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Forecasting dryland vegetation condition months in
advance through satellite data assimilation
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Dryland ecosystems are characterised by rainfall variability and strong vegetation response to

changes in water availability over a range of timescales. Forecasting dryland vegetation

condition can be of great value in planning agricultural decisions, drought relief, land man-

agement and fire preparedness. At monthly to seasonal time scales, knowledge of water

stored in the system contributes more to predictability than knowledge of the climate system

state. However, realising forecast skill requires knowledge of the vertical distribution of

moisture below the surface and the capacity of the vegetation to access this moisture. Here,

we demonstrate that contrasting satellite observations of water presence over different

vertical domains can be assimilated into an eco-hydrological model and combined with

vegetation observations to infer an apparent vegetation-accessible water storage (hereafter

called accessible storage). Provided this variable is considered explicitly, skilful forecasts of

vegetation condition are achievable several months in advance for most of the world’s

drylands.
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The majority of ecosystems globally are persistently or sea-
sonally limited by water availability1. Dryland vegetation
responds to rainfall variability in contrasting ways,

depending on the timescale of rainfall variability and the way that
this interacts with soil hydraulic properties and vegetation rooting
patterns2–4. Together, these factors determine the vegetation-
accessible water storage capacity. Variations in water availability
affect the growth and condition of grazing land, dryland crops
and planted forests, as well as native vegetation. Vegetation
condition, in turn, affects fire risk5 and soil health6 and can
contribute to heatwaves through land–atmosphere feedback
processes7. Forecasting vegetation condition in response to water
availability months ahead would therefore be of great value for
timely mitigation of such impacts.

Unfortunately, for most of the world’s dryland areas, rainfall
is very unpredictable8 or with low forecast skill at monthly
timescale and beyond. Most climate modes do not persist very
long and those that do, such as the El Niño Southern Oscil-
lation and Indian Ocean Dipole, tend to achieve comparatively
less skill in drier regions9. However, water stored at and below
the surface provides a source of forecasting skill that can be
more influential over longer periods, as has been demonstrated
for streamflow10,11. Soil moisture has a memory that persists
for weeks to months, depending on the relative magnitude of
vegetation-accessible storage and precipitation variability2,6.
This suggests the potential to use root-zone soil water avail-
ability to forecast vegetation condition at large scale. So far,
this potential remains unexplored. This is likely in part because
of the lack of accurate knowledge of accessible storage capacity
and the low fidelity of hydrological models in estimating ver-
tical moisture distribution12–14. In weather forecasting,
assimilation of atmospheric satellite observations mitigates
model deficiencies to provide better estimates of system state,
and this has been the main driver of remarkable enhancements
of weather forecast skill and lead time15. Here, we demonstrate
that data assimilation can produce similar benefits in ecohy-
drological forecasting.

Satellite remote sensing has been pivotal to deepening our
understanding of water availability and climate change at
regional-to-global scale, and has helped to advance predictive
models and decision making16. However, satellite observations of
water presence are limited to either the surface (up to 5 cm for
soil moisture, e.g., Soil Moisture and Ocean Salinity (SMOS)
mission) or total water column (Gravity Recovery and Climate
Experiment (GRACE) mission). The quantification of the vertical
distribution of water storage is extremely difficult over large
spatial and time domains due to the lack of direct measurement
of root-zone soil moisture and groundwater storage. The accuracy
of soil moisture or groundwater storage estimates separated from
total water storage is limited without ancillary data and the
consideration of data uncertainties17. We assimilated MODIS
(Moderate Resolution Imaging Spectroradiometer) satellite
instrument-derived surface water extent18, SMOS near-surface
soil moisture19 and GRACE total column water storage20 into a
global ecohydrological model11 and estimated the vertical dis-
tribution of water at the surface18, in the near-surface soil, shal-
low root zone (<1 m), deep root zone (>1 m) and in
groundwater21 (see Methods). Satellite-derived vegetation
greenness (i.e., the Normalised Difference Vegetation Index
(NDVI)) was used as a simple but powerful measure of vegetation
condition. In areas of low-density vegetation, NDVI is generally a
strong proxy of vegetation cover fraction, leaf area and biomass.
The average seasonal cycle of greenness is inherently predictable
and was subtracted from the observations, resulting in greenness
anomalies. The monthly greenness anomalies, on the one hand,
and anomalies in water storage integrated over different depths,

on the other, were used to develop a simple forecast model. A
skilful lead time was defined as the forecast period over which
rank correlation (ρ) between accessible storage and greenness
remained relatively high (ρ > 0.60). The results were analysed as a
function of climate dryness at each location, defined as the long-
term average fraction of months for which potential evapo-
transpiration exceeds precipitation (see Methods).

We find that larger accessible storage broadly corresponds with
slower decay in forecast skill. Vegetation conditions in the
majority of global dryland can be forecast 3 months in advance
from accurate estimates of current soil water availability.

Results
Vegetation response to water stores. Vegetation in dry climatic
zones with dryness value over 0.8 (Fig. 1a) generally shows
greater accessible storage (>100 mm) and less reliance on surface
water than vegetation in more humid zones (Fig. 1b). For
example, vegetation in up to 70% of the more humid areas
(dryness index 0.4–0.6) shows greater response to the shallow soil
water with less than 50mm of accessible storage, while more than
65% of dryland vegetation (dryness 0.7–1.0) appears to have
access to water at >1 m below the surface. With increasing dry-
ness, accessible storage is an increasingly strong predictor of
future vegetation greenness (Fig. 1c). Naturally, forecast skill
decayed over time, but skilful forecasts were often still achieved as
long as 3 months ahead. In such areas, 80% of the vegetation
appeared to have access to deeper soil moisture. Thus, prediction
lead time can be broadly interpreted as a measure of vegetation
access to deep water stores.

Alternative forecasts were also developed using an antecedent
precipitation index and remotely sensed near-surface soil
moisture or total water storage, but these typically provided
skilful vegetation forecasts for no more than 1 or 2 months
(Fig. 1d). Skilful forecasts using soil water availability from
satellite observations or model simulations could be achieved for
no more than 20% of the vegetated arid area (dryness >0.6).
Estimates of accessible storage derived through assimilation of
satellite observations led to considerably better forecasts; skilful
forecasts were provided for a greater fraction of area for all
dryness categories. This is the result of the integration of satellite
observations of water present near the surface and at greater
depth with the process understanding encoded in the ecohy-
drological model.

Particularly skilful forecasts and long lead times of over
5 months were found for interior Northern Australia, corre-
sponding with dry but dominantly perennial grassland and
shrubland showing relatively high accessible storage (c. 200 mm)
(Fig. 2). Positive spatial correlation between accessible storage and
lead time is also evident in other regions. Vegetation condition
forecasts in sub-humid and humid regions (dryness <0.5) are
generally less robust, particularly towards higher latitudes. This is
as would be expected given that temperature and radiation will be
equal or stronger drivers of greenness than water availability1,22.
Some part of the forecast skill can be attributed to the correlation
between the average seasonal cycles of water storage and
greenness, particularly in monsoon climates. This source of
forecast skill can be exploited in the absence of water storage
information (see Methods) and can be subtracted from overall
skill to highlight regions where water storage information
provides an important contribution to forecast skill (Fig. 3a).
The best performing between the climatology forecast and
persistence forecast at each pixel was selected and compared
with our result. Significant improvements were found over
regions vulnerable to droughts and poorly predictable with
seasonal patterns.
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Forecasts of dryland vegetation condition. Case studies for
southern California, central Queensland and the Horn of Africa
illustrate features of the forecasts. Skilful 1-month and 3-month
forecasts of vegetation response to drought conditions from
2011 until 2014 in California were made (Fig. 3b, c). The
developing impacts of a multi-year drought from 2012
onwards in Queensland, Australia, were also forecast 1 month
and 3 months ahead (Fig. 3d, e). Superior skill to forecast the
severe drought in the Horn of Africa from 2011 to 2012 was
demonstrated and cannot be achieved with the traditional
monitoring forecasts even 1 month ahead (Fig. 3f, g). Sig-
nificant improvements with an increase in correlation of more
than 0.2 were achieved with longer lead time compared with
NDVI-climatology forecasts. Forecasts using accessible storage
showed a slower decay of forecast skill than NDVI-based
forecasts by more than 0.1 units and maintained a correlation
of ~0.8 in 3-month forecasts. A further increase in the historical
assimilation period should help to further improve forecast
model skill (see Methods).

Discussion
The interplay between soil water availability and the intensifica-
tion of drought differs with soil depth and aridity23. Our study
used plant-accessible storage across dryland areas to explore the

relationship between water availability and dryland vegetation
condition. The accessible storage capacity inferred here is
empirically defined and may be less than the total moisture sto-
rage that can be accessed by the deepest-rooted individuals within
the ecosystem. Rather, our results indicate the soil water store that
empirically best predicts vegetation anomalies for the visually
dominant ecosystem component as observed by remote sensing.
Nonetheless, in semi-arid to arid regions we found spatial pat-
terns that are very similar to previously reported root-zone sto-
rage capacity and rooting depths14,24,25.

Our estimates of the accessible storage combine soil water
dynamics information captured by multiple satellite sensors
through data assimilation. A stronger response of vegetation
greenness to water availability was found using accessible storage,
when compared against water availability derived from only
satellite observations or the ecohydrological model, and results
from previous studies26–29. Our findings suggest that incorpor-
ating current soil water availability, can significantly improve
the accuracy of vegetation condition forecasts 3 months in
advance for the majority of drylands globally. Such forecasts can
help to improve drought early warning system and reduce eco-
nomic and environmental impacts. This capacity may become
even more important in the context of projected increases in the
occurrence and severity of drought under climate change in some
regions30–32.

Skilful lead time Skilful forecast predictorb c dAccessible storage capacity
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Fig. 1 Accessible storage and vegetation dynamics prediction skill. Relationship between water availability over different integration depths and vegetation
greenness anomalies over humid to arid regions with dryness indices from 0.3 to 1.0. a Distribution of global drylands; areas with minimal vegetation
(maximum Normalised Difference Vegetation Index (NDVI) <0.25) and generally high water availability were masked out in white and grey, respectively.
b Fraction of area for accessible storage capacity in mm (surface water or below-surface) at different dryness levels. c Fraction of area for the number of
months for which skilful (ρ > 0.6) forecasts were achieved in different dryness levels. d Fraction of area for which skilful forecasts were possible 3 months
in advance using data assimilation (DA), compared to those achieved using only open-loop model results without any assimilation of satellite observations
(OL), using satellite-derived near-surface soil moisture (Soil Moisture and Ocean Salinity (SMOS)), using total water storage (Gravity Recovery and
Climate Experiment (GRACE)) and using an index calculated from antecedent precipitation only (Antecedent Precipitation Index (API))
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The assimilation of satellite-observed water dynamics into
an ecohydrological model enables the estimation of vegetation-
accessible storage, providing insights into dryland ecology
as well as providing a basis for seasonal drought impact
forecasting. Knowing how vegetation accesses water below
the surface illuminates potential vegetation condition in dry
environments and their buffering capacity to mitigate
against droughts of different duration and intensity. This in
turn can inform effective action to prepare and manage for
drought.

Methods
Study area. We limited the study region to include only arid to moderately humid
vegetated land, defined by a dryness index of >0.3. We defined dryness as the
average fraction of months that the mean potential evapotranspiration exceeds
mean precipitation. The potential evapotranspiration was calculated using the
PenmanMonteith equation33 with 30 years of meteorological data34,35. Greenness
was derived from the MODIS MOD13C2 NDVI product (https://lpdaac.usgs.gov),
which is a monthly composite of cloud-free observations resampled globally to
0.05° resolution. We regarded areas with maximum NDVI <0.25 through time as
unvegetated and excluded them from our analysis. Our study region covered about
50% of total land area and 90% of the vegetated area.

Ecohydrological model. The World-Wide Water (W3) model11 (http://wald.anu.
edu.au/) simulates water stores and flows in vegetation, surface water, soil and
unconfined groundwater systems. The model was driven by global estimates of
daily precipitation34, radiation, air temperature, wind speed, snowfall rate and
surface pressure35. Soil and vegetation water and energy fluxes were simulated
independently for deep-rooted vegetation and shallow-rooted vegetation in each
hydrological response unit with different aerodynamic control of evaporation and
interception capacities. The soil water store was separated into three unsaturated
soil layers, namely, top (0–5 cm), shallow (5–100 cm) and deep (1–10 m) layer,
where shallow-rooted vegetation and deep-rooted vegetation have different degrees

of access to moisture in the different soil layers. The unconfined groundwater store
was estimated with the mass balance from the groundwater storage, deep drainage
from deep soil layer, capillary rise from the groundwater, groundwater evaporation
and groundwater discharge. The W3 model also includes the simulation of canopy
and biomass change coupling with water balance dynamics. The water in the
biomass, surface water, soil and groundwater comprised the total water storage in
the W3 model.

Data assimilation. Three contrasting satellite water observations with different
penetration depths from surface to the total water column were used in this
study, namely, surface water extent, near-surface soil moisture and changes in
total water storage. The surface water extent was estimated from MODIS 8-day
composites using the reflectance dissimilarity between water and dry surfaces in
shortwave infrared spectral band18, analogous to the microwave method of
estimating water extent using brightness temperature36. The MODIS-derived
surface water extent was assimilated into the W3 model through a simple
nudging approach with a high gain from the MODIS water fraction estimations
to describe surface water dynamics not reliably simulated by the model.
Monthly 3° × 3° GRACE mascon solutions37 were obtained from the Jet Pro-
pulsion Laboratory (http://grace.jpl.nasa.gov). In contrast to GRACE, which has
the capability of detecting water storage change accumulated in the total water
column, SMOS can only penetrate the land surface for up to 5 cm. The 0.25° ×
0.25° retrievals of near-surface soil moisture from the Centre Aval de Traite-
ment des Données SMOS38 (https://www.catds.fr) for both ascending and
descending orbits were used to derive the daily averaged soil moisture content
and to constrain the model simulated top-layer soil moisture (0–5 cm). To
resolve the disparity in spatial, vertical and temporal resolution, the GRACE
and SMOS data were assimilated into the W3 model using an Ensemble Kalman
Smoother with a fixed 1-month window21. A single monthly GRACE obser-
vation together with all the daily SMOS observations within a 1-month window
were included in the observation vector. The state vector was comprised of all
model estimates of daily soil water storage in three layers and groundwater over
a month and updated with GRACE and SMOS simultaneously. The observation
operator including temporal accumulation components enables direct com-
parison with the GRACE and SMOS observations. The forecasts of water storage
in different layers were adjusted with the Kalman gain matrix39 based on the

Accessible storage
Surface water
0–10 mm
10–20 mm
20–50 mm
50–100 mm
100–200 mm
200–300 mm
300–400 mm
400–500 mm
> 500 mm

Skilful lead time
0 month
1 month
2 months
3 months
4 months
≥ 5 months

a

b

Fig. 2 Maximum accessible storage capacity and skilful forecast lead time. a Accessible storage here relates to the soil depth to which vegetation
Normalised Difference Vegetation Index (NDVI) responds most strongly. b Lead time for skilful vegetation condition forecasts. Lead time is counted from
current month (0) to over 5 months. The 0-month lead time implies that skilful greenness predictions can only be made for the current month.
Unvegetated and wet regions were masked out in white as Fig. 1a. The areas where vegetation are less responsive to water are shaded in grey
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uncertainties in the W3 model and satellite observations. The model uncer-
tainties were estimated from the sample covariance computed from 100
ensemble members which were generated through the perturbation of
meteorological forcings (precipitation, air temperature and radiation in this
case). The observation uncertainties were quantified using the spatially
and temporally varying uncertainties in the GRACE and SMOS products.
GRACE and SMOS observations imparted different constraints on the esti-
mation of water storage at different layers through both model physics and
simultaneous adjustment from variance–covariance structure between model
states and observations. The smoother approach with a 1-month assimilation
window also considered the temporal correlation between model states to
separate water storage change into different depths based on different temporal
dynamics. Data assimilation produced daily global 0.25° × 0.25° estimates of
water in the near-surface soil, shallow root zone, deep root zone and unconfined
groundwater.

Statistical forecasts. The statistical relationships between water storage
dynamics and vegetation greenness anomalies were assessed using Spearman's
rank correlation (ρ). The lagged ρ between water storage integrated over dif-
ferent depths and greenness anomalies over the subsequent 1 to 12 months was
calculated and used to define an optimal integration depth (in mm of equiva-
lent water thickness), interpreted as the vegetation-accessible storage. Given
accessible storage as a time-dependent variable, the 98th percentile of the

accessible storage over the study period at each grid was calculated as the
maximum storage for the soil layer that vegetation growth responds to most
strongly. The number of months for which lagged ρ > 0.6 was used as an
indicator of skilful forecast lead time. The specific value of threshold used was
based on maximising skilful forecasts. Nevertheless, the area of skilful forecasts
remains stable with changes in threshold values. Alternative predictors tested
included an antecedent precipitation index with a constant decay coefficient of
0.940, the satellite-derived SMOS soil moisture, GRACE total column storage
estimates and the water storage estimates from model open-loop run without
any data assimilation.

A deterministic forecast of the vegetation greenness anomaly dVt in t month’s
time was obtained from a linear combination of the current greenness anomaly
dVt0

and the anomaly in water storage over the determined optimal integration
depth z, denoted by Sz;t0 as follows:

dVt ¼ dVt0
þ β1Sz;t0 þ β2; ð1Þ

where β1 and β2 are regression coefficients. Comparison was made with
persistence forecasts and climatology forecasts. The persistence forecast simply
assumes the next month having the same anomaly as current month,
dVt ¼ dVt0

. Climatology forecasts use the average of previous available
observations for month t as the forecasts. The study period was limited to 6
years by the available observations and forcing data, starting from the launch of
SMOS in 2010 to the end of the forcing data archives at the end of 2015.
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Independent hindcast evaluation was achieved by splitting the time series into
three equal segments; the performance for each time segment was calculated
using a forecast model derived from data for the other two time segments. The
averaged seasonal cycle excluding the evaluation period was added to the
predicted greeness anomalies to obtain absolute greenness. The skill of water
storage-derived forecasts was evaluated against the best performance from two
NDVI-based forecasts at each pixel.

Data availability
The World-wide water (W3) model is available online at http://wald.anu.edu.au.
JPL GRACE land mascon solutions are available at http://grace.jpl.nasa.gov,
supported by the NASA MEaSUREs Program. The CATDS level-3 daily soil
moisture retrievals can be access through sipad (https://www.catds.fr/sipad/). The
MOD13C2 NDVI data were retrieved from online Data Pool, courtesy of the
NASA EOSDIS Land Processes Distributed Active Archive Center (LP DAAC),
USGS/Earth Resources Observation and Science (EROS) Center, Sioux Falls, South
Dakota, https://lpdaac.usgs.gov. The WFDEI meteorological forcing data can be
retrieved from http://www.eu-watch.org/data_availability. Access to the MSWEP
precipitation dataset is via http://www.gloh2o.org.

Received: 26 April 2018 Accepted: 8 January 2019

References
1. Nemani, R. R. et al. Climate-driven increases in global terrestrial net primary

production from 1982 to 1999. Science 300, 1560–1563 (2003).
2. Porporato, A., Daly, E. & Rodriguez-Iturbe, I. Soil water balance

and ecosystem response to climate change. Am. Nat. 164, 625–632
(2004).

3. Wang, J., Price, K. P. & Rich, P. M. Spatial patterns of NDVI in response to
precipitation and temperature in the central Great Plains. Int. J. Remote Sens.
22, 3827–3844 (2001).

4. Reyer, C. P. O. et al. A plant's perspective of extremes: terrestrial plant
responses to changing climatic variability. Glob. Change Biol. 19, 75–89
(2013).

5. Yebra, M., Chuvieco, E. & Riano, D. Estimation of live fuel moisture content
from MODIS images for fire risk assessment. Agr. For. Meteorol. 148, 523–536
(2008).

6. D'Odorico, P., Caylor, K., Okin, G. S. & Scanlon, T. M. On soil moisture-
vegetation feedbacks and their possible effects on the dynamics of dryland
ecosystems. J. Geophys. Res. Biogeosci. 112, G04010 (2007).

7. Seneviratne, S. I. et al. Investigating soil moisture-climate interactions in a
changing climate: a review. Earth Sci. Rev. 99, 125–161 (2010).

8. Reynolds, J. F. et al. Global desertification: building a science for dryland
development. Science 316, 847–851 (2007).

9. Saji, N. H., Goswami, B. N., Vinayachandran, P. N. & Yamagata, T. A dipole
mode in the tropical Indian Ocean. Nature 401, 360–363 (1999).

10. Koster, R. D., Mahanama, S. P. P., Livneh, B., Lettenmaier, D. P. & Reichle, R.
H. Skill in streamflow forecasts derived from large-scale estimates of soil
moisture and snow. Nat. Geosci. 3, 613–616 (2010).

11. van Dijk, A. I. J. M., Pena-Arancibia, J. L., Wood, E. F., Sheffield, J. & Beck, H.
E. Global analysis of seasonal streamflow predictability using an ensemble
prediction system and observations from 6192 small catchments worldwide.
Water Resour. Res. 49, 2729–2746 (2013).

12. Fan, Y., Miguez-Macho, G., Jobbagy, E. G., Jackson, R. B. & Otero-Casal, C.
Hydrologic regulation of plant rooting depth. Proc. Natl Acad. Sci. USA 114,
10572–10577 (2017).

13. Jackson, R. B. et al. A global analysis of root distributions for terrestrial
biomes. Oecologia 108, 389–411 (1996).

14. Kleidon, A. Global datasets of rooting zone depth inferred from inverse
methods. J. Clim. 17, 2714–2722 (2004).

15. Bauer, P., Thorpe, A. & Brunet, G. The quiet revolution of numerical weather
prediction. Nature 525, 47–55 (2015).

16. Rodell, M. et al. Emerging trends in global freshwater availability. Nature 557,
651–659 (2018).

17. Tangdamrongsub, N., Han, S. C., Decker, M., Yeo, I. Y. & Kim, H. On the use
of the GRACE normal equation of inter-satellite tracking data for estimation
of soil moisture and groundwater in Australia. Hydrol. Earth Syst. Sci. 22,
1811–1829 (2018).

18. Van Dijk, A. I. J. M. et al. River gauging at global scale using optical and
passive microwave remote sensing. Water Resour. Res. 52, 6404–6418
(2016).

19. Kerr, Y. H. et al. The SMOS Mission: new tool for monitoring key elements of
the global water cycle. Proc. IEEE 98, 666–687 (2010).

20. Tapley, B. D., Bettadpur, S., Watkins, M. & Reigber, C. The gravity recovery
and climate experiment: mission overview and early results. Geophys. Res. Lett.
31, L09607 (2004).

21. Tian, S. Y. et al. Improved water balance component estimates through joint
assimilation of GRACE water storage and SMOS soil moisture retrievals.
Water Resour. Res. 53, 1820–1840 (2017).

22. Wu, D. H. et al. Time-lag effects of global vegetation responses to climate
change. Glob. Change Biol. 21, 3520–3531 (2015).

23. Schlaepfer, D. R. et al. Climate change reduces extent of temperate drylands
and intensifies drought in deep soils. Nat. Commun. 8, 14196
(2017).

24. Wang-Erlandsson, L. et al. Global root zone storage capacity from satellite-
based evaporation. Hydrol. Earth Syst. Sci. 20, 1459–1481 (2016).

25. Schulze, E. D. et al. Rooting depth, water availability, and vegetation cover
along an aridity gradient in Patagonia. Oecologia 108, 503–511
(1996).

26. Andela, N., Liu, Y. Y., van Dijk, A. I. J. M., de Jeu, R. A. M. & McVicar, T. R.
Global changes in dryland vegetation dynamics (1988–2008) assessed by
satellite remote sensing: comparing a new passive microwave vegetation
density record with reflective greenness data. Biogeosciences 10, 6657–6676
(2013).

27. Chen, T., de Jeu, R. A. M., Liu, Y. Y., van der Werf, G. R. & Dolman, A. J.
Using satellite based soil moisture to quantify the water driven variability in
NDVI: a case study over mainland Australia. Remote Sens. Environ. 140,
330–338 (2014).

28. Yang, Y. T. et al. GRACE satellite observed hydrological controls on
interannual and seasonal variability in surface greenness over mainland
Australia. J. Geophys. Res Biogeosci. 119, 2245–2260 (2014).

29. Bolten, J. D. & Crow, W. T. Improved prediction of quasi-global vegetation
conditions using remotely-sensed surface soil moisture. Geophys. Res. Lett. 39,
L19406 (2012).

30. Dai, A. G. Increasing drought under global warming in observations and
models. Nat. Clim. Change 3, 52–58 (2013).

31. Trenberth, K. E. et al. Global warming and changes in drought. Nat. Clim.
Change 4, 17–22 (2014).

32. Sheffield, J. & Wood, E. F. Projected changes in drought occurrence under
future global warming from multi-model, multi-scenario, IPCC
AR4 simulations. Clim. Dynam. 31, 79–105 (2008).

33. Monteith, J. L. Evaporation and environment. Symp. Soc. Exp. Biol. 19,
205–234 (1965).

34. Beck, H. E. et al. MSWEP: 3-hourly 0.25 degrees global gridded precipitation
(1979-2015) by merging gauge, satellite, and reanalysis data. Hydrol. Earth
Syst. Sci. 21, 589–615 (2017).

35. Weedon, G. P. et al. The WFDEI meteorological forcing data set: WATCH
Forcing Data methodology applied to ERA-Interim reanalysis data. Water
Resour. Res. 50, 7505–7514 (2014).

36. De Groeve, T. Flood monitoring and mapping using passive microwave
remote sensing in Namibia. Geomat. Nat. Haz Risk 1, 19–35 (2010).

37. Watkins, M. M., Wiese, D. N., Yuan, D. N., Boening, C. & Landerer, F. W.
Improved methods for observing Earth's time variable mass distribution with
GRACE using spherical cap mascons. J. Geophys. Res. Solid Earth 120,
2648–2671 (2015).

38. Kerr, Y. et al. CATDS SMOS L3 Soil Moisture Retrieval Processor. Algorithm
Theoretical Baseline Document (ATBD) (CESBIO, Toulouse,
2013).

39. Allen, J. I., Eknes, M. & Evensen, G. An Ensemble Kalman Filter with a
complex marine ecosystem model: hindcasting phytoplankton in the Cretan
Sea. Ann. Geophys. 21, 399–411 (2003).

40. Hooke, J. M. An analysis of the processes of river bank erosion. J. Hydrol. 42,
39–62 (1979).

Acknowledgements
This research was supported through ARC Discovery grant DP140103679. We thank
Professor Michael L. Roderick and Professor Jeffery P. Walker for their kind help and
suggestions in data analysis. This research was undertaken with the assistance of
resources and services from the National Computational Infrastructure (NCI), which is
supported by the Australian Government.

Author contributions
All authors contributed to the development of the paper. S.T., A.I.J.M.v.D., P.T. and L.J.R.
jointly designed this study. S.T. and A.I.J.M.v.D. prepared the dataset and S.T. conducted
the analysis. A.I.J.M.v.D., P.T. and L.J.R. supervised the analysis. S.T and A.I.J.M.v.D.
drafted the first manuscript. All authors contributed to the interpretation of the results
and the drafting of the paper.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-08403-x

6 NATURE COMMUNICATIONS |          (2019) 10:469 | https://doi.org/10.1038/s41467-019-08403-x | www.nature.com/naturecommunications

http://wald.anu.edu.au
http://grace.jpl.nasa.gov
https://www.catds.fr/sipad/
https://lpdaac.usgs.gov
http://www.eu-watch.org/data_availability
http://www.gloh2o.org
www.nature.com/naturecommunications


Additional information
Supplementary Information accompanies this paper at https://doi.org/10.1038/s41467-
019-08403-x.

Competing interests: The authors declare no competing interests.

Reprints and permission information is available online at http://npg.nature.com/
reprintsandpermissions/

Journal peer review information: Nature Communications thanks the anonymous reviewers
for their contribution to the peer review of this work. Peer reviewer reports are available.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2019

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-08403-x ARTICLE

NATURE COMMUNICATIONS |          (2019) 10:469 | https://doi.org/10.1038/s41467-019-08403-x | www.nature.com/naturecommunications 7

https://doi.org/10.1038/s41467-019-08403-x
https://doi.org/10.1038/s41467-019-08403-x
http://npg.nature.com/reprintsandpermissions/
http://npg.nature.com/reprintsandpermissions/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications
www.nature.com/naturecommunications

	Forecasting dryland vegetation condition months in advance through satellite data assimilation
	Results
	Vegetation response to water stores
	Forecasts of dryland vegetation condition

	Discussion
	Methods
	Study area
	Ecohydrological model
	Data assimilation
	Statistical forecasts

	References
	References
	Acknowledgements
	Author contributions
	ACKNOWLEDGEMENTS
	Competing interests
	ACKNOWLEDGEMENTS




