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Demography and the emergence of universal
patterns in urban systems
Luís M. A. Bettencourt1,2,3 & Daniel Zünd 1,2✉

Urban areas exist in a wide variety of population sizes, from small towns to huge megacities.

No proposed form for the statistical distribution of city sizes has received more attention

than Zipf’s law, a Pareto distribution with power law exponent equal to one. However, this

distribution is typically violated by empirical evidence for small and large cities. Moreover, no

theory presently exists to derive city size distributions from fundamental demographic

choices while also explaining consistent variations. Here we develop a comprehensive

framework based on demography to show how the structure of migration flows between

cities, together with the differential magnitude of their vital rates, determine a variety of city

size distributions. This approach provides a powerful mathematical methodology for deriving

Zipf’s law as well as other size distributions under specific conditions, and to resolve puzzles

associated with their deviations in terms of concepts of choice, symmetry, information,

and selection.
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The observation of approximate power law distributions of
type frequencies is very common in complex systems1–5.
The emergence of such distributions is known to be inti-

mately connected to multiplicative growth processes mediated by
the structure of complex networks of interaction6,7. Many dif-
ferent effective models have been proposed to derive particular
forms of these distributions. They share common characteristics,
such as invoking proportional growth (also known as Gibrat’s
Law) or preferential attachment and starting out at some meso-
scopic scale, typically not derived from the fundamental popu-
lation dynamics of the system7–18.

Among the many statistical patterns that characterize size
distributions, none has received more attention than Zipf’s
law17–21. Specifically, Zipf’s law applied to an urban system states
that the expected population size of a city N is a function of its
size rank, r,

NðrÞ ¼ N0

rz
; ð1Þ

with an exponent z= 1, where N0 is the size of the largest city
(r= 1). In other words, the largest city is predicted to be twice the
size of the second largest city (r= 2), three times larger than the
third largest (r= 3), and so on. This is equivalent to a Pareto
probability density for city sizes, Pz(N)= c/N1+z, with c a normal-
ization constant. First observed by Auerbach for city sizes in 191322,
Zipf’s law gained widespread attention through the work of the
linguist George Kingsley Zipf, who established the rank-size rule
first in the context of word frequencies in the 1930s23 and then
cities24. Zipf’s law quantifies the concept of urban hierarchy, which,
together with ideas of central place, location theory and other “laws”
characterizing statistical regularities in urban systems, became the
basis for the quantitative revolution in geography in the decades
after World War II. Systematic analyses of urban systems from that
time already suggested that the city size distribution is not universal,
acquiring different forms as a result of distinct historical patterns of
growth that do not have a relation to levels of economic perfor-
mance or human development25.

Like other power laws in complex systems, Zipf’s law has also
attracted much scrutiny and criticism over time6,17. It is hardly ever
observed empirically in an unambiguous way, with data often
showing systematic deviations at the two extremes of very large and
especially of very small cities26–34. Besides such systematic varia-
tions, estimates of the exponent z take substantial ranges across
time and for different urban systems, for example in China27,35,36,
the United States20,21,37, and European countries9,38.

In our view, the empirical controversies about the form of
the city size distribution and the interpretation of associated
deviations can only be resolved through more fundamental
approaches that start out with a system’s basic population
dynamics. It is also in the context of population dynamics that
we can make sense of processes of selection and randomization
that order and disorder complex systems. In this paper, we adopt
the lens of evolutionary population dynamics to show the
emergence and meaning of Zipf’s distribution as a neutral law,
signaling the absence of selection. It follows that associated
deviations acquire the meaning of information, specifying peo-
ple’s preferences about where to live, constitute a family, and die.
These results allow us to discuss and resolve a number of puzzles
surrounding the interpretation of Zipf’s law as a signal for urban
system integration and associated implications for the coherence
and symmetry of population states.

Results
Demographic dynamics of urban systems. We now derive the
population size distribution of cities in the most general way, set
by their demographic dynamics. The change of the population Ni

in city i during unit time Δt necessarily results from the balance of
births, deaths, and migration as

Niðt þ ΔtÞ ¼ NiðtÞ þ Δt υiNiðtÞ þ
XNc

j¼1;j≠i

ðJ ji � JijÞ
" #

; ð2Þ

where Nc is the total number of cities, υi= bi− di is the city’s vital
rate, the difference between its per capita average birth rate, bi, and
the death rate, di. The current Jij is the number of people moving
from city i to city j over the time interval Δt, and vice-versa for Jji.
For simplicity of notation we will work in units where Δt= 1. Eq.
(2) only accounts explicitly for migration between different specific
cities, which can cross political borders. Migration to city i from
non-specific places outside the system, for example from non-urban
regions or other nations, can be incorporated into the vital rates υi.
Note that this model is very general, and naturally accommodates
the inclusion of new cities over time when their sizes become non-
zero, and indeed the disappearance of others, if their size vanishes.

To proceed we need to explore the dependence of the currents
Jij on population size. We start by writing these currents as
population rates, Jij=mijNi(t), where mij is the probability that
someone in city i moves to city j over the time period. This allows
us to write Eq. (2) in matrix form

NðtÞ ¼ AðtÞNðt � 1Þ; ð3Þ
where NðtÞ ¼ ½N1ðtÞ; ¼ ;NiðtÞ; ¼ ;NNc

ðtÞ�T is the vector of
populations in each city at time t and the matrix A projects the
population at time t− 1 to time t. This matrix is known in
population dynamics as the environment39, with elements

Aij ¼
1þ υi �mout

i ; if i ¼ j

mji; if i≠j

(
; ð4Þ

where mout
i ¼ PNc

k¼1;k≠i mik is the total probability that a person
migrates out of city i per unit time. We also define the population
structure vector x= [xi], with xi=Ni/NT, which is the probability
of finding a person in city i out of the total population NT. Note
that

PNc
i¼1 xi ¼ 1, so that the structure vector has Nc− 1 degrees

of freedom (the magnitude of x is fixed).
Equation (3) can now be solved by repeated iteration

NðtÞ ¼ AðtÞAðt � 1Þ¼Að1ÞNð0Þ: ð5Þ

City size distributions in different environments. A number of
important ergodic theorems40 in population dynamics tell us
about the properties of the solutions under different conditions
on the environments A(t). These results rely on some constraints
on the properties of A; specifically, that the product of matrices in
Eq. (5) is positive for sufficiently long times39,41.

First, the weak ergodic theorem guarantees that for a
dynamical sequence of environments, the difference between
two different initial population structure vectors decays to zero
over time. This means that there is typically an asymptotic city
size “distribution”, which is a function of environmental
dynamics only, independent of initial conditions. When the
environment is stochastic but otherwise time independent,
the strong stochastic ergodic theorem states that the structure
vector becomes a random variable whose probability distribu-
tion converges to a fixed stationary distribution, regardless of
initial conditions. This is the sense in which most derivations of
Zipf’s law apply17,33. For stochastic environments, only prob-
ability distributions of structure vectors, not vectors themselves,
can be predicted. Finally, in situations where the environment is
time dependent and stochastic, the weak stochastic ergodic
theorem states that the difference between the probability
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distributions for the structure vector resulting from any two
initial populations, exposed to independent sample paths,
decays to zero. Again, in cases where the environment is
explicitly dynamic, besides being stochastic in a stationary sense,
we cannot say much about the actual probability distribution of
city sizes, only that the importance of initial conditions vanishes
for sufficiently long times.

To get more intuition on these results we will now show some
explicit solutions. The city size distribution can be calculated
exactly when the environments A are arbitrarily complicated, but
static. This is the result of the strong ergodic theorem, which says
that in a constant environment A, any initial population vector
converges to a fixed stable structure given by the leading
eigenvector of the environment39. This is guaranteed to exist if
A is a strongly connected aperiodic graph, meaning that any city
can be reached from any other city in a finite and diverse number
of intermediate steps along the non-zero migration flows between
them. This is a reasonable assumption to make about an urban
system, which may even serve as a definition. The leading
eigenvector of A is the eigenvector centrality of the urban system.
It describes the probabilistic location of a random walker over the
graph of migration flows42. This is equal to the stationary
solution of numerically integrating a network described by
environment A. Figure 1 shows two numerical solutions with
different initial conditions, but the same environment A. The
cities in the two runs converge to similar sizes, as they experience
a common environmental matrix with all entries set to be the
same plus a little noise. The insets show how the population
structure converges from both initial conditions to the one
defined by the leading eigenvector e0. Because the structure vector
is the probability of finding a person out of the total population in
the urban system in a specific city, we use the Kullback-Leibler
(KL) divergence43 DKLðPjPe0

Þ ¼ P
xP½x�logP½x�=Pe0

½x� as a
measure of the ‘distance’ between the initial distribution, P, and
the final, Pe0

. The KL divergence is a foundational quantity
in information theory. It measures the information gain in
describing a probabilistic state using one distribution, Pe0

, versus
another, P, in units of information (bits). Note that P ! Pe0

and
thus DKLðPjPe0

Þ ! 0 over time, see insets in Fig. 1.
The convergence rate of the city size distribution to the leading

eigenvector is given by the ratio of secondary eigenvalues to the
dominant one. Explicitly, we can now write this solution as

NðtÞ ¼ AtNð0Þ ! NðtÞ ¼
XNc

i¼1

ðλiÞtciei: ð6Þ

where Aei = λiei, so that ei are the eigenvectors of the matrix A
and λi the corresponding eigenvalues, so that λ0 > Re(λ1) > Re
(λ2) > . . . , where Re(λi) is the real part of the eigenvalue. The
projection coefficients ci are such that Nð0Þ ¼ PNc

i¼1 ciei, which
can be written as c= E−1N(0), where E is a matrix whose jth
column vector is ej. The strong ergodic theorem states that the
largest eigenvalue λ0 is positive and real and that the associated
eigenvector e0 is also positive in terms of all its entries. This
means that, over time, the dynamics of the urban system
approaches that of the growth of its dominant eigenvector,
because the projections on all other eigenvectors decay exponen-
tially in relative terms, as

λi
λ0

� �t

¼ e�ln λ0
λi
t ���!

t!1 0 ð7Þ

and exemplified in the two insets in Fig. 1. The longest
characteristic time is associated with the difference in magnitude
between the two largest eigenvalues t� ¼ 1=ln λ0

jλ1j. Consequently,
for t≫ t� we observe an extreme dimensional reduction from an
initial condition characterized in general by Nc degrees of
freedom to a final one with just one, set by the environment’s
leading eigenvector. Using the values of migration flows in the US
urban system over the last decade, we can compute the value of
t�. It is rather long—of the order of several centuries—when
measured using census data44 and a little shorter using data on
tax returns45.

These results allow us to consider very general classes of
dynamics and initial conditions. We therefore conclude that in
general, given a specific set of demographic conditions, the total
population can grow exponentially with a common growth rate
across cities. In addition, the relative population distribution at
late times does not resemble anything like Zipf’s law. As expected
from the statements of the ergodic theorems, the population
structure is set by the nature of the intercity flows (and vital
rates), or equivalently by the environment A.

Stochastic demographic dynamics and symmetry breaking. The
step towards a statistical solution for the city size distribution—
and obtaining Zipf’s law in particular—requires the additional
consideration of statistical fluctuations, which must arise in the
vital and migration rates. Just as in models of statistical physics,
the introduction of stochasticity implies not just fluctuating
quantities but potentially also the restoration of broken symme-
tries46,47. In the context of urban systems, restoring broken
symmetries means removing preferences for population growth
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Fig. 1 Temporal evolution of the relative population structure of cities in the same environment for different initial conditions. Lines shows the
trajectory of each city in terms of the fraction its population, Ni to the total NT. a shows an initial situation where all cities start out with similar sizes,
whereas in b they are initiated following Zipf's law (shown in log-scale). In both cases, the relative city size distribution eventually becomes stationary at
long times (vertical red line) with the same population structure. This is given by the eigenvector e0, corresponding to the leading eigenvalue of the
environment. The insets show how the system converges in both cases to this common structure set by the environment, because the Kullback–Leibler
divergence DKLðPjPe0 Þ approaches zero at late times.
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in specific cities over others, associated with imbalances in vital
rates and migration flows. To make these expectations explicit we
write the migration rates mij as

Jij ¼ mijNiðtÞ ¼
sij þ δij

2

� �
NjðtÞ
NTðtÞ

NiðtÞ: ð8Þ

Eq. (8) splits the migration flows into two parts: sij describes the
symmetric flow between two cities (sij= sji), and δij the anti-
symmetric part (δij=−δji). Note that any correlations between Ni

and Nj are preserved in these two quantities. Making the popu-
lation size of the destination city explicit will allow to diagonalize
Eq. (2) and therefore to find self-consistent solutions for the
structure vector. This form of the migration currents also makes
contact with the gravity law of geography, which is typically
written as

Jij ¼ Gg

NiNj

dγij
¼ J ji: ð9Þ

In this form, the gravity law is symmetric, corresponding to Eq. (8)
when δij= 0 and sij=GgNT(t)f(dij), where Gg is the ‘gravitational’
constant, f ðdijÞ ¼ 1=dγij is a decaying function of distance dij and γ
is the distance exponent. Only the anti-symmetric part contributes
to the dynamics of population size change, since we can write
Eq. (2) as

Niðt þ 1Þ ¼ 1þ υi � δi
� �

NiðtÞ: ð10Þ

with δi ¼
PNc

j¼1 δijxj. We can now appreciate the importance of the
bi-linearity of the migration flows on both the origin and destina-
tion population as a means to diagonalize the demographic
dynamics. We have achieved this however at the cost of introducing
a slow non-linearity in each city’s growth rate, via their dependence
on the population structure vector x. We can establish the existence
of a self-consistent solution x* such that for long times

υi � υ� ¼
XNc

j¼1

δijx
�
j ; ð11Þ

where υ� ¼ PNc
i υix

�
i , since

PNc
i;j¼1 δijxixj ¼ 0, by the conservation

of the migration currents. Note that we did not assume any explicit
form for the migration flows as a function of distance between
places, so that our discussion includes many specific models,
including different version of the gravity law.

This equation has a clear geometric meaning: The matrix
δ= [δij] is anti-symmetric and real, so that it behaves as an
infinitesimal generator of rotations: R(x)= x+ δx. We can write
the self-consistent solution in terms of these rotation as

Rðx�Þ ¼ x� þ ðυ� υÞ; ð12Þ
where υ is still a function of x and υ= [υi]. Note that these
rotations are associated with very small angles, and that the
structure vector is subject to constraints, such as staying positive.
The first two terms of Eq. (12) ask for a general solution for x that
is invariant under rotations. However, the last term, which
introduces differences in relative growth rates for different cities,
breaks this symmetry explicitly. This specificity of the relative
growth rates leads to particular solutions that do not coincide
with Zipf’s law. Fig. 2a shows the example of a numerical solution
in a non-linear, non-stochastic environment, defined by Eq. (8).
The final population structure in this environment is still well
defined, as it reaches a steady state. However, compared to the
time independent case (see Fig. 1), the final structure takes much
longer to unfold and has a stronger urban hierarchy.

Symmetry restoration and the emergence of Zipf’s law. The
stage is now set to consider what it takes to counter the symmetry
breaking resulting from the selective structure of the environment.
To do that, we must consider the statistics of the demographic rates.
We start by rewriting Eq. (10) in terms of the dynamical equations
for the structure vectors x as

xiðt þ 1Þ ¼ 1þ υi � υ� δi
� �

xiðtÞ ¼ ð1þ ϵiÞxiðtÞ: ð13Þ
We now specify the relative growth rate ϵi ¼ υi � υ� δi for each xi
as a statistical quantity. It is clear by construction that its average
over cities vanishes, ϵi ¼ 0. The only remaining question is how ϵi
varies over time. There is strong empirical evidence that on the time
scale of years to decades some cities can maintain larger growth
rates than others. For example, presently in the US, most cities of
the Southwest and South are growing fast, while other cities show
slower growth or relative decay, such as many urban areas in the
Midwest and Appalachia48. Moreover, it has been true in recent
decades that mid-sized cities in the US have been growing faster
than either the largest cities or small micropolitan areas, so that even
population aggregated growth rates over certain size ranges differ.
Going further back in time one could argue that the same cities of
the Midwest were once booming as they became the manufacturing
centers of the US, especially between the Civil War and the decades
post WWII49. Similar arguments may be made for cities in other
urban systems, such as in Europe50,51. Thus, it is possible that on
very long time scales, T—on the order of a century or longer—the
growth rates of cities equalize to very similar numbers and therefore
the temporal average hϵii ¼ 1

T

PT
t ϵiðtÞ ! 0. This requires that the

temporal average of Eq. (11) remains zero, which means that
the structure vector is both rotated and dilated ’randomly’ in ways
that over sufficiently long times lead to 〈ϵi〉= 0, for each city.
Numerical solutions of the demographic equations under these
conditions show a population structure that closely resembles Zipf’s
law for long times, see Fig. 2b.

In the following, we show that Zipf’s law is a probability density
for this derived dynamics in the long run. To do this, let us
characterize the variance in the temporal growth rate fluctuations
as σ2i ¼ hϵ2i i ¼ σ2υi�υ þ σ2

δi
þ 2COVðυi � υ; δiÞ> 0. Over the same

long time scales, statistical fluctuations in the growth rate may
obey a limit theorem, so that they become approximately
Gaussian, with variance, σ2i . Then, Eq. (13) becomes simpler,
and acquires a direct correspondence to familiar stochastic growth
processes. It can be written in analogy to geometric Brownian
motion without drift as

dxi ¼ ϵixi ¼ xiσ idW ð14Þ
where W is a standard Brownian motion. We now see how
demographic dynamics can be simplified through a chain of
assumptions into a form consistent with typical stochastic
processes leading to Zipf’s law as proposed by Gabaix20,52.

Equation (14) can be expressed as an equation for the
probability density P≡ P[xi, t∣xi(0), 0] of observing xi at time t,
having started with an initial condition where xi(0) was observed
at time zero,

d
dt

P ¼ d2

dx2i
σ2i x

2
i P ¼ dJxi

dxi
: ð15Þ

The last term describes a probability current, Jxi ¼ d
dxi

σ2i x
2
i PðxiÞ.

This equation is exactly solvable, see Methods for technical
details. To find the stationary solutions, we ask that the right
hand side of Eq. (15) vanishes. The first of the two solutions
corresponds to a vanishing current, Jxi ¼ d

dxi
σ2i x

2
i PðxiÞ ¼ 0 and is

P ¼ c0
σ2i x

2
i
, where c0 is a normalization constant. If σ2i ¼ σ2
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independent of x, as proposed by Gibrat’s law, we can drop the
index so this becomes Zipf’s law, PðNÞ ¼ PzðNiÞ � c

N2. Note for
example that if σ2i � N�α (α may be negative), which violates
Gibrat’s law in terms of fluctuations of the growth rate, then
P ~ 1/N2−α. Thus, the city size dependence of growth rate
fluctuations will change the exponent in Zipf’s law and may
destroy scale-invariance altogether if it is not a power law. The
second solution applies for constant current, i. e. Jx= J, which
leads to P ¼ c00

σ2x, where c″ is a normalization constant. This
represents a flow of probability across the urban hierarchy. Both
solutions are attractors of the stochastic dynamics that emerge for
long times, t≫ 1/σ2.

We find that in the limit where the relative difference in vital
rates vanishes due to fluctuations, the structure vector becomes
rotationally invariant on average and the angular symmetry of x is
effectively restored. This leads to an effective symmetry of the
relative city size distribution on the time scale tr= 1/2σ2, when
growth rate fluctuations vanish. The time tr can be estimated
using US data to be typically very long, on the range of many
centuries or even millennia. Under these conditions all cities
share statistically identical dynamics and can be interchanged,
resulting in Zipf’s law as the time average of population size
distributions, see Fig. 3. In the same limit, the anti-symmetric
components of intercity flows will average out and the gravity law

will emerge in its conventional form. However, the observations
of city sizes at each time are samples of this distribution and may
reflect decade-long observable positive and negative preferences
for certain cities. Figure 4 shows this effect for the US urban
system using decennial census data from 1790 to 1990. For time
periods of a few decades, the temporal average does not visibly
converge to Zipf’s law: The blue line in the inset of Fig. 4 depicts
this effect. However, the cumulative temporal average of the size
distributions starts to approximate Zipf’s law after about five
decades. The red line (inset) shows the KL divergence between
the cumulative temporal average and Zipf’s law, starting from
1790 to subsequent census.

Discussion
We have shown that the demographic dynamics of urban sys-
tems can result in different city size distribution and how Zipf’s
law, the gravity law and other coarse-grained statistical regula-
rities in geography emerge approximately from these dynamics
as averages when certain symmetries are restored over suffi-
ciently long times.

Several of the properties of Zipf’s law that have been con-
troversial in the literature can be clarified from this perspective.
First, Zipf’s law is not a “unique signal for the integration of cities
in an urban system”54; it is merely one distribution of city sizes
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among many less symmetric ones that result from such integra-
tion. We have shown in this respect that integration of an urban
system depends on strong intercity migration flows—but not
necessarily the symmetric ones that might lead to Zipf’s law.
Intuitively, such flows mix people up between places creating a
single common dynamics across all cities that is not associated
with any particular kind of economic or political organization
beyond enabling free intercity migration. However, asymmetries
in the migration flows (and, thus, deviations from Zipf’s law)
might originate in systemic properties, but can have a manifold of
other reasons—such as socio-economic opportunities, natural
disasters, or demographic change—or originate from combina-
tions of them.

Second, in a recent article Cristelli et al.54 make the important
point that the properties of Zipf’s law are systemic and cannot be
understood simply on the basis of its mathematical form as a
power law. They show that Zipf’s distribution is coherent in that
subsamples of a population distributed according to Zipf’s law do
not reflect the same statistics. They also emphasize that because
the largest city in the system sets the overall properties of rank,
the distribution makes no sense without it, something they call
screening. These properties can be understood through the con-
servation of the current Jx and its dynamical consequences. If we
replace any other probability distribution, including a normalized
subsample of Zipf’s law, into the current we will obtain a non-
zero drive to the entire system dynamics because P[x] is a field in
x. This systemic response signals a lack of coherence and even-
tually restores P[x] back to Zipf’s distribution. Similarly, a set of
cities organized such that their relative populations has Jx = 0
ensures that other cities cannot easily take their sizes and ranks,
leading to screening as a result of the global conservation law of
the probability current. Under these conditions there can only be
churn in the relative positions of cities in the rank hierarchy.
The characteristic extinction time for a city with initial rank r to
fall below the lower boundary x < xm can be read from the

solutions in Methods to be hΔtðrÞi � 1
2σ2 ln

rmax
r ¼ trln

rmax
r .

The longest time, for the largest city to fall off the system,
is hΔtðr ¼ 1ÞitrlnNc, which is the product of the characteristic
time for the reversal of city growth rates, tr, multiplied by
lnNc ¼ ln rmax, which is a measure of the depth of the urban
hierarchy.

To better appreciate the commonly observed deviations of the
largest and smallest cities in the distribution, consider that the
current can be integrated over any finite range of x∈ [xl, xu] to
giveZ xu

xl

dxJx ¼ x2uP½xu� � x2l P½xl� ¼ 0 ! P½xu� ¼
x2l
x2u

P½xl�; ð16Þ

which is clearly satisfied by Zipf’s distribution with z = 1. This
shows how the statistical dynamics of population sizes depends
on values at the extremes of x, the maximum, xM and minimum
xm. While it may be natural to set xM= 1 with a small probability,
it is more problematic to choose xm’s value, thereby defining
the population of the smallest possible city in the sample. In
particular, because xm = Nm/NT > 0, we must specify how places
with population N <Nm relate to our distribution at the lower
boundary. The vanishing current condition tells us that there
should be a Zipfian “ghost” distribution of cities, such that
P½x < xm� ¼ xm

x P½xm�, with lots of small cities.
Expanding on a point stressed by Saichev et al.5, this means

that the boundary conditions, especially for small cities, are cri-
tical in shaping the resulting distribution. This issue betrays a
failure of true scale-invariance hidden in Zipf’s law. The solution
of Eq. (14) in the absence of the vanishing current is a lognormal
distribution5 with average given by ln xðtÞ ¼ ln xð0Þ � ðσ2=2Þt
(see Methods). This means that, in the absence of boundary
conditions at xm, the distribution will become more and more
peaked at smaller and smaller values of x over time. The con-
servation of the current stops this decay from happening, because
it effectively injects some compensatory probability for small
cities getting smaller, from other even smaller cities (not in the
sample) getting larger. This logic requires an immense number of
smaller and smaller cities. For example, if like in the US or China
the largest city in the system has ~20 million people, one needs 20
million cities with one person, 2 million with 10, 200,000 with 100
and so on, which is not observed. This inevitable deficit of small
towns relative to Zipf’s law will always lead to a loss of scale
invariance for high ranks and the need to understand the nature
of demographic processes at play in this regime on the basis of
more fundamental processes, returning us back to the demo-
graphic dynamics of Eq. (2).

Zipf’s law acquires a special status among other possible dis-
tributions in light of the property of neutrality, which emerges as
the rotational symmetry of the dynamics is restored over long
times. The term refers to the absence of selection in population
dynamics, see Methods. As such, resulting distributions are
maximally disordered given additional constraints (maximum
entropy). This means that deviations from Zipf’s law express
selection of people towards certain places (resulting from tem-
porary ϵi ≠ 0) and should be measured in terms of information. In
this respect, we can measure the surprise of an observed state of
the system relative to the Zipfian expectation as SðxÞ ¼ log P½x�

Pz½x�,
and the total information (total surprise) in the choices under-
lying the actual observed distribution relative to the neutral
situation (Zipf’s law) in terms of the Kullback-Leibler divergence
DKLðPjPzÞ ¼ �S, as we have done in Figs. 1, 3, and 4. Those
measures additionally provide a way to compare structures of
systems at different times and can reveal temporal trends, sig-
naling basic structural changes in the underlying demographic
processes. Fig. 4, for example, depicts a strong and long lasting
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Fig. 4 The dynamics of the rank-size distribution for cities in the US
between 1790 and 1990. Population structure distributions for the largest
100 cities in the US53 are shown as dashed lines, while the average over all
years is shown in red. The inset depicts the DKL(P∣Pz) to Zipf’s law of the
population structure for each available year (blue) and of the cumulative
average over all structure vectors up the specific year (red). We see that
the temporal average steadily approaches Zipf’s law as more years are
added. After an initial phase, the average is always closer to Zipf’s law than
the distribution in any single year. Note that in recent decades, the
population structure vector began consistently deviating from Zipf’s law,
leading also to a small divergence of the cumulative temporal averages.
This effect is to a large extent the consequence of mid-sized and large
metropolitan areas growing faster over this period than the largest cities in
the US urban system.
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increasing deviation from Zipf’s law for the US. It might be a
signal that the US is in a transitory state with strong preferences
for certain regions since the 1940s, such as mid-sized cities in
Texas and the Southwest. However, such statements for specific
urban systems need further context-specific investigation, which
is beyond the scope of this article.

In summary, starting with the most general demographic
equations, we can derive many instances of integrated urban
systems with city size distributions that differ substantially from
Zipf’s law. We can understand the process by which universal
patterns in geography emerge as a sequence of situations that
restore the symmetry of the demographic dynamics and ulti-
mately rely on averaging stochastic behavior of vital and
migration rates over sufficiently long times. Seeing Zipf’s law
and other laws of geography in this light helps us appreciate the
information content of associated deviations in real urban sys-
tems, and trace them back to specific choices and preferences
associated with people’s agency in terms of births, deaths, and
migration. Formally, the approach developed here for urban
systems relies only on the analysis of the transition probability
between types against a general background of multiplicative
growth dynamics. As such, it is very general and readily applies
to other situations in complex systems where rank-size rules are
also observed approximately.

Methods
Probability solution for geometric random growth with boundary conditions.
The Fokker-Planck equation for random geometric growth without drift is

dP
dt

¼ d2

dx2
σ2

2
x2P; ð17Þ

where P= P[x(t), t∣x(0), t0] is the conditional probability of observing state x of the
random variable at time t, given the initial state x(t0) at time t0. For simplicity of
notation, we have dropped the i indices in x and σ and write x(t0) as x0.

Equation (17) has some similarities with the diffusion equation in physics and
can analogously be solved exactly. First, it is useful to change variables so as to
eliminate the non-linear term x2. We set y ¼ ln x

x0
and τ ¼ σ2

2 ðt � t0Þ. By changing
the variables in Eq. (17) we find

dP
dτ

¼ d2P
dy2

þ 3
dP
dy

þ P � P00 þ 3P0 þ P: ð18Þ

This equation is now linear and can be solved in two ways. The first way is using
factorization and solve it as a heat equation

P ¼ e�
3
2y�1

4τgðy; τÞ ð19Þ
and

dg
dτ

¼ g 00: ð20Þ

The second way is to solve it directly via a Fourier transform, so that

P½y; τ� ¼
Z

dkeikyP½k; τ�; ð21Þ

which leads to

dP½k; τ�
dτ

¼ ð�k2 þ 3ikþ 2ÞP½k; τ�: ð22Þ

This equation can be solved via a separation of variables, P[k, τ] = f(k)T(τ), which
leads to an eigenvalue problem:

dT
dτ

¼ �wT; ð�k2 þ 3ikþ 2Þf ðkÞ ¼ �wf ðkÞ: ð23Þ

Solving for k we obtain:

k ¼ 3
2
i ±

1
2
i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4w

p
; ð24Þ

with

P½y; τ� ¼
Z

dkP½k; 0�eiky�ðk2�3ik�2Þτ ; ð25Þ

where P[y, 0] = f(k)T(0). In particular, there are two stationary solutions, for
w = 0, with k = k0 = 2i and k = k1 = i. Substituting k0, we see that the solution
corresponds to P � e�2y ¼ 1

x2, which is Zipf’s distribution. The other solution

corresponds to the existence of a constant probability current up or down the
urban hierarchy associated with different boundary conditions, see main text.

In order to obtain Zipf’s law as the stationary distribution for long times, we
must add constraints to the geometric random growth dynamics. To see this more
explicitly, we consider the full dynamical solution, which can be written in terms of
y as,

P½y; τ� ¼ α1e
�2y þ α2e

�y þ
Z

dkake
iky�ðk2�3ik�2Þτ ð26Þ

To obtain Zipf over the long run, three conditions are needed: First, the integration
constant α2 has to be zero when the probability current is set to zero. In terms of y,
this reads as

JðyÞ ¼ e�2y d
dy

σ2e2yP½y; τ� ¼ 0: ð27Þ

Second, the constant α1 can now be fixed by normalization of Zipf’s distribution as
a probability:

α1

Z xM

xm

dx
1
x2

¼ 1; ð28Þ

thus α1 ¼ xMxm
xM�xm

, where xM and xm are the upper and lower boundaries of city sizes,

respectively. A natural choice for the upper boundary is xM = 1, whereas the choice
for the lower boundary is not obvious, see main text. Third, we can now set the
boundary condition on the time varying solutions, which are now

gðy; τÞ ¼ P½y; τ� � α1e
�2y ð29Þ

and must be taken to vanish at the boundaries in y. The integral over the range of
city sizes needs to be zero to preserve the probability normalization. For example,
by asking that these solutions are real and vanish at the boundaries, meaning
g(y = ym, τ) = g(y = yM) = 0, we get

g½y; τ� ¼
X
n

an

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

yM � ym

s
sin kn½ðy � ymÞ � 3τ�e�ðk2n�2Þτ ; ð30Þ

with kn ¼ 2π
yM�ym

n and n = 1, 2, 3, …. The coefficients an are determined via the

initial condition g[y, 0] in the usual way. The sine functions are an orthonormal
basis under integration over the domain of y, thus

an ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2
yM � ym

s Z yM

ym

dyg½y; 0� sin knðy � ymÞ: ð31Þ

Even though these functions now obey the boundary conditions, the temporal
structure is similar to the case with no boundary conditions and the decay of the
initial amplitudes occurs on a time scale set by τ, which is t � t0 ¼ 1

2σ2 and can be
very long for small volatilities, σ.

Lognormal solution in the absence of conserved current. We can find the
general solution in Eq. (25) with the initial condition P[y, 0] = δ(y), which cor-
responds to the case N(t = 0) = NT. Then P[k, 0] = 1 and the solution for all times
is

P½y; τ� ¼
Z

dkeiky�ðk2�3ik�2Þτ ¼ e�yffiffiffiffiffiffiffiffi
2πτ

p e�
yþτð Þ2
4τ : ð32Þ

Returning to our original variables this becomes

P½x; tjx0; t0� ¼
x0
x

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πσ2ðt � t0Þ

p e
�

ln x
x0

þσ2
2 ðt�t0 Þð Þ2

2σ2 ðt�t0 Þ ; ð33Þ

which is a lognormal with log-mean hln xi ¼ ln x0 � σ2

2 ðt � t0Þ, and log-variance

hðln x � hln xiÞ2i ¼ σ2ðt � t0Þ. As a result for late times, in the absence of a
boundary condition that sets the current Jx, the city size distribution becomes
peaked around smaller and smaller sizes, and become broader and broader.

We can define an “extinction time” 〈Δt(r)〉 as the expected time interval for a
city of initial rank k to fall through the lower boundary condition, at x = xm. This is
defined implicitly through the conditional probability P[xm, t; x0, t0]= p ~ 1, where
xm is the minimum size, which close to Zipf corresponds to maximal rank
rmax � 1=xm. Observation of the exact solutions above tells us that the leading time
is hΔtðrÞi � 1

2σ2 ln
x
xm

¼ 1
2σ2 ln

rmax
r . There are subleading terms that depend on the

exact initial condition. The longest extinction time belongs naturally to the largest
city (with initial r = 1): it is hΔtðr ¼ 1Þi � 1

2σ2 ln rmax, which depends on how many
cities there are in the urban system because rmax=Nc.

Neutrality of population dynamics and Zipf’s law. In evolutionary population
dynamics, a change in the relative probability of types (in the absence of errors) is
attributed to selection. The situation when selection is absent and only statistical
fluctuations drive the dynamics is known as neutral dynamics.

We noted in the main text that the structure vector xiðtÞ ¼ NiðtÞ
NTðtÞ, i = 1, . . . , Nc

is the probability of finding a person in city i at time t out of a total population
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NT(t), across all cities. In evolutionary population dynamics we write the evolution
of this probability as

xiðt þ 1Þ ¼ wiðtÞxiðtÞ ð34Þ
The quantity wi(t) is the fitness of state xi, because if wi(t) > 1 this state becomes
more common in the updated population and vice versa when wi(t) < 1. Note that
by normalization of the updated frequency the population averageP

ixiðt þ 1Þ ¼ 1 ¼ P
iwiðtÞxiðtÞ ¼ �wðtÞ. Comparing to Eq. (13), this establishes

that wi = 1 + ϵi. Positive (negative) selection correspond to the situation when
wi > 1 (wi < 1). Neutrality corresponds to wi= 1 → ϵi= 0, which we showed to be
necessary to obtain Zipf’s distribution. Consequently, Zipf’s law is a neutral
distribution.

Note that Zipf’s law is not the only neutral distribution for multiplicative
dynamics, but becomes unique when we impose the additional condition, Jx = 0.

Additionally lnwi has a meaning as information. To see this write,

logwi ’ ϵi ¼ log
xiðt þ 1Þ
xiðtÞ

¼ log
xiðt þ 1ÞPðAÞ
xiðtÞPðAÞ

¼ log
Pðxi;AÞ
xiPðAÞ

; ð35Þ

where P(A) is the probability of a particular environment and p(xi, A) is the joint
probability of the population structure and of states of the environment. The idea is
that the updated probability is the structure vector given (conditional on) the
influence of the environment, as we wrote in Eq. (13), so that xi(t + 1) = P(xi∣A(t)).
Thus, logwi once averaged over x and A is the mutual information between the
population structure and the environment. When the evolution is neutral P(xi, A)
= xiP(A), the two variables are statistically independent and there is no
information from the environment being encoded in the population structure.
Since the environment, in our case, is the space of preferences in vital and
migration rates, there is no structure of these preferences encoded in the
population structure when we observe Zipf’s law. Only the deviations from it, when
ϵi ≠ 0, can in this sense give us information.

Time integration. Numerical solutions shown in Figs. 1–3 where obtained by iter-
ating the respective environments, A, starting with several different initial population
states, N(0), as expressed by Eqs. (3) and (5). We assumed that all environments are
strongly connected graphs; the migration probability from city i to city j is non-zero,
or Aij > 0. These parameterizations reflect features of real world urban systems such as
the average annual fraction of population that moves between metropolitan areas in
the US in the last few decades, which is about 1.8%, according to US Census Bureau44

and tax returns reported by the Internal Revenue Service45. The data from both
sources shows that the migration rates δij follow a lognormal distribution. We
implemented the stochastic environments to reflect this statistical distribution.

The introduction of stochasticity in Figs. 2 and 3 requires that we set boundary
conditions at large and small x as discussed in the main text. The upper bound is
less critical and a natural choice is to allow the whole population to concentrate in
one city, or xM= 1. This state has very low entropy, so that it is extremely rare for it
to occur by chance. In practice, it is never observed in numerical solutions even
when stochastic fluctuations are strong. On the other hand, the boundary condition
for small cities is violated all the time, as shown in Fig. 2. Varying the value of xm
shows that the best value for the lower bound is of the order of the size of the
smallest city according to Zipf’s law (N(r=Nc)=N0/Nc), resulting in:

xm ¼ N0

NcNT
: ð36Þ

When a city’s time evolution violates this lower constraint, our implementation
resets the population size of the city back to its former size, typically just above xm,
and adapts the other cities so that

XNc

i¼1

xi ¼ 1 ð37Þ

This is achieved by reducing the xi uniformly among all other cities without
violating the lower bound during this process. This implementation of the
boundary condition for small cities is necessary to obtain Zipf’s law. It mimics the
probabilistic effects of a ghost population of very small cities, as described in the
main text.

Data. Data was obtained from two main sources, the US Census Bureau (USCB)
and the US Internal Revenue Service (IRS). USCB provides a data set for the
complete population in the US on a decennial basis. We use CPS Historical
Migration/Geographic Mobility Tables44 as the main empirical basis in this paper.
IRS data is released annually45. Migration rates are only implicitly given in this
dataset. It provides locations of tax filings every year and corresponding (different)
locations the year before. IRS data does not capture the whole population, since
only the portion files tax returns (perhaps 85%). It nevertheless provides valuable
insights into the migration patterns within the US.

In both cases data are provided at the county level. We aggregate the data to the
level of Metropolitan Areas (MSA). MSAs are functional cities, defined as clusters
of contiguous counties that have strong socio-economic ties to an urban core,
measured via commuting fluxes. For this reason, MSAs are definition of urban

areas as integrated labor markets. A crosswalk from counties to MSAs is provided
by the National Bureau of Economic Research (NBER)55.

This data allows us to build all entries of the environmental matrices A and
their migration flows. The net vital rates are given implicitly in both data sets via
the total population change for each county in every year. We assume that the parts
of the growth rates that can not be explained by national migration, stem from the
balance of births, deaths, and international migration. All references to data are
based on the matrices constructed this way on the basis of USCB and IRS data,
except for Fig. 4, which is based on another data set from USCB53.

Data availability
The data that support the findings in this study are available from the following sources:

The main empirical basis on migration and geographic mobility data are available
from USCB: https://www.census.gov/data/tables/time-series/demo/geographic-mobility/
historic.html.

Migration data from IRS are available at https://www.irs.gov/statistics/soi-tax-stats-
migration-data.

The county-MSA crosswalk are provided by NBER and available at https://data.nber.
org/data/cbsa-msa-fips-ssa-county-crosswalk.html.

The source data underlying Fig. 4 are available are https://www.census.gov/population/
www/documentation/twps0027/twps0027.html.

Code availability
Code to create all figures is available at https://github.com/mansueto-institute/
DemSymNEmergenceOfUniversalPatterns.

Received: 14 October 2019; Accepted: 11 August 2020;

References
1. Brown, J. H. et al. The fractal nature of nature: power laws, ecological

complexity and biodiversity. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 357,
619–626 (2002).

2. Newman, M. E. Power laws, Pareto distributions and Zipf’s law. Contemp.
Phys. 46, 323–351 (2005).

3. Adamic, L. Complex systems: unzipping Zipf’s law. Nature 474, 164 (2011).
4. Stumpf, M. P. & Porter, M. A. Critical truths about power laws. Science 335,

665–666 (2012).
5. Saichev, A. I., Malevergne, Y. & Sornette, D. Theory of Zipf’s law and beyond,

Vol. 632 (Springer Science & Business Media, 2009).
6. Mitzenmacher, M. A brief history of generative models for power law and

lognormal distributions. Internet Math. 1, 226–251 (2004).
7. Baek, S. K., Bernhardsson, S. & Minnhagen, P. Zipf’s law unzipped. N. J. Phys.

13, 043004 (2011).
8. Moriconi-Ebrard, F. L’urbanisation du monde depuis 1950. (Anthropos, Paris,

1993).
9. Bretagnolle, A. & Pumain, D. Simulating urban networks through multiscalar

space-time dynamics: Europe and the United States, 17th–20th centuries.
Urban Stud. 47, 2819–2839 (2010).

10. Behrens, K., Duranton, G. & Robert-Nicoud, F. Productive cities: sorting,
selection, and agglomeration. J. Polit. Econ. 122, 507–553 (2014).

11. Fujita, M., Krugman, P. R. & Venables, A. J. The spatial economy: Cities,
regions, and international trade (MIT press, 2001).

12. Lösch, A. Die räumliche Ordnung der Wirtschaft: Eine Untersuchung über
Standort, Wirtschaftsgebiete und internationalen Handel (University of
California, 1940).

13. Christaller, W. Die zentralen Orte in Süddeutschland: Eine ökonomisch-
geographische Untersuchung über die Gesetzmässigkeit der Verbreitung und
Entwicklung der Siedlungen mit städtischen Funktionen (Wissenschaftliche
Buchgesellschaft, 1933).

14. Eeckhout, J. Gibrat’s law for (all) cities. Am. Econ. Rev. 94, 1429–1451 (2004).
15. Levy, M. Gibrat’s law for (all) cities: comment. Am. Econ. Rev. 99, 1672–1675

(2009).
16. Eeckhout, J. Gibrat’s law for (all) cities: reply. Am. Econ. Rev. 99, 1676–1683

(2009).
17. Arshad, S., Hu, S. & Ashraf, B. N. Zipf’s law and city size distribution: a

survey of the literature and future research agenda. Phys. A 492, 75–92 (2018).
18. Gulden, T. R. & Hammond, R. A. Beyond Zipf: an agent-based understanding

of city size distributions. in Agent-based models of geographical systems,
677–704 (Springer, 2012).

19. Brakman, S., Garretsen, H., Van Marrewijk, C. & Van Den Berg, M. The
return of Zipf: towards a further understanding of the rank-size distribution. J.
Reg. Sci. 39, 183–213 (1999).

20. Gabaix, X. Zipf’s law and the growth of cities. Am. Econ. Rev. 89, 129–132 (1999).

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-18205-1

8 NATURE COMMUNICATIONS |         (2020) 11:4584 | https://doi.org/10.1038/s41467-020-18205-1 | www.nature.com/naturecommunications

https://www.census.gov/data/tables/time-series/demo/geographic-mobility/historic.html
https://www.census.gov/data/tables/time-series/demo/geographic-mobility/historic.html
https://www.irs.gov/statistics/soi-tax-stats-migration-data
https://www.irs.gov/statistics/soi-tax-stats-migration-data
https://data.nber.org/data/cbsa-msa-fips-ssa-county-crosswalk.html
https://data.nber.org/data/cbsa-msa-fips-ssa-county-crosswalk.html
https://www.census.gov/population/www/documentation/twps0027/twps0027.html
https://www.census.gov/population/www/documentation/twps0027/twps0027.html
https://github.com/mansueto-institute/DemSymNEmergenceOfUniversalPatterns
https://github.com/mansueto-institute/DemSymNEmergenceOfUniversalPatterns
www.nature.com/naturecommunications


21. Berry, B. J. & Okulicz-Kozaryn, A. The city size distribution debate:
Resolution for US urban regions and megalopolitan areas. Cities 29, S17–S23
(2012).

22. Auerbach, F. Das Gesetz der Bevölkerungskonzentration. Petermanns Geogr.
Mitt. 59, 74–76 (1913).

23. Zipf, G. K. Selected studies of the principle of relative frequency in language.
(Harvard University Press, 1932).

24. Zipf, G. Human behavior and the principle of least effort: an introduction to
human ecology. (Addison-Wesley Press, 1949).

25. Berry, B. J. L. & Garrison, W. L. Alternate explanations of urban rank-size
relationships. Ann. Am. Assoc. Geogr. 48, 83–90 (1958).

26. Chauvin, J. P., Glaeser, E., Ma, Y. & Tobio, K. What is different about
urbanization in rich and poor countries? Cities in Brazil, China, India and the
United States. J. Urban Econ. 98, 17–49 (2017).

27. Nota, F. & Song, S. Further analysis of the Zipf’s law: does the rank-size rule
really exist? J. Urban Manag. 1, 19–31 (2012).

28. Johnson, G. A. Rank-size convexity and system integration: a view from
archaeology. Econ. Geogr. 56, 234–247 (1980).

29. Ioannides, Y. M. & Overman, H. G. Zipf’s law for cities: an empirical
examination. Reg. Sci. Urban Econ. 33, 127–137 (2003).

30. Malevergne, Y., Pisarenko, V. & Sornette, D. Gibrat’s law for cities: Uniformly
most powerful unbiased test of the Pareto against the lognormal Swiss Finance
Institute Research Paper (2009).

31. Giesen, K. & Südekum, J. Zipf’s law for cities in the regions and the country.
J. Econ. Geogr. 11, 667–686 (2010).

32. Schmidheiny, K. & Südekum, J. The pan-european population distribution
across consistently defined functional urban areas. Econ. Lett. 133, 10–13
(2015).

33. Gabaix, X. & Ioannides, Y. M. The evolution of city size distributions. in
Handbook Regional Urban Economics, Vol. 4, 2341–2378 (Elsevier, 2004).

34. Devadoss, S. & Luckstead, J. Size distribution of us lower tail cities. Phys. A
444, 158–162 (2016).

35. Ye, X. & Xie, Y. Re-examination of Zipf’s law and urban dynamic in China: A
regional approach. Ann. Reg. Sci. 49, 135–156 (2012).

36. Fang, L., Li, P. & Song, S. China’s development policies and city size distribution:
An analysis based on Zipf’s law. Urban Stud. 54, 2818–2834 (2017).

37. Jiang, B. & Jia, T. Zipf’s law for all the natural cities in the United States: A
geospatial perspective. Int. J. Geogr. Inf. Sci. 25, 1269–1281 (2011).

38. Bettencourt, L. M. A. & Lobo, J. Urban scaling in Europe. J. R. Soc. Interface
13, 20160005 (2016).

39. Caswell, H. Matrix population models. (Sinauer Sunderland, MA, USA, 2000).
40. Cohen, J. E. et al. Ergodic theorems in demography. Bull. Am. Math. Soc. 1,

275–295 (1979).
41. Arthur, W. B. The ergodic theorems of demography: a simple proof.

Demography 19, 439–445 (1982).
42. Borgatti, S. P. Centrality and network flow. Soc. Netw. 27, 55–71 (2005).
43. Kullback, S. & Leibler, R. A. On information and sufficiency. Ann. Math. Stat.

22, 79–86 (1951).
44. United States Census Bureau. CPS historical migration/geographic mobility

tables. (2018).
45. Internal Revenue Service. SOI tax stats—migration data. (2018)
46. Carlström, J. & Babaev, E. Spontaneous breakdown of time-reversal symmetry

induced by thermal fluctuations. Phys. Rev. B 91, 140504 (2015).
47. De Pasquale, F., Racz, Z., San Miguel, M. & Tartaglia, P. Fluctuations and limit

of metastability in a periodically driven unstable system. Phys. Rev. B 30, 5228
(1984).

48. Cohen, D. T. et al. Population Trends in Incorporated Places: 2003 to 2013. (US
Department of Commerce, Economics and Statistics Administration, US,
2015).

49. Gordon, R. J. The rise and fall of American growth: The US standard of living
since the civil war, Vol. 70 (Princeton University Press, 2017).

50. Moch, L. P. Moving Europeans: Historical Migration Practices in Western
Europe, 126–130. The Cambridge survey of world migration, 1995).

51. Batty, M. Rank clocks. Nature 444, 592 (2006).
52. Gabaix, X. Zipf’s law for cities: an explanation. Q. J. Econ. 114, 739–767

(1999).
53. Gibson, C. Population of the 100 largest cities and other urban places in the

United States: 1790–1990 (US Bureau of the Census Washington, DC, 1998).
54. Cristelli, M., Batty, M. & Pietronero, L. There is more than a power law in

Zipf. Sci. Rep. 2, 812 (2012).
55. National Bureau of Economic Research. CMS’s SSA to FIPS CBSA and MSA

county crosswalk (2020).

Author contributions
L.B. and D.Z. conducted the research, L.B. solved the Fokker-Plank equation, D.Z.
implemented the numerical solvers, L.B. and D.Z. wrote and edited the paper.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s41467-
020-18205-1.

Correspondence and requests for materials should be addressed to D.Z.

Peer review information Nature Communications thanks Sandro Azaele, Denise Pumain
and the other, anonymous, reviewer(s) for their contribution to the peer review of this
work. Peer reviewer reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2020

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-18205-1 ARTICLE

NATURE COMMUNICATIONS |         (2020) 11:4584 | https://doi.org/10.1038/s41467-020-18205-1 | www.nature.com/naturecommunications 9

https://doi.org/10.1038/s41467-020-18205-1
https://doi.org/10.1038/s41467-020-18205-1
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications
www.nature.com/naturecommunications

	Demography and the emergence of universal patterns in urban systems
	Results
	Demographic dynamics of urban systems
	City size distributions in different environments
	Stochastic demographic dynamics and symmetry breaking
	Symmetry restoration and the emergence of Zipf&#x02019;s law

	Discussion
	Methods
	Probability solution for geometric random growth with boundary conditions
	Lognormal solution in the absence of conserved current
	Neutrality of population dynamics and Zipf&#x02019;s law
	Time integration
	Data

	Data availability
	Code availability
	References
	Author contributions
	Competing interests
	Additional information




