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Short- and long-read sequencing technologies are routinely used to detect DNA variants, including SNVs, indels, and structural
variations (SVs). However, the differences in the quality and quantity of variants detected between short- and long-read data are
not fully understood. In this study, we comprehensively evaluated the variant calling performance of short- and long-read-based
SNV, indel, and SV detection algorithms (6 for SNVs, 12 for indels, and 13 for SVs) using a novel evaluation framework incorporating
manual visual inspection. The results showed that indel-insertion calls greater than 10 bp were poorly detected by short-read-based
detection algorithms compared to long-read-based algorithms; however, the recall and precision of SNV and indel-deletion
detection were similar between short- and long-read data. The recall of SV detection with short-read-based algorithms was
significantly lower in repetitive regions, especially for small- to intermediate-sized SVs, than that detected with long-read-based
algorithms. In contrast, the recall and precision of SV detection in nonrepetitive regions were similar between short- and long-read
data. These findings suggest the need for refined strategies, such as incorporating multiple variant detection algorithms, to
generate a more complete set of variants using short-read data.
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INTRODUCTION
Genomic variants found by comparison with reference genomes
(GRCh37, GRCh38, and T2T-CHM13 in humans) are classified into
three classes according to size: single nucleotide variant (SNV),
short insertion and deletion of less than 50 bp (indel), and
structural variation of 50 bp or more (SV). Genomic variants can be
detected in a high-throughput manner using whole-genome
sequencing (WGS) data consisting of 100–300 bp short reads.
Accurately and efficiently detecting variants is important since it is
essential for a variety of genetic, clinical, and evolutionary
analyses. However, short reads often produce incorrect alignments
to repetitive regions, including simple tandem repeats (STRs)1 and
segmental duplications (SegDups)2, which cause erroneous variant
calls3. Since the maximum allowable insertions and deletions
within a read are approximately 15% of the read length for short
read alignment tools4,5, computational methods to detect large
variants (>10 bp short indels and SVs) commonly use indirect
alignment signals such as split reads, read pairs, read depth, and
local assemblies6,7. Thus, it is difficult to accurately and effectively
detect large variants using short reads.
Third-generation sequencing technology, offered by Pacific

Bioscience (PacBio) and Oxford Nanopore Technology (ONT) to
generate long reads with typical lengths of 10 to 30 kb, has
recently advanced to generate long reads with >99.9% accuracy
for PacBio HiFi and >98% accuracy for ONT long reads. Long reads
span many repetitive regions and variants, allowing for effective
variant detection8. The Genome in a Bottle Consortium (GIAB)

developed a benchmark set of integrated variant call sets from
short- and long-read WGS data for several human individuals9–12.
In this project, long reads improved variant calls, especially in
repetitive regions containing segmental duplications and regions
with low mappability of short reads9,11. Fully phased genome
assemblies using long-read WGS of 35 individuals identified a
significant number of variants that were not observed in short-read
WGS data13. PacBio HiFi long reads identified more de novo indels
and SVs with greater accuracy than short reads14. However, short-
read data have been routinely used for variant detection, especially
in multiple samples, due to the high cost of long-read sequencing
and the high demands on the quality and quantity of input DNA.
Many computational algorithms have been developed to detect

many variants using short- and long-read sequencing data.
Recently, deep learning methods such as DeepVariant15, Nano-
Caller16, and PEPPER-Mergin-DeepVariant17 have been employed
to detect SNVs and indels in a haplotype-aware manner. The
accuracy and variability of variants detected depend largely on
variant detection algorithms rather than on read alignment tools,
library preparation, or sequencing platforms18,19. Therefore, know-
ing the differences in variant detection algorithms using short- and
long-read data and the limitations of short read-based variant
detection algorithms is important. Many studies have evaluated
the precision and recall of variant calling algorithms for SNVs/
indels19–30 and SVs31–34. However, few studies have comprehen-
sively evaluated SNV, indel, and SV detection algorithm perfor-
mances using short- and long-read WGS data to determine the
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differences in variants detected in short- and long-read data. To
our knowledge, only one study has evaluated SNV/indel detection
algorithms, such as GATK35, DeepVariant, and Sentieon, for
germline variants using both short- and long-read data29.
In this study, we evaluated the performance (precision and

recall) of a total of 21 popular variant detection algorithms using
short- and long-read WGS datasets of NA12878 and HG002
individuals. The variant call set, including SNVs, indels, and SVs,
detected from each algorithm was divided into nonrepetitive and
repetitive regions containing STR and SegDup, and the perfor-
mance differences between short and long reads were compared.
The results indicate that long reads are more accurate and
sensitive than short reads for detecting indels and SVs in repetitive
regions, whereas significant variation exists in the performance of
short read-based variant detection algorithms. In contrast, the
difference between short and long leads was not as great in the
nonrepetitive region as that in the repetitive region. Furthermore,
detecting indels, especially insertions, by short read-based
algorithms became less sensitive as insertions increased in size,
especially in the 10−50 bp range, suggesting that indel calling
using short reads needs to cover indels of this size.

METHODS
WGS datasets
A summary of the WGS dataset used in this study is presented in
Supplementary Table S1. The NA12878 and HG002 short-read WGS
datasets were Illumina 150 bp and 148 bp paired-end reads with 36.7× and
30× coverage, respectively. The long-read WGS datasets of NA12878 and
HG002 included PacBio HiFi/CCS reads with 29.2× and 39.9× coverage and
10.0 kb and 19.1 kb N50 read lengths, respectively (Supplementary Table
S1). All reads were obtained from the European Nucleotide Archive (ENA,
https://www.ebi.ac.uk/ena/browser/home). All short and long reads were
aligned to GRCh37 (hs37d5) using bwa mem (v0.7.17, https://github.com/
lh3/bwa) for short reads and Minimap2 (v2.24)36 with -ax map-hifi –MD
options for long reads.

Reference variant datasets
The reference variant dataset of all variant types for NA12878 and the SNV/
indel reference variant dataset for HG002 were based on long read-based
haplotype-resolved HGSVC variant data (variants_freeze4_snv_sn-
v_alt.vcf.gz, variants_freeze4_indel_insdel_alt.vcf.gz, and variants_free-
ze4_sv_insdel_alt.vcf.gz)13, which were obtained from http://
ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/HGSVC2/release/v2.0/
integrated_callset/. Variants corresponding to NA12878 and HG002 were
extracted from each vcf file. The coordinates of these variants were
converted to GRCh37 coordinates using liftOver with the hg38ToHg19.o-
ver.chain file (downloaded at UCSC: https://genome.ucsc.edu). The GIAB
benchmark SNVs (v4.2.1) for NA12878 and HG002, which were obtained
from https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/release/,
were merged with the HGSVC2 dataset without redundancy, resulting in
69,838 and 77,963 additional SNVs for NA12878 and HG002, respectively.
For HG002 indels, the GIAB indel set was merged with the HGSVC indel set
without redundancy, resulting in 65,646 additional indels. In addition, the
1KGP variant datasets created from the 1KGP high-coverage WGS data
were obtained from http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/
d a t a _ c o l l e c t i o n s / 1 0 0 0G_ 2 5 0 4 _ h i g h _ c o v e r a g e /wo r k i n g /
20220422_3202_phased_SNV_INDEL_SV/, and the SNVs and indels corre-
sponding to NA12878 were extracted. The coordinates of the extracted
NA12878 SNVs/indels were converted to GRCh37 coordinates and merged
with the NA12878 SNV and indel reference datasets without redundancy,
resulting in 70,437 and 93,764 additional SNVs and indels, respectively.
High-confidence indels from the PEPPER indel calls detected using PacBio
HiFi long-read WGS data for NA12878 and HG002 were merged with their
respective indel reference data without redundancy, resulting in 143,368
and 144,515 indels for NA12878 and HG002, respectively. The high-
confidence indels from the PEPPER calls were variants at sites with a single
nonreference allele, and 200 indels randomly selected from these indels
showed nearly 100% precision, as verified by manual visual inspection with
the IGV viewer (https://igv.org). For SVs of HG002, the GIAB Tier1 v0.6
benchmarked SV sets were obtained from ftp://ftp-trace.ncbi.nlm.nih.gov//
ReferenceSamples/giab/release/AshkenazimTrio/HG002_NA24385_son/
NIST_SV_v0.6/, and <50 bp SVs were removed. To add SVs with high
confidence to the reference datasets, eight long-read-based SV detection
algorithms (cuteSV, dysgu, NanoVar, pbsv, Sniffles, SVDSS, SVIM, and TRsv,
the last of which is unpublished algorithms; see Table 1) were used to

Table 1. Variant detection algorithms used in this study.

Algorithm Read type Variant type Version Reference

DeepVariant short/long SNV/indel 1.3.0 Poplin et al.15

GATK4 short SNV/indel 4.3.0 DePristo et al.35

Lofreq short SNV/indel 2.1.5 Wilm et al.37

Strelka short SNV/indel 2.9.10 Saunders et al.38

Platypus short indel 1.1.0 Rimmer et al.22

NanoCaller long SNV/indel 3.4.1 Ahsan et al.16

PEPPERa long SNV/indel r0.8 Shafin et al.17

Manta short SV/indel 1.6.0 Chen et al.40

DELLY short SV 1.1.8 Rausch et al.41

GRIDSS short SV 2.13.2 Cameron et al.42

INSurVeyor short SV/indel 1.1.1 Rajaby et al.43

Lumpy short SV 0.3.1 Layer et al.44

Wham short SV 1.8.0 Kronenberg et al.45

MOPline short SV 1.8.2 Kosugi et al.46

cuteSV long SV/indel 1.0.13 Jiang et al.47

Dysgu short/long SV/indel 1.3.16 Cleal et al.39

pbsv long SV/indel 10.2.0 PacBio SMRT Linkb

Sniffles long SV/indel 2.0.2 Sedlazeck et al48

SVDSS long SV/indel 1.0.5 Denti et al.49

SVIM long SV/indel 2.0.0 Heller and Vingron50

aPEPPER: PEPPER-Mergin-DeepVariant.
bhttps://downloads.pacbcloud.com/public/software/installers/smrtlink_12.0.0.177059.zip.
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select high-confidence SVs that were commonly detected by at least four
algorithms in the SV call sets created from HiFi long-read WGS data of
NA12878 or HG002. All of the long read-based tools tested in this study
were included in the tools used to generate the high-confidence SV set.
This approach was fair for all testing tools and minimized potential
evaluation bias. Overlapping SV selection was based on breakpoint
distances of ≦200 bp for INS and ≧50% reciprocal overlap for the other
types. The selected high-confidence SVs for NA12878 and HG002 were
merged without redundancy with the HGSVC reference SV and GIAB SV
sets, resulting in 6653 and 24,052 additional SVs, respectively. All the
reference indels and SVs included only ≦50 bp and ≧50 bp variants,
respectively. The final reference SNVs, indels, and SVs for NA12878 and
HG002, including those in the STR and SegDup repeat regions, are
summarized in Supplementary Table S2. Overlapping variants between STR
and SegDup were considered STR-overlapping variants.

Variant calling
The variant detection algorithms used in this study with short-read and
long-read WGS data are summarized in Table 1. The algorithms were run
using Illumina short-read or PacBio HiFi long-read WGS data from NA12878
and HG002. The commands, options, and filtering conditions used for the
algorithms are described in the Supplementary Note. For SVs/indels called
by long read-based algorithms, only one variant of overlapping variants of
the same type at the same or nearly the same position (≦50 bp distance for
insertion and ≧50% reciprocal overlap for deletion (DEL) and duplication
(DUP)) in the same call set were used for the analysis when the size ratio of
the overlapping variants was between 0.67 and 1.5 because of the
possibility of making false duplicate calls. Variants inside and outside the
repetitive regions (STR and SegDup) were evaluated separately. STR was
based on a TRF-based tandem repeat file (simpleRepeat.txt.gz) obtained
from UCSC (https://hgdownload.soe.ucsc.edu/goldenPath/hg19/database/)
and a HipSTR reference bed file (GRCh37.hipstr_reference.bed.gz) obtained
from https://github.com/HipSTR-Tool/HipSTR-references/raw/master/
human/. TR regions ranging from 20 to 10,000 bp from both files were
used. SegDup was the segmental duplication data (genomicSuper-
Dups.txt.gz) obtained from the UCSC Genome Browser site (https://
hgdownload.soe.ucsc.edu/goldenPath/hg19/database/). The total length
of STR regions without overlap was approximately 71.1 Mb. The total
length of SegDup without overlap was approximately 103Mb. The total
overlapping length between the STR regions and the SegDup regions was
approximately 7 Mb. Overlapping variants between STR and SegDup were
considered STR-overlapping variants.

Evaluation of variant detection algorithms
The variant calls of various variant detection algorithms were evaluated
using the reference variant sets of the corresponding variant type and
sample. The SNV calls that matched the reference SNV position and
nonreference allelic base of NA12878 or HG002 were determined to be
true positive (TP) calls. For indel calls, when the reference indel was located
within 0.5 times the size of the called indel and the ratio of the called to
the matched reference indel size was between 0.5 and 2.0, the called indel
was considered TP. As an exception for 1-bp indels, when the distance
between the called and reference indel positions was 1 bp, the called indel
was considered TP. SV calls were considered TPs when they met the
following criteria: the breakpoint distance between the called insertion
(INS) and the reference INS was ≤200 bp, and the overlap length between
the called DEL and the reference DEL was ≥50% of the respective length (≥
50% reciprocal overlap). For long-read-based algorithms, the ratio of the
called INS size to the matched reference INS size had to be between 0.5
and 2.0. DUP calls were considered INS calls since DUP is a type of INS and
is either not called or called infrequently in many long read-based
algorithms. When the distance between the breakpoints of the DUP call
and the reference INS was within 200 bp and the ratio between the called
DUP size and the matched reference INS size was 0.5 to 2.0, the DUP call
was considered TP for INS.
The reference variant sets created lacked true variants that have yet to

be found. Therefore, we reevaluated the putative false positive (FP) calls
that did not match the reference variants by manual visual inspection of
long-read alignments. To do this, we randomly selected 50 variants from
the initial tentative FP calls in each nonrepetitive and repetitive region and
for each variant type (ins, del, INS, and DEL). For indels, 50 variants were
randomly selected from each of two size ranges (1−5 bp and 6−50 bp) for
insertion and deletion, respectively. The selected variants were validated
by manually observing evidence supporting the presence of the variant in

the long-read alignment using the IGV viewer and the corresponding
PacBio HiFi long-read bam file. The criteria for determining TP were the
same as those for the reference-based evaluation, and variant calls with at
least two long reads that met the criteria were considered TP. For INS calls
from short read-based algorithms, when the size of the INS observed in the
long-read alignments was <10 bp, the call was considered an FP. For
<100 bp DUP calls, when the size of INS observed in the long-read
alignment was between 30− 200 bp, the call was considered TP. For
>500 bp DUP calls, when the size of INS observed in the long-read
alignment was greater than 0.8-fold the size of the DUP call, the call was
considered TP. For INS and DUP calls, when there were long read
alignments with at least two 5’-clipped ends around the first breakpoint of
the variant and at least two 3’-clipped ends around the second breakpoint
of the variant (the first breakpoint for INSs), the call was considered TP.
Eventually, the true positive rate in the initial FP calls was estimated with
the number of TPs observed in the validated variants. The precision (Pr),
recall (Rc), and F-measure (F) were calculated as follows:

Pr ¼ TP1þ TP2
Call

´ 100

Rc ¼ TP1þ TP2
Ref

´ 100

F ¼ Pr ´ Rc ´ 2 ´ 0:01
PrþRc

where TP1, TP2, Call, and Ref are the number of true positives that matched
the reference, the estimated number of true positives among the initial FPs
that did not match the reference, the number of called variants, and the
number of corresponding reference variants, respectively. The number of
reference variants for each variant type changed to the maximum number
of TP calls from an algorithm if the number of TP calls exceeded the
number of corresponding reference variants. Because our manual visual
inspection starategy tests for 50 variants randomly selected from the initial
FP calls for each variant type and estimates the final precision and recall,
the estimates are subject to error. The binomial test using the precision
values determined in the visual inspection tests of 50 variants was used to
determine confidence intervals for the estimated precision of the initial FP
calls. The confidence intervals for the final precision and recall were
determined using the number of initial TP calls and the determined
confidence intervals.

RESULTS
Datasets and strategy for evaluating variant detection
performance
We used NA12878 and HG002 benchmarked human datasets,
Illumina short-read WGS data and PacBio HiFi long-read WGS
data to evaluate the performance of variant detection algo-
rithms. Variants detected from haplotype-resolved assemblies13

were used for all variant types as the reference variant datasets
for NA12878 and HG002 (Supplementary Table S2). For the SNV
and indel reference datasets, the GIAB benchmark SNVs and
indels (v4.2.1) and the 1000 Genomes Project (1KGP) SNVs (only
for NA12878) were integrated without redundancy. Although
the benchmarked variant datasets from GIAB and haplotype-
resolved long-read assemblies cover high-quality variants, many
variants were missed, especially in repetitive regions, such as
STRs. Hence, we further merged the high-confidence indels and
SVs from HiFi long reads with the indel and SV reference
datasets (see Methods for details). Variant calls that matched or
overlapped the reference variants were considered TP, and
variant calls that did not match the reference variants were
considered tentative false positives (tFPs). We expected that the
tFP calls included some of the TP calls that were missed in the
reference variant sets. To estimate the TP content in tFPs, 100
variants (200 variants in different size ranges of indels) randomly
sampled from tFP calls of each variant type were further
validated by manual visual inspection using the IGV viewer (see
Methods for details). Precision and recall were calculated by
combining the estimated TP calls in tFP with the initial TP calls
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determined using the reference variant set, and they were
determined for variants inside and outside repetitive regions
separately.

SNVs can be detected with similar precision and recall levels
for both short- and long-read data
To evaluate SNV calling for NA12878 and HG002, we selected
four popular short-read-based algorithms (DeepVariant15,
GATK435, Lofreq37, and Strelka38) and two long-read-based
algorithms (NanoCaller16 and PEPPER-Mergin-Deepvariant17,
the latter is hereafter referred to as PEPPER), among which
DeepVariant, NanoCaller, and PEPPER are deep learning-based
algorithms. The recall values (50–70%) of short-read-based SNV
detection algorithms in repetitive regions (STRs and SegDups)
were lower than those (83–100%) of long-read-based detection
algorithms. However, the precision and recall in nonrepetitive
regions were comparable between short- and long-read data
(Fig. 1 and Supplementary Table 3). The best algorithms for SNV
detection were DeepVariant for short reads and NanoCaller for
long reads. The F-measure scores across the genome were
similar between the short- and long-read-based algorithms since
the number of SNV calls in the repeat region was only 15% of the
total SNV calls. This suggests that SNV calls using short-read WGS
data can be expected to be as reliable as those using long-read
data.

Low recall of short insertions in short-read data
Three algorithms (dysgu39, Platypus22, and Manta40) were selected
to evaluate short indels in addition to the six SNV detection
algorithms in the previous sections that simultaneously detect
indels and SNVs. We used dysgu (dysgu-SR) with short-read WGS
data to evaluate its ability to call indels because dysgu detects
indels and SVs with short- or long-read WGS data. Manta used
short-read WGS data to detect not only SVs but also short indels
less than 50 bp, depending on the parameter settings. Platypus
uses a combination of local alignment and local assembly of short
reads to detect indels. The 1–50 bp indel calls from each algorithm
were evaluated separately for insertion (ins) and deletion (del).
Approximately 50% of the indels were derived from repetitive
regions, and more than 90% of the indels in repetitive regions
were in STRs, even though STRs represent only 2.6% of the human
genome (Fig. 2). We detected differences in the calling result
characteristics between ins and del. The recall values of short-
read-based ins calls in repetitive regions were significantly lower
than those of long-read-based calls, regardless of the algorithm
used. Long-read-based PEPPER showed almost 100% precision
and recall even in repetitive regions (together with nonrepetitive
regions). DeepVariant was the best short read-based algorithm for
ins calling in repetitive regions, achieving > 80% recall. GATK4,
Platypus, and Strelka also performed well for ins calling.
Unexpectedly, the recall values for dels in repetitive regions were

Fig. 1 Evaluation of SNVs called with short and long read-based SNV detection algorithms. a Number of SNV calls for NA12878. SNVs were
detected with the indicated short read-based (DeepVariant, GATK4, Lofreq, and Strelka) and long read-based (NanoCaller and PEPPER/
DeepVariant) SNV detection algorithms using NA12878 Illumina short read or PacBio HiFi long read WGS data. The blue, orange, and gray bars
indicate the SNV calls present in nonrepetitive (nonrepeat), STR (Repeat(STR)), and segmental duplication (Repeat(SegDup)) regions,
respectively. b Precision and recall of SNV calls for NA12878. The SNV calls for each algorithm were evaluated with the NA12878 reference
SNVs and by manual visual inspection. The blue and light blue bars indicate the precision values of SNVs present in nonrepetitive and
repetitive regions, respectively. Orange and light orange bars indicate the recall values of SNVs present in nonrepetitive and repetitive regions,
respectively. The confidence interval with each bar is based on the estimated errors from the manual visual inspection of 50 variants from the
initial FP calls. c Number of SNV calls for HG002. Bars are represented in a. d Precision and recall of SNV calls for HG002. Bars are represented
as in b.
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Fig. 2 Evaluation of indels called with short read-based and long read-based indel detection algorithms. a Number of insertion (ins) calls
for NA12878. Insertions in the 1–50 bp size range were detected with the indicated short read-based (DeepVariant, dysgu-SR, GATK4, Lofreq,
Platypus, Strelka, and Manta) and long read-based (NanoCaller and PEPPER/DeepVariant) indel detection algorithms using NA12878 Illumina
short read or PacBio HiFi long read WGS data. Bars are represented as in Fig. 1. b Precision and recall of ins calls for NA12878. Indel calls for
each algorithm were evaluated with the NA12878 reference indels and by manual visual inspection. Bars are represented in Fig. 1. c Number of
ins calls for HG002. d Precision and recall of ins calls for HG002. e Number of deletion (del) calls for NA12878. Deletions in the 1–50 bp size
range were detected with the indicated tools. f Precision and recall of del calls for NA12878. g Number of del calls for H002. h Precision and
recall of del calls for HG002.
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comparable between short- and long-read-based algorithms and
were considerably lower than those in nonrepetitive regions for
both short- and long-read-based algorithms (Fig. 2). All of the
short read-based algorithms performed similarly in del calling, and
the long read-based PEPPER achieved nearly 100% precision (but
not recall) in del calling in both repetitive and nonrepetitive
regions.

Large indel insertion detection is difficult with short-read data
We further examined the precision, recall, and F-measure of short
indels on a fine scale over a range of seven indel sizes. Overall, the
short-read-based algorithms, particularly DeepVariant, Lofreq, and
Strelka, were highly accurate across the seven size ranges;

however, their recall values for ins decreased as the ins size
increased, especially above 10 bp. (Fig. 3, Supplementary Figs.
S1–S3). In contrast, the long-read-based algorithms, particularly
PEPPER, showed higher values for both precision and recall than
short-read-based algorithms across all size ranges in both
nonrepetitive and repetitive regions. For del calls, the precision
was high for all algorithms in all size ranges. Additionally, the recall
of del was comparable between short read-based and long read-
based algorithms. However, the recall of del with large size ranges
(>30 bp) was low, especially in repetitive regions (Supplementary
Figs. S4 and S5). Overall, DeepVariant, GATK4, and Strelka were
found to be the best short read-based algorithms for detecting
indels, although they were less efficient at detecting large in ss.

Fig. 3 Evaluation of insertion calls by size in NA12878. a Accuracy for indel insertion calls across sizes in NA12878. F-measures of insertion
calls for the indicated short read-based and long read-based algorithms are shown across size ranges with color bars (blue: 1 and 2 bp, orange:
3−5 bp, gray: 6−10 bp, yellow: 11−20 bp, cyan: 21−30 bp, green: 31−40 bp, black: 41−50 bp). b Accuracy for indel-deletion calls across sizes
in NA12878. The F-measures of the deletion calls for the indicated algorithms are shown in a. c The distribution of 6−50 bp in the TP calls
matched that of the NA12878 reference across sizes. For NA12878 insertions called with the indicated short read-based (marked with blue
letters) and long read-based (marked with red letters) indel detection algorithms, the reference insertions (i.e., TP calls) that matched with the
insertion calls are plotted with blue bars. The reference insertions ordered by size are indicated on the x-axis, with representative sizes at the
top. The blanks in white indicate the reference insertions that were not detected by the corresponding algorithms. The left and right panels
show the insertions in nonrepetitive and repetitive regions, respectively. The indels shown are restricted to the 6–50 bp range to focus on
large indels. d Distribution of 6–50 bp deletion TP calls matched with the NA12878 reference across sizes. The plots are represented as in c.
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Long read-based SV detection algorithms, such as cuteSV,
dysgu, Sniffles, and SVIM, can detect short indels depending on
parameter settings. To determine whether the indel calling
performance of these SV detection algorithms outperforms that
of indel calling-specific algorithms, we determined the precision
and recall of indel calls from these algorithms using the same
datasets. SVIM and dysgu (dysu-LR) showed good precision and
recall in detecting ins and del in the 3−50 bp range (Supplemen-
tary Figs. S3 and D4), and their performance was greater than that
of the short read-based algorithms. The recall of dysgu (dysu-LR)
and SVIM in del calling was greater than that of PEPPER, especially
in several size ranges and repetitive regions, suggesting that these
algorithms can supplement PEPPER in del calling.

Most SVs in repetitive regions can be detected using only
long-read data, but SVs in nonrepetitive regions can be
detected with equal efficiency using short- and long-read data
We selected DELLY41, GRIDSS42, INSurVeyor43, Lumpy44, Manta40,
Wham45, and MOPline46 as short-read-based SV detection
algorithms and cuteSV47, dysgu39, pbsv, Sniffles48, SVDSS49, and
SVIM50 as long-read-based algorithms to evaluate SV calling
performance using short- and long-read data. With the exception
of the recently reported INSurVeyor insertion (INS) detection tool,
many of these short read-based algorithms have shown good
performance in previous studies31,32. MOPline is a recently
reported ensemble pipeline that selectively combines high-
quality SV calls from multiple SV detection algorithms. We used
the MOPline-7t algorithm in MOPline, which integrates the results
from seven external SV detection tools (CNVnator, GRIDSS, Manta,
MATCHCLIP, MELT, inGAP-sv, and Wham) in single sample mode
(MOPline-S) and multiple sample mode with the SMC function
(MOPline)46. Duplication (DUP) calls were converted to INSs since
DUPs are a type of INS, and many long read-based algorithms
make no or few DUP calls. Approximately 70–80% of INSs and
DELs called with long-read data were in repetitive regions (STRs
and SegDups). In contrast, 27–58% of INSs and DELs called with
short-read data were in repetitive regions (Fig. 4 for NA12878,
Supplementary Fig. S8), as observed in a previous study46. The
recall of INS and DEL calls for short read-based algorithms was
significantly lower in repetitive regions than for long read-based
algorithms; however, many short read-based algorithms showed a
similar level of precision and recall as long read-based algorithms
in nonrepetitive regions (Fig. 4, Supplementary Figs. S8 and S9).
Despite the obvious advantage of detecting SVs with long-read
data, short-read-based algorithms have three features comparable
to long-read-based algorithms: (1) comparable precision and recall
in nonrepetitive regions, (2) sensitive detection of 300–400 bp
DELs that may correspond to Alu deletions, and (3) sensitive
detection of large DELs over several kilobases in repetitive regions
(Fig. 4, Supplementary Fig. S9). These observations suggest that
short-read data can be effectively used to detect SVs for research
purposes. Taken together with the results for size-dependent DEL
and INS calling efficiency (Fig. 4e, Supplementary Figs.
S9 and S10), these findings suggest that the optimal algorithms
for detecting SVs are MOPline, Manta, and INSurVeyor for short-
read data and SVDSS, SVIM, and pbsv for long-read data. The
optimal variant detection algorithms for short and long reads are
summarized in Supplementary Table S6.

DISCUSSION
This study employs a new framework to evaluate variant calling
more accurately than traditional strategies using only a set of
benchmarked variants. In this framework, a fraction of FP calls
determined with the benchmarked reference variant sets are
manually visually inspected. The reference variant sets still lack
true variants, which results in incorrect FP calls. Therefore,
estimating the percentage of TPs in the initial FP calls obtained

from the reference sets improves the precision and recall
determination. In addition, this strategy can also minimize
potential variant bias in the reference variant sets since reference
variant sets are often derived from specific tools. However, the
estimation is imperfect because only 100–200 variants are visually
inspected for each variant type, and the read alignment, even in
long reads, is often inaccurate in repetitive areas, which can lead
to erroneous determination of true and false calls. Nevertheless,
the results of this work should more accurately reflect the actual
benchmarks than previous studies that evaluated variant calling
algorithms and can faithfully assess the differences in results
obtained between short- and long-read data.
Our comprehensive evaluation of SNVs, indels, and SVs, called

with many variant detection algorithms, highlights several
different or common aspects of the variants detected between
short- and long-read data. The obvious difference observed
between the short- and long-read data was the lower recall of
indel insertions in the short-read data than in the long-read data,
with the recall decreasing as the ins size increased. This may be
because the efficiency and accuracy of the alignment of short read
aligners, such as bwa, to the reference genome are lower for short
reads spanning large ins than for those spanning small ins. In
contrast to insertions, deletions were detected with a similar level
of precision and recall between short- and long-read data. This
may be because short-read aligners align del-spanning reads to
the genome more efficiently than ins-spanning reads (Supple-
mentary Fig. S11) and because indel detection algorithms detect
indirect alignment signals (e.g., split reads and read pairs) for
detecting dels more effectively than alignment signals for
detecting inss. When long-read data are unavailable, a combina-
tion of short-read-based indel detection algorithms with superior
performance, such as DeepVariant, GATK4, Strelka, and Manta,
may be able to detect indels at a level comparable to that of long-
read-based algorithms.
Another striking difference between short- and long-read data

was observed for SVs in repetitive regions, particularly in STRs.
Short-read-based SV detection algorithms failed to detect both INSs
and DELs present in STRs more efficiently than long-read-based
algorithms. Many of the INSs, DELs, and short indels present in STRs
represent increased or decreased copies of the STR repeat units.
Since short read-based SV detection algorithms use only indirect
alignment signals to detect SVs, alignments of short reads in STR
repeat regions often fail to capture indirect signals to detect
increases or decreases in the number of STR repeat units. Short and
long read-based SV detection algorithms detected a similar number
of SVs with similar precision in nonrepetitive regions and a similar
number of large DELs in repetitive regions (see Fig. 4). Thus, several
short read-based SV detection algorithms, such as MOPline, Manta,
and INSurVeyor, have the potential to cover many SVs that have a
significant impact on gene function, even when long read data are
not available since many functional SVs are often large SVs and are
in nonrepetitive regions, including coding regions. Furthermore,
long read-based SV detection also has drawbacks. A previous study
showed that SV calls from long-read data often miss large SVs
(>10 kb)46. This is likely because long read-based SV detection
algorithms cannot effectively use read coverage-based or read pair/
split read-based methods to detect large SVs.
The SNV recall of short-read-based SNV detection algorithms was

lower in repetitive regions than that of long-read-based algorithms:
approximately 50–60% of the long-read-based algorithms. How-
ever, this difference in efficiency may have little impact on genome-
wide SNV detection since only 10–15% of all SNV calls are detected
in repetitive regions. DeepVariant, which exhibits a high level of
precision and recall comparable to long read-based algorithms in
both repetitive and nonrepetitive regions, would be a good
candidate for SNV calling with short-read data.
In conclusion, this study revealed that many indels, especially

>10 bp insertions, are missed when short-read sequencing data
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are used. Most SVs in STR regions are also missed when short-
read data are used. Thus, improved strategies, such as
incorporating multiple variant detection algorithms or alternative
algorithms specific to STR variants, are needed to obtain a more
complete variant dataset using only short-read data. However,

the conclusions of this study may be limited to human data
because GATK requires known SNV/indel sites for VQSR/BQSR,
and deep learning-based algorithms such as DeepVariant,
PEPPER, and NanoCaller require custom models trained for
nonhuman species.

Fig. 4 Evaluation of SVs called with short read-based and long read-based SV detection algorithms. a Number of insertion (INS) calls for
NA12878. INSs and duplications (DUPs) ≥ 50 bp were detected with the indicated short-read-based (GRIDSS, INSurVeyor, Lumpy, Manta,
Wham, MOPline-S, and MOPline) and long-read-based (cuteSV, dysugu-LR, pbsv, Sniffles, SVDSS, and SVIM) SV detection algorithms using
NA12878 short-read or long-read WGS data. DUP calls were converted to INSs. Bars are represented as in Fig. 1. MOPline-S indicates MOPline-
7t in the single sample mode. b Precision and recall of INS calls for NA12878. SV calls for each algorithm was evaluated with the NA12878
reference SVs and by manual visual inspection. Bars are represented as in Fig. 1. c Number of deletion (DEL) calls with ≥ 50 bp for NA12878.
d Precision and recall of DEL calls for NA12878. e Distribution of DEL TP calls matched with the NA12878 reference across sizes. Among the
NA12878 DELs called with the indicated short read-based (marked with blue letters) and long read-based (marked with red letters) SV
detection algorithms, the reference DELs (i.e., TP calls) that matched the DEL calls are plotted with blue bars. The reference DELs are ordered
by size and are indicated on the x-axis, with representative sizes at the top. The blanks in white indicate the reference DELs that were not
detected by the corresponding algorithms. The left and right panels show the DELs in nonrepetitive and repetitive regions, respectively.
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