A RTl C L E W) Check for updates

Spatiotemporal prediction of COVID-19 cases using
inter- and intra-county proxies of human
interactions

Behzad Vahedi® "™, Morteza Karimzadeh® ! & Hamidreza Zoraghein® 2

Measurements of human interaction through proxies such as social connectedness
or movement patterns have proved useful for predictive modeling of COVID-19, which
is a challenging task, especially at high spatial resolutions. In this study, we develop a
Spatiotemporal autoregressive model to predict county-level new cases of COVID-19 in the
coterminous US using spatiotemporal lags of infection rates, human interactions, human
mobility, and socioeconomic composition of counties as predictive features. We capture
human interactions through 1) Facebook- and 2) cell phone-derived measures of connectivity
and human mobility, and use them in two separate models for predicting county-level new
cases of COVID-19. We evaluate the model on 14 forecast dates between 2020/10/25 and
2021/01/24 over one- to four-week prediction horizons. Comparing our predictions with a
Baseline model developed by the COVID-19 Forecast Hub indicates an average 6.46%
improvement in prediction Mean Absolute Errors (MAE) over the two-week prediction
horizon up to 20.22% improvement in the four-week prediction horizon, pointing to the
strong predictive power of our model in the longer prediction horizons.
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uman interaction in close physical proximity is the pri-

mary cause of the transmission of highly contagious

diseases such as COVID-19!. Measuring human interac-
tion is, therefore, an important step in understanding and pre-
dicting the spread of COVID-19%3, However, tracking human
interactions requires rigorous contact tracing at national and
regional scales, which has not been implemented in the United
States due to the economic, legal, and sociocultural concerns, as
well as inadequate testing supplies, and insufficient national
coordination®.

As a result, researchers have adopted different proxies to track
human-interaction levels and connectedness. One such proxy is the
“Social Connectedness Index” (SCI), generated from Facebook’s
friendship data. SCI represents the probability that two users in a
pair of regions (e.g., U.S. counties) are friends (i.e., connected) on
Facebook®. Kuchler et al® reported on the strong correlation
between early hotspots of COVID-19 outbreak and their level of
social connectedness. The underlying assumption in leveraging SCI
as a proxy for physical human interactions is that individuals who
are socially connected on Facebook have a higher probability for
physical interaction, thereby, potentially contributing to the spread
of communicable diseases. Facebook also generates measures of
daily movements observed through its app, providing another
measure for quantifying human interactions’.

Human-mobility flow, as measured by anonymized cell-phone
data, serves as another proxy for quantifying human interactions
and the connectedness of places®®. Widely used to study the
spread of COVID-19, most studies incorporating cell-phone data
have focused on the change in mobility within a spatial unit!®11,
while a few others have also incorporated the flow between dif-
ferent spatial units!2 to predict transmissions across units, albeit
mostly in the early stages of the pandemic with limited evaluation
data. The underlying assumption in this approach is that more
movements between spatial units lead to higher interactions, and
consequently, an elevated risk of disease spread.

It is unclear, however, which of these approaches—using
social-media connectedness versus cell-phone-derived human-
mobility flow—is a better indicator of physical interaction within
and between different regions. Furthermore, the underlying
assumption in each approach may not necessarily be valid in the
case of COVID-19: considering the sporadic and regional stay-at-
home orders across the United States, social connectedness may
not lead to physical interaction, at least not to the same level as
prepandemic. Similarly, given the recommended preventive
measures such as mask-wearing and physical distancing!3,
human flow from one location to another may not necessarily
lead to physical interactions that could communicate the
disease, especially in public places, where preventive measures are
enforced more strictly.

In this paper, we compare the predictive power of Facebook-
derived movement measurements and social connectedness, as an
example of social-media proxy, with cell-phone-derived human
mobility and connectedness, as an example of human-flow proxy,
in forecasting county-level new cases of COVID-19 in the con-
terminous United States over multiple prediction horizons. To do
so, we design a machine-learning model using spatiotemporally
lagged variables of human-movement measurements and new
COVID-19 cases weighted by the intercounty connectedness
strength measured by each proxy. County-level prediction is
more challenging than state-level prediction!4-19, yet it has served
as the highest spatial resolution for national models in the United
States since cases have been aggregated and reported at the
county level. Long-term county-level predictions are also essential
for policymaking and resource allocation.

The unique characteristics of COVID-19, including its
presymptomatic and asymptomatic contagiousness, rapid spread,

along with variations in regional response policies, such as
inconsistent and sporadic testing and contact tracing, make
forecasting the spatial patterns of this disease challenging.
Researchers have used a variety of methods, including time-series
autoregressive models!”7~1%, machine-learning techniques20-22,
epidemiologic models such as the SIR model and its variants?324,
and combinations of these methods?® for forecasting COVID-19
incidence rates.

In this paper, we analyze five different machine-learning
algorithms and use the best algorithm, i.e., the one generating
the lowest-average prediction root mean squared error (RMSE)
and mean absolute error (MAE) using our features, to develop a
spatiotemporally autoregressive model for predicting incident
(new) cases of COVID-19 at the county level in short-term
(one-week ahead) and longer-term (two- to four-week ahead)
horizons.

We compare our best model predictions against a baseline
model as well as an ensemble model developed by the “COVID-
19 Forecast hub” team?®. The ensemble model (referred to as
COVIDhub-Ensemble henceforth) is one of the most prominent
collective efforts in forecasting COVID-19 in the United States
and is used by the Centers for Disease Control and Prevention
(CDC) to report predictions of new cases in US counties in one-
to four-week ahead horizons?02”. The Baseline model, which we
refer to as COVIDhub-Baseline henceforth, is a neutral, reference
model with “a predictive median incidence equal to the number
of reported cases in the most recent week”28,

Our contributions include developing a spatiotemporally
autoregressive machine-learning model for predicting county-
level new COVID-19 cases that incorporates spatiotemporally
lagged intercounty and intracounty predictive features. We
show that this model improves on average the two- to four-
week ahead (long-term) predictions of county-level new cases
of COVID-19 in the coterminous United States compared with
the COVIDhub-Baseline model, regardless of the specific proxy
(Facebook-derived or SafeGraph-derived) used in creating the
spatiotemporally lagged features. Our best model also beats
the Ensemble model on average in three- and four-week
ahead prediction horizons. As part of our evaluations, we also
compare the predictive power of Facebook-derived and
SafeGraph-derived features in the context of our models for
predicting new COVID-19 cases.

Results

Algorithm selection. Five different machine-learning algorithms
were trained and tuned using each set of features named in
Table 5, and tested over the last 14 weeks of our dataset (same
dates as Supplementary Table 1), by holding out one week at a
time for testing. Table 1 reports the average performance for
each algorithm. EXtreme Gradient Boosting (XGB) performed
better on unseen data compared with other tree-based ensemble
algorithms and the neural networks, including Feed Forward
Neural Network (FFNN) and Long Short-Term Memory (LSTM)
network (Table 1). Therefore, we used XGB for developing short-
term and long-term prediction models. The training and eva-
luation (testing) RMSE and MAE values of each model are
reported in Table 1. The reported values are for the natural
logarithm of [new cases per 10k population + 1], which we used
as a transformed target variable in the models, given the skewed
distribution of new cases (or new cases per 10k population) in
counties.

Comparing social media- and cell-phone-derived features.
To compare the relative strength of Facebook-derived movement
and connectedness against SafeGraph-derived movement and
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Table 1 Performance comparison of machine learning regressors.

Model Training RMSE Training MAE Evaluation RMSE Evaluation MAE
Random Forest (RF) 0.472 0.342 0.474 0.333
Stochastic Gradient Boosting (SGB) 0.423 0.316 0.487 0.329
eXtreme Gradient Boosting (XGB) 0.439 0.31 0.461 0.319
Feed Forward Neural Network (FFNN) 0.458 0.332 0.493 0.366
Long Short-Term Memory (LSTM) 1.296 1.024 1.349 1.304

The lowest value in each column (corresponding to the best performing model in each category) is bold-faced.

connectedness, as proxies for physical human interactions, we
designed a set of intracounty and intercounty interaction features
using each proxy and incorporated each set of features separately
to develop spatiotemporally lagged autoregressive prediction
models of new cases of COVID-19 (i.e., target variable). We then
compared the predictions of these models against each other, as
well as a temporally lagged base model that we developed (not to
be confused with the COVIDhub-Baseline model that we use for
the final, comparative evaluation), all of which were trained using
the XGB algorithm.

Our base model incorporates a series of socioeconomic,
demographic, and temperature variables, as well as temporal lags
of the target variable in the same county only, thus, we call it
Temporal XGB (TGXB). The SpatioTemporal XGB (STXGB)
models, in addition to temporal lags, also incorporate intracounty
movement features and spatiotemporal lags of the target variable
weighted by the intercounty connectedness strength (connected-
ness is beyond geographic proximity, as defined in the “Methods”
section). Specifically, the spatial lags in STXGB are the weighted
average of the log-transformed target variable (Ln(weekly new
cases per 10k population + 1)) by intercounty connectedness
index of connected counties, where connectedness index is
calculated as either (a) Facebook Social Media Connectedness
Index (SCI, in the STXGB-FB model), or (b) Flow Connectedness
Index (FCI) derived from SafeGraph’s cell-phone movement data,
forming STXGB-SG and STXGB-SGR models (described in detail
in the Methods section).

Table 2 presents the average error values of predicted total new
cases and new cases per 10k population in the one-week
prediction horizon over the 14 forecast dates using the TXGB and
STXGB models and Fig. 1 presents MAE and RMSE of the
models when predicting total new cases over each forecast date.
All variants of STXGB (-FB, -SG, and -SGR) achieved lower
errors compared with TXGB, meaning that, the incorporation
of movement features and spatiotemporal lags weighted by
connectedness indices derived from either Facebook or Safegraph
cell-phone data was advantageous across the board, compared
with the temporal lags only (TXGB). Furthermore, STXGB-FB,
which uses Facebook-derived features, outperformed all other
models in average RMSEs and MAEs.

Long-term predictions and evaluation against the COVIDhub-
Baseline. We compared the predictions of both STXGB-FB and
STXGB-SG models (as the two best performing models, one using
Facebook- and the other SafeGraph-derived features) against the
predictions of the COVIDhub-Baseline model over one-, two-,
three-, and four-week horizons. We trained and tuned STXGB
models for each prediction horizon separately. We then used the
reported new cases by Johns Hopkins University Center for
Systems Science and Engineering (JHU CSSE)?? as ground truth
to calculate MAE and RMSE of each prediction, performed across
all 4 prediction horizons and 14 forecast dates (56 predictions in
total). The 14-week evaluation period covers a period character-
ized by increasing and decreasing trends, as well as the peak,

of the number of new cases in the United States. Figure 2 and
Table 3 present MAE values of STXGB-FB and -SG models in
comparison with the COVIDhub-Baseline model (RMSE values
are presented in Supplementary Fig. 1). Our STXGB-FB model
improves MAEs compared with the COVIDhub-Baseline model
in two- to four-week prediction horizons, with average
improvements of 6.46%, 13.32%, and 19.30% over two-week,
three-week, and four-week ahead prediction horizons, respec-
tively. STXGB-SG model also outperforms the COVIDhub-
Baseline in two- to four-week horizons, with average improve-
ments of 4.48%, 14.28%, and 20.22%, respectively (Table 3).

In the one-week prediction horizon, our STXGB-FB and
STXGB-SG models outperform the COVIDhub-Baseline model
on half of the forecasting dates (7 out of 14). In longer prediction
horizons (2- to 4-week horizons), STXGB-FB and STXGB-SG
outperform the COVIDhub-Baseline with a larger MAE margin,
achieving a lower MAE in 32 and 34 predictions (forecast date/
horizon combinations) out of the total 42 predictions, respectively
(STXGB-FB outperforms the Baseline in 10, 10, and 12 forecast
dates over two-, three-, and four-week prediction horizons,
respectively; for STXGB-SG, the corresponding values are 10, 11,
and 13). To further contextualize these comparisons, it is worth
noting that in a study on the performance of the models
submitted to the COVID-forecast hub in predicting incidence
deaths, roughly half the submitted models had errors larger than
the COVIDhub-Baseline model?3.

It is important to note that the COVIDhub-Baseline out-
performed our models in 7 out of 8 predictions performed across
all prediction horizons on December 20th, 2020, and January 314,
2021 forecasting dates (Fig. 2 and Table 3). The week of
December 20th-December 26 marks an apparent local mini-
mum in the daily number of new cases in the United States, with
a relatively sharp decrease which could be attributed to the
Christmas holidays when most counties report abnormally lower
numbers (Fig. 2i). The week of January 3rd—]anuary oth js when
the United States experienced the highest number of weekly new
cases during the entire pandemic, most likely with numbers that
were inflated due to latent reporting of cases observed during the
New Year’s holidays. Hence, both periods represent abnormal
changes in the number of new cases, which might reflect a change
in the behavior of reporting agencies (due to holidays or the
weeks following them) as opposed to a sharp weekly increase or
decrease in the number of cases.

Prediction intervals. To assess the uncertainty of our models, we
generated 95% prediction intervals (PI) for the total number of
new cases (described in the Methods section). Figure 3 shows the
PIs generated by the STXGB-FB and STXGB-SG models in
comparison with the county-level COVIDhub-Baseline model for
one- to four-week prediction horizons. The COVIDhub-Baseline
model generates narrower PIs compared with both of our models.
However, in a few cases such as the three- and four-week ahead
predictions on the 2020/11/1 forecasting date, the 95% PI of the
COVIDhub-Baseline model does not include the observed value
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Table 2 Average RMSE and MAE of county-level predicted new cases and new cases per 10 k population over 14 forecast dates for the one-week horizon.

MAE new case/10 k

prediction
10.04

RMSE new case/10k

prediction
16.88
16.23

MAE new case
prediction
69.60

64.33

RMSE new case

prediction
338.32

Model

Base model (TXGB)

includes temporal lags

include

9.48
9.64
9.60

308.49

STXGB with Facebook-derived features (STXGB-FB)

16.41
16.37

64.86
66.32

318.00
345.04

STXGB with SafeGraph-derived features-rich (STXGB-

STXGB with SafeGraph-derived features (STXGB-SG)
SGR)

spatiotemporal lags

The lowest values of each error metric (achieved by the best performing model) are boldfaced.

of the number of new cases, whereas the PIs of both of our
models successfully include the observed values across all pre-
diction horizons and forecasting dates. This indicates the strong
predictive structure of STXGB models when leveraging either
Facebook- or SafeGraph-derived features.

Figure 5(a-d) shows the percentage errors of the COVIDhub-
Baseline model in comparison with the STXGB-FB and STXGB-
SG models when predicting the total number of new cases in the
coterminous United States across each prediction horizon. At
each forecast date, percentage error is calculated by dividing the
difference between the predicted value of total new cases and the
observed value of total new cases by the observed value (positive
values indicate overprediction, and negative values indicate
underprediction). As seen in this figure, all models underestimate
the total number of new cases before the 2020/11/15 forecasting
date and overestimate this number after the 2021/01/10
forecasting date. These are respectively the periods of steady
increase and steady decrease in the (7-day-averaged) trend of the
total number of new cases in the United States (Fig. 2i). In the
period between 2020/11/15 and 2021/01/10, when the trend of
the total number of weekly new cases fluctuates, our models on
average have a lower percentage error compared with the
COVIDhub-Baseline in two- to four-week prediction horizons
and the COVIDhub-Baseline has a lower percentage error in the
one-week horizon.

Spatial distribution of errors. Both our models performed
better than the COVIDhub-Baseline model on 7 out of 14
forecasting dates over the one-week horizon and outperformed
the COVIDhub-Baseline on at least 10 out of 14 forecasting
dates across all longer than one-week horizons. To find
potential explanations for this inconsistency between the short-
term and long-term performance of our models, we inspected
the spatial patterns of errors. Figure 4 illustrates the maps of
confirmed new cases per 10k population along with prediction
errors per 10k population generated by the STXGB-FB model
for two forecasting dates of Nov. 1 and Nov. 8, 2020. The
purple-shaded counties in the error maps are those with model
underestimation of new cases, and the brown shades indicate
overestimations of observed values. As can be seen in this fig-
ure, the majority of counties with high prediction errors (per
10k) are located in the rural Midwest with relatively high
numbers of cases per 10k population during the November
surge, albeit these are counties with fewer total cases compared
with more populated, urban ones. It is worth noting that we use
normalized (by 10k population) maps in Fig. 4, since chor-
opleth maps would be biased by patterns of population dis-
tribution otherwise.

Figure 4 also demonstrates clusters of apparent underestima-
tions in Georgia and Texas on the Nov. 1 forecasting date,
followed by apparent overestimations in the same areas for the
week after. The opposite pattern is the case for Kentucky. In the
case of Georgia, the high-error clusters can almost perfectly
delineate the boundary of the state. This discrepancy could be a
result of lags or different policies in testing and reporting
COVID-19 cases. These potential short-term lags in reporting by
some states may explain why our model performs considerably
better in the longer-term prediction horizons. This indicates
that our models might be in general sensitive to short-term
inconsistencies in reporting, but more stable over longer-term
horizons.

Additionally, in this study, we chose to evaluate our model
predictions against the weekly aggregation of the raw number of
cases (as opposed to smoothed values) to ensure that we are not
characterizing our results with an additional advantage. The
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Fig. 1 Prediction errors of the SpatioTemporal eXtreme Gradient Boosting (STXGB) models in one-week prediction horizon against a temporal
autoregressive model without spatial lags (TXGB). a Prediction MAE and b prediction RMSE of one-week ahead predictions of total new cases. STXGB-
FB, which incorporates Facebook-derived features, including spatial lags based on Social Connectedness Index as well as Facebook-measured movement

data, outperforms other models on average as indicated in Table 2.

number of cases is, however, reported inconsistently, and may, for
example, contain underreporting during one week with over-
reporting during the following weeks. Evaluating the models
against the smoothed case numbers (e.g., using a 7-day moving
average before weekly aggregation) might be a better reflection of
the real performance of the models, which would give our results
a performance boost.

The majority of counties in the United States are rural, which
are also the ones with fewer medical resources, and where social
media data or cell-phone mobility data, which underlie our
models, might be less representative30-32. To investigate our
models’ performance in rural-majority counties compared with
the COVIDhub-Baseline, we categorized the counties into urban-
and rural-majority by calculating an urbanization index for each
county (Supplementary Note 2). In total, 2391 counties (~77%)
were identified as rural and 712 as urban.

We then calculated the prediction errors of the number of
cases and the number of cases per 10k population for the
COVIDhub-Baseline and STXGB-FB models in each category
across four prediction horizons for the Nov. 8 forecasting date
(Supplementary Fig. 4 presents the former case and Fig. 5e-h
presents the latter). Both models generate considerably lower
median errors and narrower interquartile error ranges in rural
counties when predicting the total number of new cases (not
normalized by population), which could be attributed to the
overall higher prevalence and higher variance of COVID-19

cases in urban counties in our prediction horizons. However,
the opposite is the case when predicting the number of weekly
new cases per 10k population; both models have wider
interquartile ranges in rural counties across all prediction
horizons. This could be due to the overall higher prevalence of
COVID-19 per population in rural counties during the selected
prediction horizons.

As evident in Fig. 5e-h, STXGB-FB has lower prediction
errors in predicting the number of new cases with a narrower
interquartile range (IQR) in both urban and rural counties
compared with the COVIDhub-Baseline model, across all
prediction horizons, except for the shortest one (one-week
horizon), which may be attributed to temporal fluctuations and
policy variations in testing and case reporting as discussed
above. In predicting the total number of new cases per 10k
population, STGXB-FB has lower median errors in both urban
and rural counties across two- to four-week prediction
horizons, but the COVIDhub-Baseline model has a narrower
IQR. Furthermore, the difference between the median predic-
tion errors of both STXGB-FB and COVIDhub-Baseline in
urban and rural counties, when predicting the number of
cases per 10k population, is smaller compared with predicting
the number of new cases (not normalized by population)
(Supplementary Fig. 4). This points to the consistent perfor-
mance of STXGB-FB in rural-majority counties, even though
Facebook might not be as representative in these areas3.
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Table 3 Comparison of the mean absolute prediction errors
(MAE) generated by the COVID-19 Forecast Hub Baseline
model and our STXGB-FB and STXGB-SG models in 1- to
4-week prediction horizons across all forecasting dates.

Forecast date Model Percentage improvement in MAE
compared to COVIDhub-Baseline
1-week 2-week 3-week 4-week
horizon horizon horizon  horizon

2020/10/25  STXGB-FB 15.83 22.50 31.75 4416

STXGB-SG 9.58 18.73 27.73 36.88

2020/11/01 STXGB-FB 10.66 26.93 38.08 48.66

STXGB-SG 3.20 18.92 29.86 39.80
2020/11/08 STXGB-FB 3.01 17.43 24.34 28.18
STXGB-SG —7.62 8.76 11.96 2118
2020/11/15 STXGB-FB 0.16 16.13 26.98 31.57
STXGB-SG —9.66 16.91 25.81 28.54
2020/11/22 STXGB-FB 7.78 17.64 23.40 22.35
STXGB-SG 9.31 16.03 22.49 23.30
2020/11/29 STXGB-FB 8.52 11.61 1115 2.51
STXGB-SG 2.49 9.01 1.34 7.66
2020/12/06 ~ STXGB-FB —-4.18 —-3.27 -119 1.46
STXGB-SG —6.74 -1.14 3.26 5.87
2020/12/13 STXGB-FB  —14.94 -14.79 -0.36 3.54
STXGB-SG —-20.93 -16.74 -1.88 9.91
2020/12/20 STXGB-FB  —2113  —-19.84 —-2690 —19.51
STXGB-SG —24.94 2110 —2.66 5.86
2020/12/27 STXGB-FB -0.08 6.66 5.10 12.68
STXGB-SG 3.89 297 3.92 10.88
2021/01/03 STXGB-FB  —50.03 —-3510 —-19.49 —3.58
STXGB-SG —-50.57 —3455 —-12.83 —3.68
2021/01/10 STXGB-FB 4.77 28.44 41.67 47.67
STXGB-SG 5.98 25.98 38.21 46.77
2021/01/17 STXGB-FB —2.47 15.83 31.16 38.58
STXGB-SG  —10.30 10.88 31.64 33.72
2021/01/24 STXGB-FB —7.93 0.26 0.75 11.94
STXGB-SG 2.65 8.06 113 16.44
Average Pct. STXGB-FB  —3.57 6.46 13.32 19.30
Change STXGB-SG —6.69 4.48 14.28 20.22

The average values for each model and across each horizon are bold-faced.

Comparison with the forecast Hub’s ensemble model. In
addition to the COVIDhub-Baseline model, we compared our
models against the COVIDhub-Ensemble model, which is
an ensemble of 32 models that regularly submit forecasts to
the COVID-19 Forecast hub?’, and is used by the Centers
for Disease Control and Prevention (CDC) to report predic-
tions of new cases in U.S. counties in one- to four-week ahead
horizons26-27,

In comparison with the Ensemble model, STXGB-SG achieves
lower average prediction MAEs (over the 14 forecast dates) in the
three- and four-week prediction horizons, and a higher average
MAE in the one- and two-week horizons. The STXGB-FB model
also outperforms the Ensemble model on average in the four-
week prediction horizon (Table 4 and Supplementary Table 3).
This is noteworthy because an analysis of 23 models that
submitted forecasts of weekly COVID-19 mortality counts to the
COVID-19 Forecast Hub, published by the Hub?3, reported that
“forecasts from all models showed lower accuracy and higher
variance as the forecast horizon moved from 1 to 4 weeks ahead”.
Furthermore, the same analysis reported that the Ensemble model
was “consistently the most accurate model when performance
was aggregated by forecast target”. However, as mentioned, our
STXGB-SG beats the Ensemble when forecasts are aggregated
over three- and four-week ahead horizons (during the 14
evaluation weeks).

STXGB-SG outperforms the Ensemble in terms of prediction
MAE in 8, 10, and 8 forecast dates (out of 14 forecast dates) over
two-, three, and four-week horizons respectively. The corre-
sponding numbers for STXGB-FB are 8, 9, and 8 forecast dates.
Due to space limitations, here we only present the average MAE
comparison. Detailed performance comparisons between STXGB
models and the COVIDhub-Ensemble model are presented in
Supplementary Note 4. Supplementary Fig. 2 and 3 present the
prediction intervals of STXGB models and the COVIDhub-
Ensemble model and Supplementary Table 3 presents the
prediction MAE values of each model across the four prediction
horizons and for each forecast date.

Discussion

We demonstrated that incorporating (1) spatiotemporal lags
using intercounty indices of connectedness and (2) intracounty
measurements of movement improves the performance of high-
resolution COVID-19 predictive models, especially over long-
term horizons. Short-term and long-term predictions of COVID-
19 cases help the federal and local governments make informed
decisions such as imposing or relaxing business restrictions or
planning resource allocation in response to the forecasted trends
of COVID-1933:34,

By incorporating the aforementioned spatiotemporal lags,
the STXGB-FB and STXGB-SG models outperformed the
COVIDhub-Baseline model in two-, three-, and four-week pre-
diction horizons on average, with inconsistent comparisons in the
one-week horizon. Our error maps suggest that this inconsistency
might be partly due to inconsistent and delayed testing and
reporting by some states. Furthermore, the STXGB-SG model
achieved a lower-prediction MAE on average compared with the
Ensemble model currently used by the CDC in reporting county-
level new cases of COVID-19 in three- and four-week prediction
horizons.

It is important to note that our conclusions are valid at the
county level and not for any specific region, age group, or gender.
Furthermore, they only apply to our study design, time, and
period of evaluation. We hope that this work invites other
researchers to investigate the power of similar spatiotemporal lags
in predictive models in different parts of the world.

The superiority of STXGB over purely temporal models (such
as our base TXGB) points to the importance of incorporating
both within-unit (e.g., intra-county) and between-unit (e.g,
intercounty) interactions when predicting a highly contagious
disease such as COVID-19. Predictive models that focus on
within-state boundaries are likely to underperform because after
all, the disease does spread across geographic unit borderlines.

Our results showed that using spatiotemporal lags of either
Facebook-derived or SafeGraph-derived features, implemented in
STXGB-FB and STXGB-SG models, respectively, and within the
same architecture, generates lower prediction errors on average
compared with the COVIDhub-Baseline model in prediction
horizons longer than one week (Table 3).

Furthermore, the STXGB-FB model performed better than the
STXGB-SG model on average in one- and two-week prediction
horizons, whereas the latter outperformed the former in three-
and four-week prediction horizons (on average). This points to
the predictive power of our model structure as well as spatio-
temporally lagged connectedness and movement feature, inde-
pendent of the specific datasets that we used as a proxy for
measuring human interaction and movement.

It is worth noting that both models use movement as features
(in addition to connectedness) derived from each dataset as
explained in the Methods section. However, to maintain com-
patibility, we used a formulation similar to Facebook’s Social
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Fig. 3 About 95% prediction interval of the STXGB models compared with the COVIDhub-Baseline over four prediction horizons. The panels on the left
show the predictions of the total number of cases and 95% Pls of STXGB-FB (blue dashed lines and regions, respectively) compared with the COVIDhub-
Baseline (red dashed lines and regions). The panels on the right show the predictions of the total number of cases and 95% Pls of STXGB-SG compared
with the COVIDhub-Baseline using a similar color scheme. The solid black lines represent the total number of observed cases at each forecast date.aand b
One-week horizon, ¢ and d two-week horizon, e and f three-week horizon, and g and h four-week horizon.

Connectedness Index when creating a corresponding index from
SafeGraph data (which we call Flow Connectedness Index, refer
to the Methods section). This might have had adverse effects on
the predictive power of the cell-phone-derived features. Never-
theless, the resulting model performs better than the COVIDhub-
Baseline in long-term predictions on average (Table 3). We will
investigate alternative designs of intercounty connectedness
metrics from SafeGraph mobility data in the future to ensure the

utilization of the full potential of this dataset. However, Safe-
Graph discontinued the publication of its Social Distancing
Dataset as of April 15, 2021. Our alternative approach of using
social media data provides an additional pathway for predictive
modeling of COVID—as evidenced by our quantitative
evaluations.

Supplementary Note 5 presents detailed information on the
interpretability of our models. Specifically, we analyzed the

8 NATURE COMMUNICATIONS | (2021)12:6440 | https://doi.org/10.1038/541467-021-26742-6 | www.nature.com/naturecommunications


www.nature.com/naturecommunications

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-26742-6

ARTICLE

Cases/10k population

00t07.8

7810129
12,910 18.6
18.6 10 25.1
25.11035.3
35.310 53.0
53.0 to 309.1

Cases/10k population

001095

9510149
14.91021.3
21.31029.6
29.6 10 43.0
43.010 63.9
63.9 t0 635.0

Prediction Error

I -225.8t0 -17.5 4 b
-17.5t0-7.6
-7.6t0-2.7
-27t0-0.5
- —05t01.0
1.0t0 4.0
M 40t0747

Prediction Error

I -512.6 to -15.1
-15.110 -6.8
-6.810-3.1
-3.1t0-0.4
041020
2.0t08.0
Msoto1115

Fig. 4 A map of COVID-19 cases per 10k population and errors in predicting them. a The number of confirmed new cases per 10k population over the
week ahead of forecasting date Nov. 1, 2020. b Prediction errors for the same forecasting date. € Number of new cases over the week ahead of the Nov. 8,
2020 forecasting date. d Prediction errors for the same forecasting date. The pattern of errors in Georgia, Texas, and Kentucky flips from Nov. 1to Nov. 8,
indicating potential lags in testing and reporting. The purple-shaded counties in the error maps are those with model underestimation of new cases, and the

brown shades indicate overestimations of observed values.

importance of all the features used in the STXGB-FB and
STXGB-SG models, across all forecasting dates and prediction
horizons. Based on this analysis, the importance of the Social
Proximity to Cases (SPC) in the STXGB-FB model is higher than
its counterpart (Flow Proximity to Cases or FPC) in the STXGB-
SG model. One-week lagged change in SPC constantly has the
second-highest importance in STXGB-FB across all 56 forecast
dates/prediction horizons (one-week lagged change in incidence
rate has the highest importance). On the contrary, one-week
lagged change in FPC is the second most important feature in
only 11 of 56 predictions. The importance of movement-related
features is relatively higher in STXGB-SG compared with
STXGB-FB. Supplementary Fig. 5 and 6 demonstrate the feature

importance of STXGB-FB and STXGB-SG models, respectively,
for a snapshot on Nov. 8 forecasting date.

Furthermore, Supplementary Note 6, Supplementary Table 4,
and Supplementary Fig. 7 and 8 present a comparison between
STXGB-FB and -SG models and the COVIDhub-Baseline model
when predicting the number of cases in 50 counties with the
highest numbers of weekly new COVID-19 cases.

While our models predict the number of new cases (via inci-
dence rates), the number of hospitalizations or deaths (mortality
rate) can also be considered as potential target variables. STXGB
model can be modified to predict the number of deaths or hos-
pitalizations using the same spatiotemporal feature structure.
We leave the evaluation of these models for future research.
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The findings of this paper also suggest that Facebook’s Social
Connectedness Index can be used for predictive modeling of
COVID-19 in data-poor countries without cell-phone-derived
movement datasets, assuming that the Facebook usage in those
countries is of comparable size and representativeness to the
United States>. With more than 2.5 billion active users globally,
Facebook provides social connectedness for many countries.

Conversely, human-mobility data through cell-phone companies,
to the best of our knowledge, are available in a far fewer number
of countries.

It is worthwhile to mention that Facebook (Daily Movement
and Social Connectedness) or SafeGraph (Social Distancing
Metrics) datasets may not be perfectly representative of different
demographic groups such as the elderly, the less-affluent

10 NATURE COMMUNICATIONS | (2021)12:6440 | https://doi.org/10.1038/541467-021-26742-6 | www.nature.com/naturecommunications


www.nature.com/naturecommunications

ARTICLE

Table 4 Average percentage improvement in prediction
MAEs achieved by our STXGB models compared to
COVIDhub-Ensemble model over four prediction horizons.

Average of 1-week 2-week 3-week 4-week
Pct. Change horizon horizon horizon horizon
STXGB-FB —16.27 —6.36 —0.08 4.58
STXGB-SG —19.40 —8.26 1.61 6.27

population, or the population living in rural areas®®. While our
predictions are county-level and not age- or gender-specific, we
presented our analyses of the performance of our models in rural-
majority counties, indicating better performance compared with
the Baseline in the same counties. Additionally, Facebook
has more than 190 million active users in the United States, and
SafeGraph aggregates data from 45 million mobile devices,
or approximately 10% of devices in the United States®’.
Also, according to a Pew Research Center survey conducted in fall
2016, 84% of American households contain at least one smart-
phone, and a third of Americans live in a household with three or
more smartphones8. Therefore, even though social media and
cell-phone data do not perfectly represent the US population,
they still provide a valuable sample.

Furthermore, each dataset might contain a certain amount of
noise as fake connections (generated from fake profiles or bots) in
the case of Facebook, or multiple counts of the same person
carrying multiple mobile devices in the case of SafeGraph.
Machine-learning algorithms alleviate this issue to some degree
by learning the regularities in the data (instead of noise), i.e., by
treating such information as noise when trained on the observed
patterns of disease spread, especially when the overwhelming
majority of observed datapoints are not affected by noise3°.

As evident in Table 1, the XGB and SGB methods performed
better than other machine-learning-based algorithms. A
potential reason for the lower performance of FFNN and LSTM
on our feature structure is the relatively small size of the
training data (43 weeks of observation at most). Neural net-
works’ main advantage is in their ability to learn features from
data®0, however, they require higher amounts of training data
compared with tree-based models for optimizing the model’s
parameters. Our results are a testament to the advantages of
high-performance tree-based ensemble algorithms such as XGB
with more limited training data, especially if features are well-
engineered. Our spatiotemporal-lag features provide a template
for such features to improve machine-learning-based predictive
modeling of infectious diseases.

It is also worth noting that between XGB and SGB, SGB
generated lower-average training errors when using the base and
SafeGraph-derived features, but XGB outperformed SGB in
testing RMSE and MAE across all 4 models. This is somewhat
expected, as XGB uses the second-order derivatives of the loss
function for optimization, and more importantly, a regularized-
model formalization to control overfitting, which is otherwise a
disadvantage with regression trees*!. This regularized model
results in better performance on unseen data. To ensure con-
sistency, we ran all regression methods 10 times, and XGB had
lower testing errors compared with all other regression methods
in all 10 runs.

Methods

This section outlines the details of feature engineering, algorithm selection, and
implementation of spatiotemporal autoregressive machine-learning models for
predicting new cases of COVID-19 in the conterminous United States. We describe
our experimental setup for comparing the predictive power of Facebook-derived
features and SafeGraph’s cell-phone-derived mobility features (as proxies for

human physical interaction) for this purpose, and the evaluation of our models
against the COVIDhub-Baseline and COVIDhub-Ensemble models.

Base features. We engineered features for machine learning that can be cate-
gorized into five groups: (A) a set of county-level demographic and socioeconomic
features, (B) minimum and maximum temperatures of inhabited areas in counties,
(C) temporally lagged (i) weekly average and (ii) weekly change in cumulative
incident rates (change in cumulative COVID-19 cases per 10k population) in each
county, (D) Facebook-derived features of (i) intracounty movement measurements
and (ii) exposure to COVID-19 through intercounty connectedness, and (E)
SafeGraph-derived features of (i) intracounty movement measurements and (ii)
exposure to COVID-19 through intercounty connectedness.

Socioeconomic, demographic, and climatic variables are shown to be correlated
with the spread of COVID-192242-45, therefore, we include category-A and -B
features in all of our models to control for these factors. Supplementary Note 1
outlines the detailed methodology for generating features in these categories.

Features in category C indirectly capture population compartments of the
susceptible-infected-recovered (SIR) epidemiological models®4”. We defined the
COVID-19 incidence rate of a county as its number of cumulative cases per 10,000
population and included a four-week lagged (t-4) weekly average of incidence rates
in each county as a feature (category C.i) to capture the Susceptible and Recovered
compartments. If the feature value is small, many individuals in the unit have not
yet contracted the disease, and therefore, are still susceptible. If the feature value is
sufficiently large (level of sufficiency is learned by the model), the compartment is
approaching higher levels of immunity as a whole. We use machine-learning
algorithms that are capable of learning such nonlinear relationships.

To account for the latency associated with the effects of temperature, new and
historical incidences, and human interaction on the spread of COVID-19, we
generated four temporal weekly lags of features in categories B-E (we assume that
the features in category A are static during our study period). Notably, for category
C, we also included (natural log-transformed values of) change in cumulative
incidence rate (In(A incidencerate + 1)), i.e., the difference between the observed
start-of-week and end-of-week cumulative incidence rates, during the four-weekly
temporal lags (¢-1,...,t-4), as another set of features in all of our models (category
C.ii) (since cumulative rates are used, the “change” will always be greater than
zero). These features conceptually capture the Infected compartment in the SIR
model, i.e., the currently infected populations in the spatial unit. Our autoregressive
modeling with multiple temporal lags allows the models to learn the rate of spread
in a unit, as well as the varying incubation periods of the disease in relation to the
change in temperature and demographic features*%4°.

Features in categories D and E also model the SIR population compartments,
but in connected counties (through either social connectedness or flow
connectedness). Features in category D represent the social media proxy (of
physical human interactions), whereas features in category E represent the cell-
phone-derived human mobility flow proxy.

The temperature variables, (spatio)temporally lagged change in incident-rate
variables and daily-movement variables (using both Facebook and SafeGraph data)
(Table 5), can capture the potential seasonality in the target variable to some extent.
In addition, part of the variations observed in the daily-movement interaction data
and/or the temporally lagged changes in incident rate could be the result of policy
interventions or individual behavior change, captured in (training) data. Therefore,
our models are capable of capturing changes in the season, policy, or trends, with
nonlinear XGB models applied to these spatiotemporal features of movement,
temperature, and lagged incidence rates.

We evaluate the predictive power of the Facebook-derived features (category D)
and the SafeGraph-derived features (category E) against a base model by
developing four different model setups (not to be confused with the final
evaluations against the COVIDhub-Baseline model). Here, we provide an outline of
these models, with more details on the specific algorithms and features mentioned
in Table 5 in the following sections.

The first model (base model) only includes base features: socioeconomic
features (category A), four temporally lagged weekly temperature features (category
B), and four temporally lagged weekly changes in cumulative incidence rates in
each county, as well as the weekly average of incidence rates during the fourth
lagged week (category C). Therefore, the base model only incorporates temporal
lags of the features and the target variable in predicting new cases of COVID-19.

The second model, which we identify by the “-FB” suffix (to note the inclusion
of Facebook features), includes the base features as well as category-D features, i.e.,
Facebook-derived intracounty movement features (percentage of Stay Put and
Change in Movement) and inter-county spatiotemporal lags of the target variable,
i.e., exposure to COVID-19 through social connectedness (Social Proximity to
Cases), across four temporal lags. The third model, which we identify by the “-SG”
suffix, is conceptually similar to the -FB model, but with features derived from
SafeGraph cell-phone mobility data instead of Facebook data. Specifically, the -SG
models include the base features in addition to intercounty spatiotemporal lags of
the target variable, i.e., exposure to COVID-19 through human-flow connectedness
(which we call Flow Proximity to Cases), and a subset of category-E SafeGraph-
derived intra-county movement features, across four temporal lags.

To explore the full potential of the movement features provided by the
SafeGraph Social Distancing Metrics (SDM) dataset, we developed a fourth model,
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variable.

Category

Model(s)

Variables

Table 5 The complete list of features, their temporal lags, and the models in which they are used. t-1, t-2, t-3, and t-4 indicate
one-, two-, three-, and four-week lags, respectively. The target variable for one week-ahead prediction horizon on forecast date
d is the number of new cases per 10k from the forecast date through the end of prediction horizon t in each county, i.e., A(new
incidence rate); 4. The target for the two-week-horizon prediction is A(new incidence rate); ., q, three-week-horizon is A(new
incidence rate),. , 4, and four-week horizon is A(new incidence rate);. 3 4. Ln in the table indicates natural logarithm, mean

indicates weekly average, A indicates weekly change, i.e., difference (calculated by subtracting the value of the feature at the
beginning of the week from its value at the end of the week) and Slope indicates the slope of a fitted linear regression model to
the standardized daily measures of metric value as the dependent variable and standardized day of the week as the independent

Temporal Lag

A- socioeconomic and
demographic

All of the models

population density; pct. of African American population; pct. of the male
population; pct. of the population aged >65; pct. of Hispanic population; pct. of
the rural population; pct. of Native American population; median household
income; pct. of the population with a college degree; pct. of the population who
voted republican (in 2016 election)

None (constant)

B- Temperature All of the models mean (daily minimum temperature);; mean (daily maximum temperature); t-1, t-2, t-3, t-4

C- COVID-19 All of the models Ln (A cumulative incidence rate ;+1) t-1, t-2, t-3, t-4
incidence rate Ln (mean (cumulative incidence rate); +1) t-4

D- Facebook -FB model A SPC; t-1, t-2, t-3, t-4
mean (SPC); t-4

mean and slope (Stay Put); t-1, t-2, t-3, t-4

mean and slope (Change in Movement); t-1, t-2, t-3, t-4

E- SafeGraph -SG and A FPC; t-1, t-2, t-3, t-4
-SGR models mean (FPC); t-4

mean and slope (pct. completely_home_device_count); t-1, t-2, t-3, t-4

mean and slope (baselined distance_traveled_from_home); t-1, t-2, t-3, t-4

-SGR model mean and slope (baseliend median_home_dwell_time); t-1, t-2, t-3, t-4

mean and slope (baselined pct. full_time_work_behavior); t-1, t-2, t-3, t-4

in which two additional mobility-related measurements provided in the SDM
dataset (that are least correlated with other features in category E) are added to the
-SG model. This model thus includes categories A-C and all features in category E
and is identified by the “-SGR” suffix.

Features derived from Facebook

Intracounty movement features. Facebook publishes the Movement Range dataset
for 14 countries®® and it includes two metrics called “Change in Movement” and
“Stay Put”, each providing a different perspective on movement trends as measured
by mobile devices carrying the Facebook app. The Change in Movement metric for
each county is a measure of relative change in aggregated movement compared
with the baseline of February 2-February 29, 2020 (excluding February 17, 2020,
President Day holiday in the United States)*’. The Stay Put metric measures “the
fraction of the population that have stayed within a small area during an entire
day™". We used four temporal lags of weekly averages and slopes of each metric as
a feature in our -FB model. We calculated the slopes by fitting a linear-regression
model to the metric value as the dependent variable and day of the week as the
independent variable, both transformed to standard scale N(0,1). The slope feature
characterizes the overall trend in a week, as compared with the baseline period.

Intercounty features and spatial lag modeling. The intracounty features capture the
intrinsic movement-related characteristics of a county and ignore its interactions
(i.e., spatial lags) with the counties to which it is connected. Therefore, we calcu-
lated intercounty metrics of connectivity as a basis for incorporating spatio-
temporal lags in our models. Notably, the connectedness in this context transcends
spatial connectedness in the form of mere physical adjacency.

Social Connectedness Index (SCI), another dataset published by Facebook, is a
measure of the intensity of connectedness between administrative units, calculated
from Facebook friendship data. Social connectedness between two counties i and j
is defined as®!:

FB Connections; ;

Social connectedness(SC);; = o~
FB Users; * FB Users;

¢y

where FBConnections;; is the number of friendships between Facebook users who

live in county i and those who live in county j, while FBUsers; and FBUsers; are the
total number of active Facebook users in counties i and j, respectively. Social
Connectedness is scaled to a range between 1 and 1,000,000,000 and rounded to the
nearest integer to generate SCI, as published by Facebook®2. Therefore, if the SCI
value between a pair of counties is twice as large as another pair, it means the users
in the first county pair are almost twice as likely to be friends on Facebook than the
second county pair’l. We used the latest version of the SCI dataset (at the time of
our analyses), which was released in August 2020°2.

While SCI provides a measure of connectivity, our goal is to capture the
spatiotemporal lags of COVID-19 cases in county i, i.e., the number of recent
COVID-19 cases in other counties connected to county i. Using SCI, Kuchler et al.®
created a new metric, called Social Proximity to Cases (SPC) for each county, which
is a measure of the level of exposure to COVID-19 cases in connected counties
through social connectedness. We use a slight variation of SPC, defined as follows
for county i at time f:

Social Connectedness; ;
>pSocial Connectedness; ;,

@

where Cases Per 10k;, is the number of COVID-19 cases per 10k population (i.e.,
incidence rate) in county j as of time t. For county i, the sums j and h are over all
counties. In other words, SPC for county i, in time ¢, is the average of COVID-19
incidence rates in connected counties weighted by their social connectedness to
county i, i.e., the spatial lag of incidence rates. To the best of our knowledge, SPC
data have not been published, but we were able to generate this feature using the
original method®, modified for our weekly temporal lagged features, and calculated
using incidence rates (cases per 10k population) rather than the total number of
cases. In the -FB models (Table 5), we incorporated features of weekly change (A)
in SPC at four temporally lagged weeks (difference between the end and start of the
lag week) to model the Infected SIR compartment in connected counties, as well as
the weekly average of SPC in the fourth lagged week (t-4), to capture the
Susceptible and Recovered SIR compartments in connected counties, similar to the
rationale for features in category C, as explained earlier.

Social Proximity to Cases(SPC);, = X Cases Per 10k; ,
j

Features derived from SafeGraph

Intracounty movement features. To generate movement features from cell-phone
data, we used SafeGraph’s SDM dataset that is “generated using a panel of GPS
pings from anonymous mobile devices™3. The SDM dataset contains multiple
mobility metrics published at the Census Block Group (CBG) level. Among these
metrics, distance_traveled_from_home (median distance traveled by the observed
devices in meters) and completely_home_device_count (the number of devices that
did not leave their home location during a day)>? are conceptually closest to the
metrics included in Facebook’s Movement Range Dataset. We used these two
features in our -SG model, which is the conceptual equivalent of the -FB model, but
with cell-phone-derived features instead of the Facebook-derived features

(Table 5).

We included the SafeGraph’s median_home_dwell_time (median dwell time at
home in minutes for all observed devices during the period), and
full_time_work_behavior_devices (the number of devices that spent more than
6 hours at a location other than their home during the day)®3 in addition to the
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previous two features in the -SGR model to take fuller advantage of the metrics
available in the SDM dataset.

We derived baselined features from the SDM metrics as such: to address the
potential effect of fewer cell-phone observations in some CBGs, we used a Bayesian
hierarchical model>*>> with two levels (states and counties), and then smoothed
the daily measurements using a seven-day rolling average to reduce the effect of
outliers in the data. We then aggregated CBG-level completely_home_device_
count and full_time_work_behavior_devices values up to the county level, divided
by the total device_count in the county on the same day. For full_time_work_
behavior_devices, we subtracted the final proportion from the February 2020
baseline of the same metric. For the median_home_dwell_time and
distance_traveled_from_
home variables, we calculated the weighted mean (by CBG population) of values
per county and then calculated the percent of change compared with the February
baseline.

We used weekly averages and slopes (calculated by fitting a linear-regression
model to the values as the response variable and day of the week as the
independent variable) of these four metrics as features in our models (Table 5).

Intercounty features and spatial-lag modeling. Building on the conceptual structure
of SCI, we derived a novel and daily intercounty connectivity index from Safe-
Graph’s SDM dataset to quantify connectedness between counties based on the
level of human flow from one county to the other (measured through cell-phone
pings). We call this index “Flow Connectedness Index” (FCI). Using FCI, we then
calculated a spatial lag metric that we call “Flow Proximity to Cases” (FPC) for each
county. FPC captures the average of COVID-19 incidence rates in connected (by
human movement) counties weighted by the FCI. Again, it is worth noting that
connectedness in this sense goes beyond the physical connectivity of counties, and
considers daily human movement between them as the basis for determining
connectivity. The similar formulations of FCI and SCI, as well as FPC and SPC,
allow for direct comparison of the two networks (i.e., FB’s friendship network and
SafeGraph’s human-flow network) in their capability to capture intercounty phy-
sical human interactions, and subsequently, to predict new COVID-19 cases.

The SafeGraph’s SDM contains the number of visits between different CBGs.
We aggregate these values to the county level to measure the daily number of
devices that move (flow) between each county pair. Leveraging these flow
measurements, we define Flow Connectedness Index (FCI) as

Device flow; ; + Device flow; ;

)

Flow connectedness index(FCI); J = Dovi -
evice count; * Device count;
where for counties i and j, Device flow;; is the sum of visits with origin i and
destination j. Device count; is the number of devices whose home location is in
county i. We then scale FCI to a range between 1 and 1,000,000,000.
We defined FPC as

Flow Connectedness; ;

Flow Proximity to Cases (FPC);, = %: Cases Per 10k; , S, Flow Connectedness,

4
where Cases Per 10k;, is the number of confirmed COVID-19 cases per 10k
population in county j at time #, and Flow Connectedness; ; is the value of FCI
between county i and j.

Facebook’s social network and friendship connections do not change
significantly over time, and therefore, SCI is a static index over a one-year period.
Conversely, intercounty human flow from SafeGraph is dynamic and can change
dramatically, even within a week. We generated daily FCI (and FPC) for each
county pair in the United States to utilize the full temporal resolution of the SDM
dataset. We used weekly change (A) of FPC for the four temporally lagged weeks,
and its average only in the fourth week as features -SG and -SGR models, with the
same rationale as features in categories C and D to capture SIR compartments in
connected counties (Table 5).

Model implementation. The ultimate target variable in all of our autoregressive
models in each prediction horizon is the number of new cases of COVID-19 during
that horizon. For training and tuning the models, however, we used a transformed
target variable, namely the natural log-transformed values of new cases per 10k
population plus one (to avoid zero values). For reporting the model predictions, we
computed the number of new cases by applying an inverse transformation, i.e., an
exponential transformation minus one (Formula 5-7). The rationale for using the
log-transformed target variable, as opposed to directly predicting the weekly new
cases, was to minimize skewness, and more importantly, minimize the sensitivity of
the models to the population of counties. Our exploratory work did confirm that
using this logged of incidence rates that produced better results.

Vpredicted(i,y = In(A incidencerate; ) + 1) (5)
A incidence rate; edicted;, = oredicediy ] (6)
A Caseyegiced,, = (A incidence rategieq ) * Population; /10,000 (8)

A Casepregicted,,, in 7 denotes the number of new cases in county i over the pre-

diction horizon t.

Our training dataset includes up to 43 training samples per county (number of
total samples n = 3103 x 43), with each sample holding various features in one- to
four-weekly temporal lags (Table 5). The weekly calculation of features is based on
weeks starting on Sundays and ending on Saturdays, with predictions also made for
horizons spanning Sunday-Saturday periods (both days are inclusive) as in
common practice?’. Our features, models, evaluations, and comparisons are
limited to the counties in the coterminous United States. Table 5 summarizes the
features that we used and the number of temporal lags (if any) used for each
feature. All features were standardized for use in machine-learning algorithms.

Our general approach to training, validation, and testing of our models for
different prediction horizons is similar, only, with target variables calculated
separately for the specific prediction horizon. We first outline our approach for
one-week ahead prediction horizons, which is used as the basis for algorithm
selection. We then provide an overview of the implementation of the models for
longer-term prediction horizons.

We trained and tuned the models using randomized search and 5-fold cross-
validation, and tested the best-tuned model for predicting new cases on unseen
data, during the n weeks following the forecast date where n is the prediction
horizon: n € {1, 2, 3,4}. Cross-validation helps in preventing overfitting to a large
degree®.

For instance, for the forecast date of 2020/10/25, we used features that were
generated using data collected until 2020/10/24 for training and tuning. The tuned
model was then used for predicting new cases in each county during the 2020/10/
25-2020/10/31 period. We used the reported cases by the JHU CSSE. The
temporally lagged features for this forecast date were generated for t-1, t-2, t-3, and
t-4 weekly lags, namely, the weeks ending on 2020/10/24, 2020/10/17, 2020/10/10,
and 2020/10/03, respectively.

For the next forecast date, 2020/11/1, the training size increased by one week
(per county), and the target week was also shifted by one week. Supplementary
Table 1 summarizes the forecast dates, one-week and 4-week ahead prediction
horizons, and training-data size. The data used in generating these features span a
period from 2020/03/29 to 2021/01/23 to cover the temporal lags. This was the
latest date for which 4-week ahead ground-truth data were available at the time of
performing our analyses. Consequently, the target variable is collected through
2021/02/20 for the evaluation of four-week ahead predictions on the last forecast
date. Our 14-week evaluation period covers both increasing and decreasing trends
in the number of new cases in the United States, as well as the three highest peaks
in the daily and weekly numbers of new cases in the country. More details on cross-
validation, hyperparameters, and evaluation are presented in Supplementary
Note 3.

We experimented with five different supervised machine-learning regression
algorithms, namely Random Forest®” (RF), Stochastic Gradient Boosting>® (SGB),
eXtreme Gradient Boosting*!->® (XGB), Feed Forward Neural Network® (FFNN),
and Long Short-Term Memory®! (LSTM) network to build the autoregressive
machine learning models with features described in Table 5. We evaluated the
models using the dates listed in Supplementary Table 1. The results are presented
in Table 1. The details of hyperparameter candidates and specific architectures are
presented in Supplementary Note 3.

Comparing Facebook-derived features with SafeGraph-derived features. Since
the XGB algorithm performed best (Table 1), we chose it as the selected machine
learning algorithm, and trained the base, -FB, -SG, and -SGR models using the
XGB algorithm to predict new cases of COVID-19 in short-term (one week) and
long-term (two-four weeks) prediction horizons. To name a specific model in this
article, we use a prefix that denotes the type of lag included in the model features
(i.e., T for temporal or ST for spatiotemporal), followed by the name of the
algorithm (XGB), followed by a suffix denoting the features included in the model,
namely, -FB, -SG, and -SGR. Thus, TXGB (Temporal eXtreme Gradient Boosting)
denotes the model that is built using the XGB algorithm and includes the base,
temporally lagged features; and STXGB-FB (SpatioTemporal eXtreme Gradient
Boosting) denotes the model that includes Facebook-derived features (and thus,
spatiotemporal lags) and is built using XGB.

We evaluated the performance of TXGB, STXGB-FB, STXGB-SG, and STXGB-
SGR by comparing the RMSE and MAE scores of the predictions against the
observed numbers of new cases in the corresponding prediction horizon
(the results are presented in Table 2 and Fig. 1).

Each STXGB model was tuned and trained on a regular desktop machine (with
a 6-core Ryzen 5 3600X CPU and 64GB of RAM) in approximately 12-13 minutes
for a single prediction horizon, and thus, in almost one hour for all of the four
prediction horizons.

Evaluation against the COVIDhub-Baseline and COVIDhub-Ensemble models.
In addition to the one-week short-term predictions, we performed long-term
predictions of new COVID-19 cases in two-, three-, and four-week ahead pre-
diction horizons. We only used the STXGB algorithm to develop long-term pre-
diction models since it outperformed other algorithms in short-term predictions
(see the Results section). We used the same set of features for long-term predic-
tions, with modifications on the target variable to reflect different prediction
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horizons. For instance, the target dates for two-, three-, and four-week ahead
horizons of the Forecast date 2020/10/25, were 2020/11/07, 2020/11/14, and 2020/
11/21, respectively.

The model for each horizon was trained and validated separately using the same
training data and approach described in the previous section and was tested on
two, three, and four weeks of unseen data, respectively, for each horizon. We
evaluated the models” predictions by comparing them against the predictions
generated by the COVIDhub-Baseline and -Ensemble models, as well as the
ground-truth values of new cases derived from JHU CSSE COVID-19 reports.

Generating prediction intervals using STXGB model. To assess the uncertainty
in the predictions generated using the STXGB models, we performed quantile
regression on two quantiles, namely 2.5% (alpha = 0.025) and 97.5% (alpha =
0.975) using the quantile loss function of SGB, and calculated the 95% prediction
interval as a result. These quantiles and the subsequent prediction interval are also
reported for the COVIDhub models (and by the CDC?’) and thus allow for
comparing prediction intervals as well as point estimates between STXGB and
those models (Fig. 3). We summed all the lower-quantile (2.5%) predicted values
for all the counties to calculate the national lower-quantile predictions, and per-
formed a similar process to calculate the national upper-quantile (97.5%)
predictions.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

All of the raw data used in this study are publicly available (at the time of writing this
paper). We created socioeconomic features from the 5-year survey data—between 2014
and 2018—provided by the American Community Survey (ACS) and available at the
IPUMS National Historical GIS portal (https://www.nhgis.org/). Daily maximum and
minimum temperature surfaces of the United States published by the NOAA are
available at https://ftp.cpc.ncep.noaa.gov/GIS/GRADS_GIS/GeoTIFF/TEMP/. We used
the cumulative confirmed COVID-19 cases published by the Johns Hopkins University
Center for Systems Science and Engineering (JHU CSSE) to generate COVID-related
features. Facebook’s Social Connectedness Index (SCI) database is available at https://
dataforgood.fb.com/tools/social-connectedness-index/ and the movement-range dataset
can be found at https://data.humdata.org/dataset/movement-range-maps. Finally, the
instructions for accessing SafeGraph’s Social Distancing Metrics dataset are available at
https://docs.safegraph.com/docs/social-distancing-metrics.

The processed data used in this study have been deposited in the Zenodo database
under accession code https://zenodo.org/record/5542643%2. The processed data are
available without any restriction. The raw data are also publicly available using links
provided above.

Code availability
All code necessary for the replication of our results are publicly available at https://
github.com/geohai/COVID19-STGXB®3.
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