be
the cause of decreasing TWSA35,36. Jing et al. noted that the success-
fully preserved groundwater in the Chinese Ecological Protection
and Construction Project (CEPCP) causes increasing TWSA of the
YTR andYLRbasins33. In the study of ref. 37, a different interpretation
is proposed that High Mountain Asia blocks the propagation of
westerlies-carried deficit in precipitationminus evaporation from the
southeast North Atlantic into the central Tibetan Plateau, causing a
monthly TWS increase.

In the non-precipitation-dominated basins, we identified two
distinct shapes. Specifically, the TRMbasin is characterized by a steep
curve, while the UIR and AMU basins have flat curves. The precipita-
tion memory curve of the TRM basin resembles those of the YTR and
YLR basins, with a shorter precipitation memory duration of ~3
months. During the cold season (January to April, when the tem-
perature is less than 0°C), εt in the TRM basin is negative and has a
large absolute value, indicating that almost all precipitation in the
TRM basin is stored in TWS. Consequently, the precipitationmemory
curve of the TRM basin only describes the catchment memory pro-
cess from June to September, when the temperature is above 0°C.
Meanwhile, the flat curves of the UIR and AMU basins suggest that
seasonal catchment memory is weak due to the dominance of melt-
water in these twobasins. These curves, however, clearly demonstrate
the existence of long-term catchment memory in the basins. This
finding is consistent with the previous analysis of the hysteresis loop.

Seasonal catchment memory duration
In precipitation-dominated basins, the catchmentmemory process for
monthly precipitation can be well described by the precipitation
memory curve. However, the amount of precipitation in a givenmonth
determines the volume of water released in the following months,
despite the basin sharing the samememory curve in different months.
Hence, we introduced the influence time and the domination time,
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Fig. 4 | Direction statistics of the annual hysteresis loops from2003 to 2018 for
the five precipitation-dominated basins. A, B, and C represent the TWSA-
streamflow (S-Q), precipitation-TWSA (P-S), and precipitation-streamflow (P-Q)
hysteresis loop, respectively. UBR upper Brahmaputra River basin, SWR Salween
River basin, LCR Lancang River basin, YTR upper Yangtze River basin, YLR upper
Yellow River basin.
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which consider both the amount of precipitation and its memory
curve, to quantify catchment memory duration (see “Methods”). We
calculated the influence time and the domination time for all the sub-
basins above theoutlet stations (see Fig. 7), and theperformanceof the
precipitation-to-TWSC model for all these sub-basins can be seen in
Supplementary Fig. 9. It demonstrates that the influence time increa-
ses from May in the pre-monsoon season, and decreases from Sep-
tember or October in the post-monsoon season. Conversely, the

domination time increases from June, which is slightly delayed com-
pared to the influence time. The influence time during monsoon sea-
son is ~6 months, whereas the domination time is around 4 months.
During the winter season, the influence time and the domination time
are about 3 months and 1 month, respectively. Although the pre-
cipitation in thewinter seasons canbe stored as a formof ice and snow,
allowing the stored water to be released slowly, the amount of pre-
cipitation in winter is significantly smaller than that in the monsoon

Fig. 5 | Comparison of GRACE terrestrial water storage change (TWSC) with
TWSC estimated from the precipitation-to-TWSC model. The left panel shows
the GRACE-derived TWSC and precipitation-derived TWSC during the period
2003–2018 and the right panel shows the performance of TWSC estimated with
different precipitation products in a the upper Brahmaputra River basin, b the

Salween River basin, c the Lancang River basin, d the upper Yangtze River basin,
e the upper Yellow River basin, f the upper Tarim River basin, g the upper Indus
River basin, and h the upper Amu Darya basin. The boxplots’ lower whisker, lower
box edge, middle line, upper box edge, and upper whisker represent 10th, 25th,
50th, 75th, and 90th percentiles, respectively. The plus sign represents the outlier.
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season. Therefore, the precipitation in the monsoon season has a lar-
ger contribution and a longer influence time to TWSC.

The distributions of the influence time and the domination time
vary among basins due to differences in precipitation pattern and
memory curves. Notably, the influence time and the domination time
of May in DJB and YJH are larger than those of May in the other sub-
basins. These two stations are located further south than the other
stations and are more strongly influenced by the monsoon. However,
in general, our results are consistent with the features of longer
influence and domination times during monsoon season and shorter
times during winter season at the same station.

The influence time and the domination time of the downstream
are found to be larger than those of the upstream in the SWRbasin and
the LCR basin. The extension of influence time in the winter season is
likely attributed to changes in the amount and distribution of pre-
cipitation from upstream to downstream, where the proportion of
monsoon season’s precipitation to annual precipitation from
upstream to downstream decreases from 73 to 64% in the SWR basin,
and from 72 to 67% in the LCR basin. In addition, the landcover
changes from grassland upstream to wooded grassland downstream,
which improves the water storage capacity of downstream. Conse-
quently, the precipitation memory curve changes and the memory
duration increases. However, in the UBR, YTR and YLR basins, no clear
difference in the influence time and the domination time between the
sub-basins from upstream to downstream is observed because the
hydro-physical conditions (such as landcover, soil type and climate
condition) from upstream to downstream in the UBR, YTR and YLR
basins, do not have changes as large as those of the SWR or the LCR
basins (Supplementary Tables 3 and 4).

As the flat curves in the UIR and AMU basins imply long-term
catchment memory which is not the main concern of our study, the
influence time and the domination time for these two basins are not
discussed here. In the TRMbasin, it is observed that the influence time
and the domination time are similar to those of winter seasons in the
precipitation-dominated basins, with around 3 months and 1 month,
respectively (Supplementary Fig. 10). This finding is also consistent
with the steep memory curve in the TRM basin.

Discussion
This study aimed to investigate the seasonal catchmentmemory in the
Tibetan Plateau using terrestrial water storage data. We classified the
studied basins into two categories, precipitation-dominated basins
and non-precipitation-dominated basins. The obtained results have
several substantial implications.

First, in the precipitation-dominated basins, the direction of the
Q-S hysteresis loop is more vulnerable to disruption due to pre-
cipitation reduction during themonsoon season compared to P-Q and
P-S loops. Furthermore, the shapes of hysteresis loops are determined
by the basin’s runoff generation features, whereby precipitation has a
dominant effect on the changes of both TWSA and streamflow.
Although hysteresis loop anomalies may be caused by climate
anomalies (such as reduced precipitation) or human activities (which
leads to sudden changes in runoff and water storage), the direction of
hysteresis loops remains unchanged in the long termdue to the basin’s
water storage capacity.

Second, non-precipitation-dominated basins exhibit a different
relationship among precipitation, streamflow, and TWSA. Dominated
by westerlies, precipitation is concentrated from January to April in
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these basins, corresponding to the end of winter season and the
beginning of pre-monsoon season for precipitation-dominated basins.
However, this precipitation does not cause an increase in streamflow
but rather an increase in TWSA. This is because precipitation mainly
occurs in winter in the form of snowfall, which serves as themainmass
source for the glacier. A large proportion of precipitation is converted
into storage in the formof snowand ice during this period. Thisfinding
agrees with the previous study indicating that the snow water
equivalent dominates the seasonal fluctuations of TWS38. Moreover, a
strong correlation exists between temperature and streamflow/TWSA
within thesebasins. This canbe explainedby the fact that theUIR basin
is more vulnerable to glacier loss and the AMU basin is highly depen-
dent on snow melt25. In the TRM basin, meltwater and precipitation
account for about 65% and 35% of streamflow, respectively39. As
revealed by the five hysteresis loops (Q-S, T-Q, T-S, P-Q, and P-S), the
TRM basin is dominated by precipitation andmeltwater, while the UIR
and AMU basins are mainly dominated by meltwater.

Third, the hysteresis loops in the precipitation-dominated basins
indicate that the catchment can memorize antecedent precipitation

and respond to it in the following period. Based on this, we proposed a
precipitation-to-TWSC model that splits precipitation into two parts,
with one converted into runoff and the other temporarily stored in the
basin. We used a precipitation memory curve to describe the water-
storing and releasing process. The model accurately estimated TWSC
and fitted well with GRACE-derived TWSC during the periods from
2003 to 2018, with the highest correlation coefficient of 0.88 in the
LCR basin, and the lowest correlation coefficient of 0.57 in the YLR
basin. Considering the critical role of temperature in non-
precipitation-dominated basins, we used a temperature-index func-
tion to update the precipitation-to-TWSC model. The accurate TWSC
estimations with the correlation coefficient of 0.93 in the AMU basin
were obtained with the revised model. The proposed precipitation-to-
TWSC model can simulate more accurate TWSC results than the VIC
model built in most basins, which indicates that the precipitation
memory curve from the model is reliable.

Finally, we defined the influence time and the domination time to
explore the seasonal catchment memory in the precipitation-
dominated basins. These two metrics consider the process of
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Fig. 7 | Seasonal catchment memory duration in different months in the
precipitation-dominated basins. The influence time and domination time in the
16 sub-basins in the Tibetan Plateau are the mean value of results from seven

precipitation products. The error bar is the standard deviation of the influence/
domination time from seven precipitation products, representing the uncertainty
of the influence/domination time.
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precipitation memory on a seasonal scale and the intra-annual pre-
cipitation distribution. From the results of 16 sub-basins,we found that
a longer influence time corresponds to a longer domination time
duringmonsoon season, with an influence timeof about 6months and
a domination time of about 4 months. In the winter season, the influ-
ence time and the domination time are 3 months and 1 month,
respectively. Oneof potential applications of these results is to identify
efficient lead times required for seasonal streamflow forecasts, where
the precipitation in thewinter season has little impact on themonsoon
season’s streamflow and the precipitation in the monsoon seasonmay
dominate the streamflow in the winter season.

Methods
Hydrological modeling
We use a modified version of the distributed hydrological model, the
Variable Infiltration Capacity (VIC) Macroscale Hydrological Model30,31

to simulate the runoff and evapotranspiration in eight high mountain
river basins. The snow40,41 and frozen soil algorithms42,43 are included in
the model to simulate snow and frozen soil appropriately in cold
mountain regions. The VIC model of version 4.2.d is operated at a
6-hourly time step in both water and energy balance models with a
spatial resolution of 0.25° × 0.25° in this study. In this version of VIC,
glacier simulation is absent. Therefore, we add a glacier module based
on a simple temperature-indexmodel into theoriginal VICmodel26,44,45.
The glacier melting water within Cell i Gi is calculated as follows:

Gi =
�
f i × ðDf ×TiÞ , if Ti ≥Tmelt

0 , if Ti<Tmelt
ð1Þ

Where fi is the glacier area fraction in Cell i; Df is the degree-day factor
for glacier (mm °C−1 day−1); Ti and Tmelt are the daily mean air
temperature and the minimum temperature when the glacier melts,
respectively.

The VIC model is calibrated with a global multi-objective optimi-
zation algorithm, the ε-Dominance Non-Dominated Sorted Genetic
Algorithm II (ε-NSGA-II)46,47. Evaluation criteria including
Nash–Sutcliffe efficiency (NSE) coefficient48 and relative bias (BIAS) are
chosen to evaluate the simulated performance of streamflow and ET.
The parameters selected for calibration in this study are the thickness
of the second and third soil moisture layer (d2, d3), the fraction of
maximum soil moisture where nonlinear baseflow occurs (Ws), the
maximum velocity of baseflow (Dsmax), the fraction of Dsmax where
nonlinear baseflow begins (Ds), the variable infiltration curve para-
meter (binf), and the degree-day factor for glacier (Df)

49,50.

Derivation of TWSC and its uncertainty
GRACE-derived TWSC is estimated by the double difference time
derivative of TWSA51,52 as follows:

TWSCðtÞ= TWSAðt + 1Þ � TWSAðt � 1Þ
2

ð2Þ

WhereTWSC(t) is terrestrial water storage change for Time t across the
study basin; TWSA(t + 1) and TWSA(t − 1) are terrestrial water storage
anomalies for Time t + 1 and t−1, respectively.

With the uncertainty of GRACE-derived TWSA, the uncertainty of
TWSC can be calculated as follows:

UTWSC ðtÞ=
UTWSAðt + 1Þ+2*UTWSAðtÞ+UTWSAðt � 1Þ

4
ð3Þ

Where UTWSC(t) is the uncertainty of TWSC for Time t; UTWSA(t) is the
uncertainty of TWSA for Time t.

In a closed basin, VIC-derived TWSC is estimated using the water
budget approach53,54. The mass conservation equation for estimating

the change in water storage at Time t is:

TWSCðtÞ=PðtÞ � ETðtÞ � RðtÞ ð4Þ

Where R is VIC-simulated runoff, P is precipitation data, ET is VIC-
simulated evapotranspiration. The correlation coefficient (r) is used to
evaluate the performance of VIC-derived TWSC.

Precipitation-to-TWSC conceptual model
In general, part of precipitation generates runoff directly when it falls,
while the other part is stored in the form of snow, ice, groundwater,
and soil water, and then slowly released as runoff. Thus, the monthly
precipitation at Time t, P(t), can be represented as the following
equation.

PðtÞ=
Xn
Δt =0

PtðΔtÞ,Δt =0, 1,:::,n ð5Þ

WhereΔt is a lag time; Pt(Δt) represents the water released from P(t) at
the t +Δt time; n is the longest time for the precipitation memorizing.

With Eq. (5) and the water budget equation in a closed basin, we
estimate the monthly streamflow at the outlet station as follows:

RðtÞ=
Xn
Δt =0

Pt�ΔtðΔtÞ � ETðtÞ+ εt ð6Þ

Where R(t) and ET(t) are the runoff and evapotranspiration at Time t,
respectively; εt, represents additional water fluxes participating in the
water balance except precipitation and ET, such as ancient glacier
melting/replenishment, deep groundwater discharge/recharge, artifi-
cial water intake/input, etc.; the first item in the right of Eq. (6) means
the total amount of water released from the precipitation at Time t.

With Eq. (6) replacing the item R(t) in Eq. (4), we derive TWSC as
the following:

TWSCðtÞ=PðtÞ �
Xn
Δt =0

Pt�ΔtðΔtÞ � εt ð7Þ

Here, an index is used to relate P(t) to Pt(Δt) as the following:

PtðΔtÞ= ct,ΔtPðtÞ,where
Xn
Δt =0

cΔt,t = 1 ð8Þ

Where ct,Δt is the recession index at Time t with a Δt lag time, namely
forgetting ratio. Assuming ct,Δt decays with time, we propose a pre-
cipitation memory function with reference to the hydrograph reces-
sion function55.

ct,Δt =
e�btΔt

Pn
Δt =0

e�btΔt
ð9Þ

Where bt is a coefficient to decide the shape of the precipitation
memory curve at Time t; e is the natural constant. In this study, the
longest time for precipitation memorizing is set as 1 year, i.e., n = 11.
Due to the limited data, when considering that bt and εt are time-
varying, it is hardly to avoid a large parameter uncertainty. Therefore,
in this study, the parameters,bt and εt, are considered as time-invariant
parameters in the non-precipitation-dominated river basins.

In westerlies-dominated arid river basins, water supply is more
dependent on glacier and snow melts than precipitation-generated
runoff. Referring to the degree-day factor model, we introduce a
temperature-index function to update the factor εt in Eq. (6) and Eq. (7)
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as the following:

εt =αtTt + ε
0
t ð10Þ

Where αt is a degree factor, Tt is monthly mean air temperature, and ε’t
represents fluxes participating in the water balance excluding the
glacier and snowmelts. When Tt is below 0, the precipitation is stored
as snow and ice; otherwise, the streamflow is supplemented by snow
and ice melt.

NSGA-II56,57 is used to calibrate the precipitation-to-TWSC model
parameters, in which the calibration period is from 2003 to 2011 and
the validation period is from 2012 to 2018. We employ six additional
precipitation datasets (see Data and data processing) to evaluate the
model uncertainty introduced by precipitation uncertainty (the right
panel of Fig. 5). In the eight studied basins, the performance of the
model using different precipitation datasets as input is very close,
where the uncertainties are all less than 0.1. This indicates that the
uncertainty of precipitationhas little impacton theperformanceof the
model. Except the TRM basin, we also find that the uncertainty of
precipitation has little impact on the model parameters of other
basins (Fig. 6a).

Metrics for seasonal catchment memory
In this study, the influence time and the domination time are proposed
to describe the seasonal catchment memory duration. According to
the total amount of water released from the precipitation at Time t in
Eq. (6), the contribution rate of precipitation at Time t-Δt to the
precipitation-releasingwater amount at Time t can be calculated as the
following:

CRt,Δt =
ct�Δt,ΔtPðt � ΔtÞ

Pn
Δt =0

ct�Δt,ΔtPðt � ΔtÞ ð11Þ

The lag time Δt satisfying Eq. (12) is defined as the influence time
of precipitation at Time t, which represents the longest time that the
precipitation at Time t can influence TWSC. The lag time Δt satisfying
Eq. (13) is defined as the domination time of the precipitation at Time t,
which indicates the longest time that the precipitation at Time tplays a
leading role in TWSC.

CRt,Δt ≥ 1%,CRt,Δt + 1 < 1% ð12Þ

CRt,Δt ≥ 10%,CRt,Δt + 1 < 10% ð13Þ

Data and data processing
The China Meteorological Forcing Dataset (CMFD) is used as the for-
cing data of the VIC model58,59. CMFD is a high spatial-temporal reso-
lution gridded near-surface meteorological dataset, including 2-m air
temperature, surface pressure, specific humidity, 10-meterwind speed,
downward shortwave radiation, downward longwave radiation and
precipitation rate, with the resolution of 0.1° × 0.1°. We resample the
dataset into 0.25° × 0.25° with cubic convolution interpolation. These
meteorological data are from 1999 to 2018. However, the CMFD data
donot cover twobasins, i.e., UIR andAMU.As a result, the precipitation
data for these two basins are from the Integrated Multi-satellitE
Retrievals for GPM Final Run Version 6 (IMERG) dataset, and all the
other meteorological data are from the Global Land Data Assimilation
System (GLDAS) dataset. Supplementary Fig. 11 shows the consistency
analysis results (correlations) between precipitation data of CMFD and
IMERG, and temperature data of CMFD and GLDAS. Both precipitation
data and temperature data from different sources show strong corre-
lations. In addition, the model parameters calibration can reduce

systematic bias in meteorological input and improve the hydrological
model’s tolerance to meteorological errors from different sources60.
The streamflow data in China are from the gauged hydrological sta-
tions. The streamflow data of UIR and AMU are from Pakistan Water
and Power Development Authority (WAPDA) and Third Pole Environ-
ment Data Center (TPDC), respectively. The calibration and validation
periods for each river basin are shown in Supplementary Table 1.

The precipitation datasets used to estimate TWSC in this study is
CMFD, the China Gauge-based Daily Precipitation Analysis
(CGDPA)61,62, the Tropical Rainfall Measuring Mission 3b42v7 (TRMM),
IMERG, the ECMWF Reanalysis v5 monthly averaged data (ERA5), the
Climate Prediction Center Morphing Technique Climate Data Record
(CMORPH) and the Precipitation Estimation from Remotely Sensed
Information using Artificial Neural Networks—Climate Data Record
(PERSIANN). The basic information of these datasets is shown in Sup-
plementary Table 5. In the UIR and AMU basins, the input temperature
data for the precipitation-to-TWSC model are from GLDAS dataset.

The digital elevation model data with 90m resolution is from
National Aeronautics and Space Administration (NASA) Shuttle Radar
Topographic Mission (SRTM). Harmonized World Soil Database
(HWSD)63 in a resolution of 1 km is adopted as the soil dataset in the
hydrological model. Landcover datasets used in our work are the
WestDC landcover dataset version 2.064 and Global Land Cover 2000
Project (GLC2000) dataset in a resolution of 1 km in the year of 2000.
Glacier data are from the Second Glacier Inventory of China65 and
WestDC Global Glacier dataset.

Themonthly 0.01° terrestrial evapotranspiration dataset over the
TibetanPlateau from2000 to 2018 (TED-TP) is used in this study66. The
multiyear (2000–2018) monthly ET in the Tibetan Plateau are esti-
mated using the MOD16-STM model supported by NDVI data, CMFD
meteorological data, ERA5 land surface temperature data, GLASS
albedo data, GLEAM topsoil moisture data, HWSD data and verified by
9 flux towers in the Tibetan Plateau. Since the ET data in the lower LCR
is absent, the harmonized global land ET product with the reliability
ensemble averaging method (REA-ET)67 is employed in the LCR basin.
The dataset is combined based on three model-based products, i.e.,
ERA5, GLDAS and MERRA-2, with a spatial resolution of 0.25° × 0.25°.
The global ET dataset based on ETMonitor model (ETM)68 with 1 km
resolution is employed in the UIR and AMU basins, which has been
validatedbygroundmeasurements from251flux towers across various
ecosystems and climate zones globally.

The GRACE data used in this study are Center for Space Research
(CSRRL06)masconproducts and Jet Propulsion Laboratory (JPLRL06)
mascon solutions. There is a slight difference between TWSA products
derived from CSR and JPL for the various choices of parameters and
solutionmethods54. A rough value of 20mmrecommendedby theCSR
website (http://www2.csr.utexas.edu/grace) is used as the uncertainty
of CSR data and the uncertainty of JPL data is estimated with the
methods described in ref. 69. The missing data due to battery man-
agement during the study periods are filled by linearly interpolating
the values of adjacent months. For basins in China, the data gap
between GRACE and GRACE-FO in 2017 are filled with the dataset of
reconstructed terrestrial water storage in China based on
precipitation70, which uses CGDPA and CN05.1 temperature data to
reconstruct the CSR and JPL Mascon solutions. The bias of most
regions in China is within 5 cm. For UIR and AMU, we use the global
reconstructed JPL data71 and the global reconstructed CSR data72 to fill
the data gap.

Data availability
The data produced by this study are available at https://doi.org/10.
6084/m9.figshare.22769675. GRACE and GRACE-FO data are provided
by the NASA MEaSUREs Program, among which JPL mascon data can
be accessed at https://grace.jpl.nasa.gov/ and theCSRmascondata can
be accessed at http://www2.csr.utexas.edu/grace. The dataset of
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reconstructed terrestrial water storage in China based onprecipitation
can be accessed at https://doi.org/10.11888/Hydro.tpdc.270990. The
global reconstructed JPL mascon data can be accessed at https://doi.
org/10.6084/m9.figshare.7670849.v3. The global reconstructed CSR
mascon data can be accessed at https://doi.org/10.5061/dryad.
z612jm6bt. SRTM DEM data are downloaded from https://
earthexplorer.usgs.gov/. Soil data are downloaded from https://www.
fao.org/soils-portal/soil-survey/soil-maps-and-databases/harmonized-
world-soil-database-v12/en/. GLC2000 data are downloaded from
https://forobs.jrc.ec.europa.eu/products/glc2000/glc2000.php.
WestDC landcover data are downloaded from https://cstr.escience.
org.cn/CSTR:11738.11.ncdc.Westdc.2020.678. The Second Glacier
Inventory of China can be accessed at https://doi.org/10.3972/glacier.
001.2013.db. The WestDC Global Glacier dataset can be accessed at
https://cstr.escience.org.cn/CSTR:11738.11.ncdc.Westdc.2020.764.
CMFD data are downloaded from https://doi.org/10.11888/
AtmosphericPhysics.tpe.249369.file. TRMM data are downloaded
from https://disc.gsfc.nasa.gov/datasets/TRMM_3B42_Daily_7/ sum-
mary. IMERG are downloaded from https://gpm.nasa.gov/data/imerg.
ERA5 data are downloaded from https://cds.climate.copernicus.eu/
cdsapp#!/dataset/reanalysis-era5-land-monthly-means. CMORPH data
can are downloaded from https://www.ncei.noaa.gov/products/
climate-data-records/precipitation-cmorph. PERSIANN data are
downloaded from https://www.ncei.noaa.gov/products/climate-data-
records/precipitation-cmorph. CGDPA data can be accessed at http://
data.cma.cn. GLDAS data are downloaded from https://disc.gsfc.nasa.
gov/datasets/GLDAS_NOAH025_3H_2.1/summary. TED-TP data can be
accessed at https://doi.org/10.11888/Hydro.tpdc.271236. REA-ET data
can be accessed at https://doi.org/10.5281/zenodo.4595941. ETM data
can be accessed at https://doi.org/10.11888/RemoteSen.tpdc.272831.

Code availability
Code necessary to replicate the Precipitation-to-TWSC model is avail-
able at https://doi.org/10.6084/m9.figshare.22769675. NSGA-II is pro-
vided by PlatEMO at https://github.com/BIMK/PlatEMO. The VIC
model is a fully open-source model available at https://github.com/
UW-Hydro/VIC.
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