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CPT-11 mitigates autoimmune diseases by suppressing effector
T cells without affecting long-term anti-tumor immunity
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The incidence of autoimmune diseases has significantly increased over the past 20 years. Excessive host immunoreactions and
disordered immunoregulation are at the core of the pathogenesis of autoimmune diseases. The traditional anti-tumor
chemotherapy drug CPT-11 is associated with leukopenia. Considering that CPT-11 induces leukopenia, we believe that it is a
promising drug for the control of autoimmune diseases. Here, we show that CPT-11 suppresses T cell proliferation and pro-
inflammatory cytokine production in healthy C57BL/6 mice and in complete Freund’s adjuvant-challenged mice. We found that
CPT-11 effectively inhibited T cell proliferation and Th1 and Th17 cell differentiation by inhibiting glycolysis in T cells. We also
assessed CPT-11 efficacy in treating autoimmune diseases in models of experimental autoimmune encephalomyelitis and psoriasis.
Finally, we proved that treatment of autoimmune diseases with CPT-11 did not suppress long-term immune surveillance for cancer.
Taken together, these results show that CPT-11 is a promising immunosuppressive drug for autoimmune disease treatment.
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INTRODUCTION
The primary functions of immune systems are aimed at protecting
hosts from all kinds of pathogens, including viruses, bacteria and
parasites. Normally, effector T cells (Teff cells) and regulatory T cells
(Treg cells) maintain immunological homeostasis. The immune
system can be trained to not attack the host. This protection of
the host from its own immune system is termed immunological
tolerance [1]. Immunodeficiencies, including primary immunodefi-
ciency disorders [2], underlie an inability to respond to pathogenic
antigens, thereby increasing host susceptibility to infections and
cancer. Autoimmune diseases (AID) are considered to be imbalances
between Teff cells and Treg cells that result in loss of inflammatory
control [3]. AID are characterized by tissue and organ damage caused
by autoimmunity. Common damage sites include the brain (multiple
sclerosis [MS]), gut (inflammatory bowel diseases), skin (psoriasis),
lung (lung fibrosis), endocrine system (type 1 diabetes), and multiple
organs involved in systemic inflammation. Gene susceptibility,
epigenetics, viruses, and a spectrum of environmental factors are
closely associated with AID [4, 5]. In particular, TCRαβ+ T cells,
including CD4+ and CD8+ T cells, have been proven to be involved
in the immunopathogenesis of AID [6–8]. Although no complete cure
for AID has been developed, suppression of systemic inflammation
by suppressing T cell-mediated immune responses offers the
potential to reduce pain and inflammation and overcome this hurdle.
Irinotecan (CPT-11), a topoisomerase-1 inhibitor that suppresses

DNA replication and transcription [9], has been widely used to
treat a range of cancers, including lung, gastric, ovarian, cervical,
and colorectal cancers [10–14]. At high dosages, CPT-11 causes a

spectrum of side effects, including gastrointestinal dysfunction
and leukopenia, which account for 36.7% and 33.6% of all side
effects, respectively, and are considered the primary adverse
effects [15, 16]. Although these side effects limit the use of CPT-11
to treat cancer and suggest broad clinical limitations, these side
effects may have positive clinical implications for autoimmunity
treatment. Considering the pathogenesis of autoimmune diseases
and the fact that CPT-11 causes leukopenia, assessing CPT-11’s
potential ability to treat autoimmune diseases is worthwhile.
In the present study, we first demonstrated that CPT-11 treatment

could suppress T cell-mediated immune responses in vivo, then
elucidated the mechanisms by which CPT-11 treatment caused
immune suppression. Our studies demonstrate that CPT-11 can
effectively inhibit the proliferation and differentiation of effector
T cells by inhibiting T cell glycolysis. We also determined CPT-11
efficacy in treating autoimmune diseases in models of experimental
autoimmune encephalomyelitis (EAE) and psoriasis. Data from
psoriasis and EAE mouse models collectively demonstrate CPT-11
efficacy in autoimmune disease treatment. We also demonstrate that
treatment of autoimmune diseases with CPT-11 does not suppress
long-term immune surveillance for cancer.

RESULTS
CPT-11 reduces immune cell number and suppresses T helper
cell (CD4+ T cell) cytokine production
To determine whether CPT-11 could suppress immune responses,
we treated C57BL/6 mice with CPT-11. We found that total
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immune cell numbers were reduced in both the spleen and lymph
nodes (LNs) (Fig. 1a). Ki67 antigen is a marker of cellular
proliferation [17]. Its expression was markedly decreased in
CD4+ and CD8+ T cells after CPT-11 treatment, indicating that T
cell growth was significantly suppressed (Fig. 1b–d). Besides, CPT-
11 treatment also caused increased cell apoptosis in both the
spleen and LNs (Supplementary Fig. 1a, b), showing that CPT-11
can reduce immune cell numbers by suppressing cell proliferation
and promoting cell apoptosis. Expression of the T helper 1 (Th1)
cell specific cytokine IFN-γ and the Th1 cell specific transcription
Factor T box transcription factor (T-bet) were prominently
decreased (Fig. 1d–f). The Th2 cell specific cytokine IL-4, and the
Th17 cell specific cytokine IL-17 were suppressed in the spleen
(Fig. 1d, g, h, Supplementary Fig. 1c). In contrast, no significant
change in the frequency of IFN-γ-producing CD8+ cells was
observed (Fig. 1i, Supplementary Fig. 1c). In addition, the
frequency of Treg cells, key suppressors of inflammation, did not
change (Fig. 1j, Supplementary Fig. 1c). Taken together, these data
show that CPT-11 inhibits the immune response by reducing the
number of immune cells and suppressing CD4+ T cell cytokine
production.

CPT-11 suppresses systemic inflammation in response to CFA
immune challenge
To determine whether CPT-11 treatment produces a therapeutic
effect under immune challenge, we challenged C57BL/6 mice with
CFA and treated them with either PBS or CPT-11. CPT-11 reduced
the total number of immune cells (Fig. 2a) and suppressed
proliferation of CD4+ and CD8+ T cells (Fig. 2b–d). Moreover, IFN-γ
and IL-17 production, and T-bet expression in CD4+ T cells were
suppressed significantly after CPT-11 treatment (Fig. 2b, e, f,
Supplementary Fig. 2a, b), and the frequency of IL-4-producing
Th2 cells was also suppressed (Supplementary Fig. 2a, c), whereas
IFN-γ production by CD8+ T cells was not suppressed by CPT-11
(Fig. 2b, g). Moreover, Foxp3+ Treg cells showed no reduction in
their numbers in draining lymph nodes, although Treg cells were
decreased in the spleen (Supplementary Fig. 2a, d). Taken
together, these data show that CPT-11 suppresses systemic
inflammation by reducing immune cell numbers and suppressing
CD4+ T cell cytokine production under CFA immune challenge.

CPT-11 suppresses CD4+ T cell proliferation, induces CD4+ T
cell apoptosis, and suppresses CD4+ T cell cytokine
production in vitro
Ki67 expression was suppressed in T cells after CPT-11 treatment
in vivo (Figs. 1b, d, 2b, c), suggesting that CPT-11 suppressed T cell
proliferation. To further investigate how CPT-11 reduces immune
cell numbers, we cultured CD4+ T cells with different concentra-
tions of CPT-11 in vitro and found that T cell activation was not
affected (Supplementary Fig. 3a). However, CD4+ T cell prolifera-
tion was suppressed (Fig. 3a, b), and CD4+ T cell apoptosis was
increased (Fig. 3c, d). Considering that IFN-γ- and IL-17-producing
CD4+ T cell numbers were suppressed in CPT-11-treated mice, we
also investigated Th1 and Th17 cell differentiation in CPT-11-
treated CD4+ T cells in vitro. The in vitro results were consistent
with our CPT-11-treated mice results (Fig. 3e–h). These data
demonstrate that CPT-11 treatment reduces T cell immunity by
inducing cell apoptosis, suppressing cell proliferation, and
suppressing Th1 and Th17 cell differentiation.

CPT-11 suppresses CD4+ T cell proliferation and cytokine
production by inhibiting glycolysis
To further investigate the mechanisms by which CPT-11 induces
immune suppression of T cells, we analyzed the transcriptomes of
naïve CD4+ T cells treated with different concentrations of CPT-11
in the presence of TCR stimulation in vitro. Volcano plot and heat
map revealed differential genes related to T cell proliferation and
apoptosis in CPT-11-treated CD4+ T cells (Fig. 4a, b). Expression of

Cdkn1a, Perp, Phlda1, and Tnf was upregulated in CPT-11-treated
T cells (Fig. 4a, b), and the proteins encoded by these genes have
been shown to induce T cell apoptosis [18–21]. Moreover,
expression of Gpr55, Tigit, and Zbtb32 was upregulated in CPT-
11-treated T cells (Fig. 4a, b), and the proteins encoded by these
genes have been shown to suppress T cell proliferation [22–25]. In
contrast, transcript levels of Dock2, Prkca, Pros1, Skap1, Themis,
and Zbtb20 were down-regulated in CPT-11-treated T cells
(Fig. 4a, b), and the proteins encoded by these genes have been
shown to promote cell proliferation [26–32]. Interestingly, studies
have suggested that SND1 and TXNIP play important roles in Th1
or Th17 cell-mediated immune responses [33, 34]. These two
genes were also down-regulated in CPT-11-treated CD4+ T cells
(Fig. 4a, b). To confirm the changes of the RNA-seq analysis, mRNA
levels of genes associated with T cell proliferation, apoptosis and
function were also measured and validated by quantitative RT-PCR
(Fig. 4c–n, Supplementary Fig. 4a–c). These data show that CPT-11
modulates the expression of genes that influence T cell
proliferation and apoptosis, thereby inhibiting T cell-mediated
immunity.
Since CD4+ T cell glycolysis has been shown to be important for

T cell proliferation and cytokine production, but not for cell
activation [35], we next investigated whether CPT-11 treatment
could inhibit CD4+ T cell glycolysis. Interestingly, T cell glycolysis
was significantly suppressed, as CPT-11-treated CD4+ T cells
displayed a markedly reduced acidification rate (Fig. 5a). In
contrast, the oxygen consumption rate (OCR) of CPT-11-treated
CD4+ T cells showed no significant change (Fig. 5b), suggesting
that CPT-11 does not affect oxidative phosphorylation or fatty acid
oxidation. It has been well known that three key glycolysis rate-
limiting enzymes, including hexokinase (HK), phosphofructokinase
(PFK) and pyruvate kinase (PK), play crucial roles in regulating
three irreversible stages. The hexokinases, the first enzymes were
dedicated to glycolysis, catalyzed the conversion from glucose to
glucose-6-phosphate. Whilst there were four distinct isozymes of
hexokinase, the mainly two isoforms, HK1 and HK2, were
expressed by T cells [36, 37]. In addition, PFK and PK family all
contains various isoforms. There is ample evidence that PFK-L and
PK-M is the dominant isoform in T cells [38, 39]. To investigate the
mechanism by which glycolysis is suppressed, we measured the
mRNA expression of HK1, HK2, PFK-L, PK-M, Aldo-a and Tpi-1, and
found that the expression of all these genes was suppressed after
CPT-11 treatment (Fig. 5c–h). These data demonstrate that the
inhibition of glycolytic enzymes by CPT-11 is broad-spectrum. To
further confirm that CPT-11 induced inhibition of glycolysis can
limit T cell immunity, we cultured CD4+ T cells with 2-DG, an
inhibitor of Hk1 and Hk2. We found that T cell proliferation and
IFN-γ production were both suppressed in the presence of 2-DG
(Supplementary Fig. 5a–d). Taken together, CPT-11 suppressed
CD4+ T-cell proliferation and cytokine production by reducing
T-cell glycolysis.

CPT-11 suppresses progression of psoriasis
Since CPT-11 can reduce T-cell numbers and suppress T-cell-
mediated inflammation, we investigated whether it could be used
to treat autoimmunity. We established an experimental mouse
model of classical IMQ-induced psoriasis [40] to determine
whether CPT-11 could suppress psoriasis. Skin thickness and
histological analysis demonstrated that the severity of psoriasis
was significantly alleviated in CPT-11-treated mice compared to
that in PBS-treated mice (Fig. 6a, b). By investigating the immune
responses in these mice using flow cytometry (FCM), we found
that expression of Ki67, a protein that is strictly associated with cell
proliferation and viewed as a proliferation marker [17], was
suppressed in CD4+ and CD8+ cells in mice treated with CPT-11
(Fig. 6c, d, Supplementary Fig. 6a, b). Simultaneously, expression of
IL-17 and retinoic acid-related orphan receptor gamma t (RORγt,
the key transcription factor of Th17 cells) were markedly
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Fig. 1 CPT-11 suppresses immune cell proliferation and reduces cytokine production by T cells. C57BL/6 mice were treated with CPT-11,
and immune responses were determined by flow cytometry (FCM). a Total number of immune cells in spleen and lymph nodes (LNs) of mice
treated with PBS (control) or CPT-11 (n= 4 mice per group). b, c Bar graphs show the frequency of Ki67+ CD4+ and Ki67+CD8+ T cells in the
indicated groups. d Representative fluorescence-activated cell sorting (FACS) plots of indicated groups. e–j Bar graphs showing frequencies of
IFN-γ+ CD4+ T (Th1) cells, T-bet+ CD4+ T (Th1) cells, IFN-γ+ CD8+ T cells, IL-17+ CD4+ T (Th17) cells, IL-4+ CD4+ T (Th2) cells, and FoxP3+ CD4+

Treg cells in indicated groups. Data are representative of two independent experiments. Summary data are presented as mean ± s.d. *p < 0.05,
**p < 0.01, ***p < 0.001, ****p < 0.0001; by unpaired two-tailed Student’s t-tests. See also Supplementary Fig. 1.
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Fig. 2 CPT-11 suppresses systemic inflammation under CFA immune challenge. C57BL/6 mice were challenged with CFA (subcutaneous
injection) and treated with CPT-11 or PBS, and immune responses in spleen and LNs were determined using FCM. a Total number of immune
cells in the spleen and LNs of mice treated with PBS (control) or CPT-11. (n= 4 mice per group). b Representative FACS plots of indicated
groups. c–g Bar graphs showing frequencies of Ki67+ CD4+ and Ki67+CD8+ T cells, IFN-γ+ CD4+ Th1 cells, IL-17+ CD4+ Th17 cells, and IFN-γ+
CD8+ cells from indicated mice. Data are representative of two independent experiments. Summary data are presented as mean ± s.d.
**p < 0.01, ***p < 0.001, ****p < 0.0001; by unpaired two-tailed Student’s t-tests. See also Supplementary Fig. 2.
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down-regulated (Fig. 6e, f, Supplementary Fig. 6c–d). Consistent with
these findings, expression of IFN-γ and T-bet, the key transcription
factor of Th1 cells, were significantly decreased (Fig. 6g, h,
Supplementary Fig. 6e, f). The frequency of IFN-γ-producing CD8+

T cells was also reduced (Fig. 6i, Supplementary Fig. 6g). In

contrast, the frequencies of Th2 and Foxp3+ Treg cells did not
change in CPT-11-treated mice (Fig. 6j, k, Supplementary Fig. 6h, i).
These data show that the immune responses of Th17 cells, Th1 cells,
and IFN-γ-producing CD8+ T cells experienced a marked decline in
mice with psoriasis treated with CPT-11. Overall, the immune
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responses in CPT-11-treated psoriasis mice were similar to those of
healthy control mice (Fig. 6). Taken together, CPT-11 treatment
suppressed psoriasis in a mouse disease model by suppressing T cell
proliferation and Th1 and Th17 cell differentiation.

CPT-11 inhibits development of EAE
CPT-11 can cross the blood–brain barrier (BBB), although its
concentration in the central nervous system (CNS) is lower than
that in peripheral blood [41, 42]. Therefore, whether CPT-11 can
suppress CNS inflammation in conditions such as MS is worth
determining. To investigate this, we established an EAE model, as
an experimental mouse model of MS. C57BL/6 mice were
immunized with myelin oligodendrocyte glycoprotein (MOG)
peptide 35–55 in complete Freund’s adjuvant (CFA) to induce
EAE [43] and were treated with CPT-11 or PBS on day 9. The
development of EAE was completely suppressed in mice treated
with CPT-11 (Fig. 7a). Luxol fast blue (LFB) staining showed that
demyelination of the cervical spinal cord was also completely
suppressed in mice treated with CPT-11 (Fig. 7b). Histological
analysis and immune cell counting results also showed that EAE
mice treated with CPT-11 had much reduced infiltration of
inflammatory cells into the CNS compared to EAE mice treated
with PBS (Fig. 7c, Supplementary Fig. 7a). In particular, the number
of CD3+ T cells was significantly reduced in the brain and spinal
cord in mice treated with CPT-11 (Fig. 7d, e). Moreover, the
frequencies of Th1 (Fig. 7f, g) and Th17 (Fig. 7h–k) cells were
reduced in the brain and spinal cord (S.C.) of EAE mice treated
with CPT-11, whereas the proportion of Th2 cells did not change
significantly (Supplementary Fig. 7b, c). The proportion of Treg
cells was significantly reduced (Fig. 7l, Supplementary Fig. 7d),
demonstrating that inhibition of EAE by CPT-11 does not depend
on Treg cell induction or recruitment. Collectively, our data
suggest that CPT-11 could treat EAE by suppressing effector T cells
and inhibiting Th1 and Th17 cells.

CPT-11 therapy of autoimmune diseases does not affect long-
term anti-tumor immunity
Our animal studies on psoriasis and EAE showed that CPT-11 can
effectively treat autoimmune diseases. In the meanwhile, we also
found that mice treated with CPT-11 experienced a decrease in
body weight in psoriasis model (Supplementary Fig. 8a), showing
a possible side effect of CPT-11 treatment. Therefore, an important
question to confirm is whether systemic immunosuppression by
CPT-11 will compromise protective immune responses such as
anti-tumor immunity. To investigate whether CPT-11 treatment
affects anti-tumor immune responses, we established a B16
melanoma tumor-bearing model in mice with psoriasis. These
mice were treated with CPT-11 or PBS, and approximately 5 weeks
later, B16 cells were subcutaneously injected to assess tumor
growth (Fig. 8a). Tumor growth was similar in psoriatic-
rehabilitated mice treated with CPT-11 or PBS (Fig. 8b) and T cell
proliferation was comparable in mice treated with CPT-11 or PBS
(Fig. 8c, d). Frequencies of Th1 cells, IFN-γ+ CD8+ T cells, Foxp3+

Treg cells, Th17 cells, and Th2 cells were virtually identical in the
spleen, peripheral lymph nodes (PLN), and tumors of mice treated
with CPT-11 or PBS (Fig. 8e–j, Supplementary Fig. 8b–e). These

data show that anti-tumor immune responses and systemic
immune responses were similar in CPT-11-treated and control
mice. Therefore, CPT-11 therapy can effectively suppress auto-
immune diseases, and does not exert a long-term effect on
protective anti-tumor immune responses.

DISCUSSION
Over the past few decades, the incidence of autoimmune diseases
has dramatically increased. This increase is positively correlated
with economic development [44–46]. Although many immu-
notherapeutic strategies have been developed in preclinical and
clinical studies, immunosuppressive drug therapy remains the
mainstream clinical treatment [47–49]. A range of autoimmune
diseases result from poorly-defined interactions between environ-
mental and internal cues. The cause that difficult development of
targeted treatments ascribed to complex immune cells interacting
networks and “unknown trigger factors”. Immunosuppressive
drugs play a crucial role in alleviating symptoms and preventing
further damage by suppressing immune system’s function. There
is mounting immunosuppressive drugs in the treatment of
aberrant immune disorders, including antibodies, calcineurine
inhibitors, mammalian target of rapamycin inhibitors (mTORi), and
steroid hormones. Basiliximab, a chimeric monoclonal antibody,
binds to interleukin-2 receptor alpha chain (CD25) and blocks this
signaling transduction to suppress the expansion of T cells [50].
Alemtuzumab is a depleting monoclonal antibody directed
against the CD52 and used to induce the depletion of T and B
lymphocytes [51, 52]. The significant economic burden has proved
challenging with regard to the application of antibodies.
Calcineurin inhibitors, such as cyclosporine A, impair T cells
activation and proliferation through the inhibition of the
translocation of activated nuclear T-cell transcription factor (NF-
AT), which inhibits IL-2 gene transcription [53]. However, some
studies have been reported that a series of side effects are
hypertension, dyslipidemia, Multiple electrolyte derangements
and major in hepatotoxic [54, 55]. mTORi suppress the prolifera-
tion and differentiation of T and B lymphocytes, but the increased
mortality in SLE patients caused by increased risk of infection, is a
significant issue [56, 57]. Steroid hormones can regulate the
development and function of immune cells to confer it potent
immune-suppressive and anti-inflammatory function. Althought
steroid hormones were considered as wonder drugs to ameliorate
various inflammatory diseases, their long-term use can bring many
side effects, and it may have the opposite effect on B cells [58].
Moreover, the responses of patients with autoimmune diseases to
immunosuppressive drugs vary significantly, and even in patients
who experience good efficacy, it is difficult to achieve lifelong
remission of the disease. Therefore, the development of new
immunosuppressive drugs remains an important objective
[59, 60]. To determine whether CPT-11 holds promise for
autoimmune disease treatment, we investigated the effects of
CPT-11 treatment in mouse models of EAE and psoriasis. Changes
in immune responses after CPT-11 treatment were determined in
healthy C57BL/6 and CFA-challenged mice. In both models, T cell
immune responses were significantly suppressed. We discovered

Fig. 3 CPT-11 suppresses T cell immune responses in vitro. CD4+CD25−CD62Lhigh (naive) T cells isolated from spleen and LNs of C57BL/6
mice were cultured with anti-CD3 and anti-CD28, with or without CPT-11 for 1-3 d. Cell proliferation, cell apoptosis, and cell differentiation
were determined using FCM (n= 3). a, b Representative FACS plots (a) and bar graph (b) showing non-proliferative T cell frequencies in T cells
cultured for 3 d. c, d Representative FACS plots (c) and bar graph (d) showing apoptotic T cell frequencies in T cells cultured for 24 h.
e, f Representative FACS plots (e) and bar graph (f) showing the frequency of Th1 cells in T cells cultured for 3 d in the presence of IL-12.
g, h Representative FACS plots (g) and bar graph (h) showing frequencies of Th17 cells among T cells cultured for 3 d in the presence of TGF-β
and IL-6. Data are representative of three independent experiments (a, c, e, g) or are pooled from three independent experiments (b, d, f, h).
Summary data are presented as mean ± s.d. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001; by unpaired two-tailed Student’s t-tests. See also
Supplementary Fig. 3.
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that CPT-11 alleviates autoimmunity in both EAE and psoriasis
models. T cell-mediated immune responses were also investigated
after CPT-11 treatment of EAE and psoriasis mice. We found that T
cell numbers and T cell cytokine production were both
suppressed. In particular, T cell number and cytokine production

by Th1 and Th17 cells were significantly inhibited after CPT-11
treatment in all mouse models, whereas Th2 cells and Treg cells
did not change significantly. These findings indicate that CPT-11 is
effective in autoimmune treatment and mainly suppresses Th1
and Th17 immune responses. These findings reveal a previously
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unrecognized drug candidate for the treatment of autoimmune
diseases.
To elucidate the mechanism by which CPT-11 suppressed pro-

inflammatory effector T cells, naïve T cells were isolated and
cultured with CPT-11 in vitro. Consistent with our in vivo results,
CPT-11 inhibited T cell proliferation, promoted T cell apoptosis,
and inhibited Th1 and Th17 cell differentiation. Live cell
metabolism analysis revealed that CPT-11 significantly inhibited
glycolysis in T cells. This conclusion is also supported by the
decrease in HK1 and HK2 (key enzymes involved in glycolysis)
mRNA expression after CPT-11 treatment. In addition, when T cells
were treated with the glycolysis inhibitor 2-DG, a phenotype
consistent with that of CPT-11 appeared, proving that CPT-11
suppresses the immune response of effector T cells by inhibiting
glycolysis. Because we were unable to obtain naïve human T cells
for this study, the regulatory function of CPT-11 on human T cell
proliferation and differentiation was not studied. Future studies on
CPT-11 in autoimmune disease treatment should focus on its
effects on human T cells. Nevertheless, as it is well accepted that
targeting effector T cell immune responses or T cell glycolysis is a
promising strategy to treat autoimmunity [61, 62], our study
demonstrates that CPT-11 is an effective drug for treating
autoimmune diseases by suppressing T cell-related immune
responses.
Because immunosuppressive drugs can cause systemic immune

suppression, patients taking long-term immunosuppressive drugs
to treat autoimmune diseases may be more susceptible to
infections and tumors. To investigate whether CPT-11 treatment
causes long-term suppression of protective immune responses,
we established a B16 tumor-bearing model in mice with psoriasis
treated with CPT-11 to evaluate the strength of their anti-tumor
immune responses. Encouragingly, CPT-11 treatment of mice with
psoriasis did not dampen anti-tumor immunity, indicating that
CPT-11 treatment did not suppress long-term protective immune
responses. Maintaining immune surveillance of cancer while
effectively suppressing autoimmune diseases has long been a
difficult challenge [63]. Our research results suggest that while
CPT-11 effectively suppresses the immune response in auto-
immune diseases, it does not seriously inhibit the later anti-tumor
immune response, showing great potential for the safe treatment
of autoimmune diseases.
Previous studies have shown that CPT-11 causes a series of

significant side effects, including gastrointestinal dysfunction [64].
In the current study, we also found that mice treated with CPT-11
experienced a decrease in body weight in psoriasis model. We
have two viable avenues for addressing negative side effects. We
can control their severity through dietary intervention, physical
therapy, and drug intervention to achieve clinical treatment
effects [65], or we can adjust the dosage of CPT-11 to minimize
side effects while ensuring efficacy [66]. Some significant gaps can
be present in the transition from preclinical to clinical dosing
schedules. During the aforementioned treatment process, the
CPT-11 dose was 50 mg/kg body weight. This suggests that future
studies should discuss strategies for dose optimization and

highlight strategies for integrating dose optimization into pre-
marketing drug development.
In summary, our study has demonstrated that CPT-11 can

effectively inhibit the proliferation and differentiation of effector
T cells by inhibiting T cell glycolysis. Data from psoriasis and EAE
mouse models collectively demonstrate the efficacy of CPT-11 for
treating autoimmune diseases, and our results indicate that the
treatment of autoimmune diseases with CPT-11 does not suppress
long-term immune surveillance for cancer.

MATERIALS AND METHODS
Antibodies and reagents
The following chemicals were purchased from the indicated manufac-
turers: purified anti-mouse CD3 (145–2C11, Bio X Cell, # BE0001–1), purified
anti-mouse CD28 (37.51, Bio X Cell, # BE0015–1), recombinant mouse IL-12
(R&D Systems, #419-ML-500), Freund’s adjuvant, incomplete (IFA) (BD/Difco
Laboratories, # 263910), Mycobacterium tuberculosis (BD Biosciences,
#231141), DNase I (Millipore Sigma, # DN25), Collagenase IV (Thermo
Fisher Scientific, # # 17104–019), PMA (Millipore Sigma, #P8139), Ionomycin
calcium salt (Millipore Sigma, #13909), Golgi-Plug Protein Transport
Inhibitor (BD Biosciences, #555029), CD4+ CD62L+ T cell Isolation Kit,
mouse (Miltenyi Biotec, #130–106-643), Foxp3/Transcription Factor Stain-
ing Buffer Set (Thermo Fisher Scientific, #00–5523-00), Cytofix/Cytoperm
Fixation/ Permeabilization Solution Kit (BD Biosciences, #554714), Cell-
Trace™ CFSE Cell Proliferation Kit (Thermo Fisher Scientific, # C34554),
Seahorse XF Cell Mito Stress Test Kit (Agilent, # 103015–100),
fluorochrome-conjugated antibodies (zombie yellow [Biolegend,
#423104]), anti-mouse CD45 (30-f11, Thermo Fisher Scientific, #56-0451-
82), anti-mouse TCRβ (H57-597, Thermo Fisher Scientific, # 47–5961-82),
anti-mouse CD4 (RM4-5, Thermo Fisher Scientific, #45-0042-82), anti-
mouse CD8α (53-6.7, Thermo Fisher Scientific, #11-0081-85), anti-mouse
CD8β (H35-17.2, Thermo Fisher Scientific, 11-008S-85), anti-mouse CD62L
(MEL-14, Thermo Fisher Scientific, #11-0621-85), anti-mouse CD44 (IM7,
Thermo Fisher Scientific, #17-0441-83), anti-mouse CD25 (PC61.5- Thermo
Fisher Scientific, #45-0251-82), anti-mouse CD69 (H1.2F3, Thermo Fisher
Scientific, #12-0691-83), anti-mouse IFN-γ (XMG1.2, Thermo Fisher Scien-
tific, #48-7S11-82), anti-mouse IL-17(eBio17B7, Thermo Fisher Scientific,
#25-7177-82), anti-mouse IL-4 (11B11, Thermo Fisher Scientific, #25-7041-
82), anti-mouse Ki67 (SolA15, Thermo Fisher Scientific, #25-5698-82), anti-
mouse RORγt (B2D, Thermo Fisher Scientific, #17-6981-82), anti-mouse T-
bet (eBio4B10, Thermo Fisher Scientific, #12-5825-82), anti-mouse FoxP3
(FJK-16s, Thermo Fisher Scientific, #48-577S-82), 7-AAD Viability Staining
Solution (Thermo Fisher Scientific, #00-6993-50), and Annexin V (Thermo
Fisher Scientific, #BMS306PE-100), anti-mouse CD16/32 (Biolegend,
#101302).

Experimental model details
Mice C57BL/6 mice were purchased from Shanghai Model Organisms
Center, Inc., and bred in our facility under specific pathogen-free
conditions. All mice used in these experiments were aged 6–8 weeks. All
animal studies were performed in accordance with the guidelines of the
Animal Care and Use Committee of West China Hospital, Sichuan
University, and were approved by the Animal Care and Use Committees
of West China Hospital, Sichuan University. Mice were allocated randomly
to treatment groups and ctrl groups in an arbitrary order and assigned a
specific number before data collection, However, we didn’t use formal
randomization techniques. The data collection and analysis were blindly.
No statistical calculation was performed to choose sample size. Sample size

Fig. 4 CPT-11 modulates the expression of genes related to CD4+ T cell proliferation and apoptosis. Naive T cells isolated from C57BL/6
mice were cultured for 1-3 d with anti-CD3 and anti-CD28 antibodies, with or without CPT-11. a, b RNA sequencing of T cells cultured for 24 h
with 0–20 µg/mL CPT-11. a A volcano plot showing differentially expressed genes (DEGs) in T cells treated with 20 μg/mL CTP-11 compared to
control sample (p < 0.05 and |Log2FoldChange | ≥1). The genes shown in the plot represent apoptosis-related genes. b A heat map showing
expression levels of apoptosis-related genes (rows; Z normalized per row) that are differentially expressed in T cells cultured with different
concentrations (0 µg/mL, 5 µg/mL, 10 µg/mL, and 20 µg/mL) of CPT-11. Darker red color indicates higher relative expression, and darker blue
color indicates lower relative expression. c–l mRNA expression of Tnf, Zbtb32, Cdkn1a, Tigit, Gpr55, Ph1ad1, Perp, Pros1, Skap1 and Snd1 in
T cells cultured for 3 d with different concentrations (0 µg/mL, 5 µg/mL, 10 µg/mL, and 20 µg/mL) of CPT-11. m, n mRNA expression of Prkca
and Themis in T cells cultured for 1 d with different concentrations (0 µg/mL, 5 µg/mL, 10 µg/mL, and 20 µg/mL) of CPT-11. Data are pooled
from three independent experiments. Summary data are presented as mean ± s.d. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001; by one-
way analysis of variance (ANOVA) with Tukey’s post hoc test. See also Supplementary Fig. 4.
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was determined by previous similar studies [67–71], and to ensure
adequate data values to conduct standard statistical tests.

CPT-11 treatment of C57BL/6 mice and CFA-challenged mice
To investigate whether CPT-11 could suppress immune responses in
healthy mice, eight-week-old male C57BL/6 mice were treated with CPT-11
(50mg/kg body weight) or PBS daily for 7 consecutive days. To investigate
whether CPT-11 could suppress immune responses under immune
challenge, eight-week-old male C57BL/6 mice were immunized

subcutaneously with complete Freund’s adjuvant, which contained
300 μg/mouse heat-killed M. tuberculosis H37Ra, on two different hind
flank sites, and treated with 50mg/kg body weight CPT-11 or PBS daily
from day 8 for 7 consecutive days. On the next day after CPT-11 treatment,
mice were euthanized and samples were harvested for subsequent
experiments.

EAE induction and scoring. The EAE model was established as previously
described [45, 72]. MOG35–55 peptide (200 μg/mouse) was drawn up into

Fig. 5 CPT-11 suppresses CD4+ T cell proliferation and cytokine production by inhibiting glycolysis. Naive T cells isolated from C57BL/6
mice were cultured for 3 d with anti-CD3 and anti-CD28 antibodies, with or without CPT-11. a Extracellular Acidification Rate (ECAR) of T cells
cultured with or without CPT-11 in basal state and after addition of Oligomycin, FCCP, and Antimycin. b Oxygen Consumption Rate (OCR) of
T cells cultured with or without CPT-11, at basal state, and after addition of Oligomycin, FCCP, and Antimycin. c–h mRNA expression of Hk1,
Hk2, Pfk-L, Pk-M, Aldo-a and Tpi-1 in T cells cultured with different concentrations (0 µg/mL, 5 µg/mL, 10 µg/mL, and 20 µg/mL) of CPT-11.
Naive T cells isolated from C57BL/6 mice were cultured for 3 d with anti-CD3 and anti-CD28, with or without 2-DG. Data are representative of
three independent experiments (a, b) or are pooled from three (c–h) independent experiments. Summary data are presented as means ± s.d.
*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001; by unpaired two-tailed Student’s t-tests (a, b) or one-way analysis of variance (ANOVA) with
Tukey’s post hoc test (c–h). See also Supplementary Fig. 5.
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Fig. 6 CPT-11 suppresses progression of psoriasis. C57BL/6 mice were administered IMQ cream on a 2.5 cm × 2.5 cm patch of shaved back
skin daily for 7 consecutive days, and were injected with CPT-11 or PBS intraperitoneally once per day (n= 12 mice per group). a Statistical
analysis of epidermal thickness. b Representative histological skin images. c–k Bar graphs showing frequencies of Ki67+ CD4+ T cells (c),
Ki67+CD8+ T cells (d), IL-17+ CD4+ Th17 cells (e), RORγt+ CD4+ Th17 cells (f), IFN-γ+ CD4+ Th1 cells (g), T-bet+ CD4+ Th1 cells (h), IFN-γ+ CD8+

T cells (i), IL-4+ CD4+ Th2 cells (j) and FoxP3+ CD4+ Treg cells (k) in the spleen (SPL) and draining lymph nodes (DLN) of indicated groups. Data
are representative of three independent experiments (a, b) or are pooled from three independent experiments (c–k). Summary data are
presented as mean ± s.d. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001; by a one-way analysis of variance (ANOVA) with Tukey’s post hoc
test. See also Supplementary Fig. 6.
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Fig. 7 CPT-11 inhibits development of EAE. C57BL/6 mice were subcutaneously immunized with MOG peptide 35–55 emulsified in complete
Freund’s adjuvant to induce EAE, and treated with CPT-11 or PBS daily from day 9. a EAE clinical scores of the indicated groups (n= 10 mice
per group). b Representative Luxol Fast Blue (LFB) staining of cervical spinal cord sections. c Representative histological images of cervical
spinal cord sections. d, e Representative FACS plots (d) and bar graph (e) showing frequencies of CD3+ T cells in the brain and spinal cord.
f, g Representative FACS plots (f) and bar graph (g) showing frequencies of IFN-γ+ CD4+ Th1 cells in brain and spinal cord. h–k Representative
FACS plots (h, j) and bar graphs (l, k) showing frequencies of Th17 cells in brain and spinal cord. l Bar graph showing frequencies of
Foxp3+Treg cells in brain and spinal cord. Data are representative of two independent experiments (a–c) or are pooled from two independent
experiments (d–l). Summary data are presented as mean ± s.d. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001; by unpaired two-tailed
Student’s t-tests. See also Supplementary Fig. 7.
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Fig. 8 CPT-11 therapy of autoimmune diseases does not affect long-term anti-tumor immunity. C57BL/6 mice were administered IMQ
cream on shaved 2.5 cm × 2.5 cm patches of back skin daily for 7 consecutive days and were injected with CPT-11 or PBS intraperitoneally
once per day. Approximately 5 weeks after psoriasis induction and treatment, the mice were injected with B16 cells to establish a tumor-
bearing model (n= 7 mice per group). a Experimental scheme of the B16 tumor-bearing model after psoriasis induction and treatment.
b Tumor growth curves. c–j Representative FACS plots (c, e, g, i) and Bar graphs (d, f, h, j) showing frequencies of Ki67+ CD4+ T cells (c, d), IFN-
γ+ CD4+ Th1 cells (e, f), IFN-γ+ CD8+ cells (g, h), and FoxP3+ CD4+ Treg cells (i, j). Data are representative of two independent experiments
(b–d) or are pooled from two independent experiments (e–j). Summary data are presented as mean ± s.d. *p < 0.05, **p < 0.01, ****p < 0.0001;
by unpaired two-tailed Student’s t-tests. See also Supplementary Fig. 8.
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syringes with complete Freund’s adjuvant (which contained 300 μg/mouse
heat-killed M. tuberculosis H37Ra) to produce an emulsion. Eight-week-old
male or female C57BL/6 mice were then immunized subcutaneously with
the emulsion on day 0 and treated with 50mg/kg body weight CPT-11 or
PBS daily from day 9 for 7 consecutive days. On the day of immunization
and 2 days later, 200 ng/mouse pertussis toxin was administered
intraperitoneally. On day 18, mice were euthanized and tissue samples
were harvested for subsequent experiments. Mice were observed daily to
assess disease development. The EAE clinical scores were as follows: 0, no
disease; 1, limp tail or hind limb weakness; 2, limp tail and hind limb
weakness; 3, hind limb paralysis; 4, hind limb paralysis and forelimb
weakness; and 5, moribund.

Psoriasis. This model was used as previously described [73, 74]. Eight-
week-old female C57BL/6 mice were treated with 60 ~ 65mg commercially
available 5% IMQ cream (Med-shine Pharma, Chengdu, China) on shaved
2.5 cm × 2.5 cm back skin daily for 7 consecutive days, and treated with
50mg/kg body weight CPT-11 or PBS daily. On day 7, mice were
euthanized and samples were harvested for subsequent experiments.

Method Details
Cell isolation from brain and spinal cord. To obtain lymphocytes from
brain and spinal cord, as previously reported [75], tissues from EAE model
mice were cut into small pieces and resuspended in PBS containing
collagenase IV (4mg/mL) and DNase (2 mg/mL) for 30–40min. Undigested
tissues were then mashed through a 70 μm cell strainer to yield cell
suspensions. Spleens and lymph nodes were directly passed through a
70 μm cell strainer to obtain cell suspensions.

Cell cultures. CD4+CD25− CD62L+ naïve T cells used for in vitro
experiments were sorted from spleens and lymph nodes of mice by
magnetic cell sorting according to manufacturer’s protocol. Naïve T cells
were cultured in plates coated with anti-mouse-CD3 (1.5 μg/mL) and
soluble anti-mouse-CD28 (1.5 μg/mL), with or without CPT-11 (5, 10, 15, or
20 μg/mL), mouse IL-12 (10 ng/mL), TGF-β (2 ng/mL), IL-6 (50 ng/mL), 2-DG
(5 μM). Three days later, cells were harvested for FCM. Samples were
allocated randomly to treatment groups and ctrl groups in an arbitrary
order; However, we didn’t use formal randomization techniques. Sample
size was determined by previous similar studies [76, 77], and to ensure
adequate data values to conduct standard statistical tests. Due to the
investigators needs to design the treatment groups to conduct the
experiments, this part did not blind to the group allocation.

Metabolic analyses. Seahorse XFe96 Analyzers was used to measure the
extracellular acidification rate (ECAR) and oxygen consumption rate (OCR)
of CD4+ T cells treated with CPT-11 (10 μg/mL) or PBS for 24 h. 2 × 105

cultured T cells, resuspended in XF RPMI medium supplemented with
10mM glucose, 1 mM pyruvate and 2mM L-glutamine, were added into
Seahorse XF96 cell culture microplates (coated with 22.4 μg/mL Corning®
Cell-Tak™ Cell and Tissue Adhesive). In the absence of CO2, cells in
microplates were incubated with shaking at 37 °C for approximately
30min, and, subsequently, the Seahorse XF Cell Mito Stress Test program
was run. To measure basal glycolysis in T cells treated with CPT-11 or PBS,
the indicated cells were harvested after 24 h. Next, the cells were
resuspended in the aforementioned XF RPMI medium and incubated with
CPT-11 or PBS, and basal ECAR was measured.

FCM analyses. Dead and antigen presenting cells were stained or
blocked by incubating the cells with zombie yellow and anti-mouse
CD16/32 antibodies for 15 min at room temperature in the dark. Cell
surface markers were stained by incubating cells with antibody solutions
for 20 min at 4 °C in the dark. Cells were then fixed with Foxp3/
Transcription Factor Staining Buffer Set or Cytofix/Cytoperm Fixation/
Permeabilization Solution Kit according to the manufacturer’s protocol.
Intranuclear and intracellular staining solutions were applied with buffer
from the aforementioned kit, and, subsequently, single cell suspensions
were stained with this solution for 40 min at 4 °C in the dark. For
intracellular cytokine staining, cells were stimulated with PMA (10 ng/mL),
ionomycin (250 ng/mL) and Golgi-Plug (1:1,000 dilution; BD Pharmingen)
at 37 °C for 4 h, For cell apoptosis staining, cells were stained with Annexin
V and 7-AAD solution diluted with Annexin Binding Buffer for 30 min at
room temperature. Stained cells were analyzed using an LSRFortessa flow
cytometer (BD Biosciences) and the data were analyzed using FlowJo
software.

RNA-sequence. RNA-seq library preparation and sequencing for naïve
T cells treated with different concentrations of CPT-11 were performed by
Seqhealth Technology Co., LTD (Wuhan, China) on Illumina Novaseq 6000
machine. Raw sequencing data were first processed by Trimmomatic
(version 0.36) to discard low-quality reads. Clean data were mapped to the
mm10 mouse genome assembly by STRA software (version 2.5.3a).
Differentially expressed genes were identified by DEseq2 (p < 0.05 and
|Log2FoldChange | ≥1). Volcano plot and heat map showed differentially
expressed genes related to T cell proliferation and apoptosis.

Quantitative RT-PCR. Total RNA was extracted from cultured cells using a
RNeasy mini kit (Qiagen), and cDNA was obtained using a cDNA reverse
transcription kit (Applied Biosystems). Quantitative real-time PCR was
performed using SYBR Green Real-Time PCR Master Mix (Toyobo). The
results were normalized to the expression of HPRT mRNA.

Oligonucleotides

Hprt-forward 5’ TCAGTCAACGGGGGACATAAA

Hprt-reverse 5’ GGGGCTGTACTGCTTAACCAG

Hk1-forward 5’ CGGAATGGGGAGCCTTTGG

Hk1-reverse 5’ GCCTTCCTTATCCGTTTCAATGG

Hk2-forward 5’ TGATCGCCTGCTTATTCACGG

Hk2-reverse 5’ AACCGCCTAGAAATCTCCAGA

Hk3-forward 5’ CAGGGGACCTACAGGATTGAT

Hk3-reverse 5’ GAGCATCTTCGTCATAGAAGGAG

Hk4-forward 5’ TGAGCCGGATGCAGAAGGA

Hk4-reverse 5 GCAACATCTTTACACTGGCCT

Pfk-P-forward 5’ GAAACATGAGGCGTTCTGTGT

Pfk-P-reverse 5’ CCCGGCACATTGTTGGAGA

Pfk-L-forward 5’ GGAGGCGAGAACATCAAGCC

Pfk-L-reverse 5’ CGGCCTTCCCTCGTAGTGA

Pfk-M-forward 5’ TGTGGTCCGAGTTGGTATCTT

Pfk-M-reverse 5’ GCACTTCCAATCACTGTGCC

Pk-M-forward 5’ GCCGCCTGGACATTGACTC

Pk-M-reverse 5’ CCATGAGAGAAATTCAGCCGAG

Aldo-a-forward 5’ CGTGTGAATCCCTGCATTGG

Aldo-a-reverse 5’ CAGCCCCTGGGTAGTTGTC

Tpi-1-forward 5’ CCAGGAAGTTCTTCGTTGGGG

Tpi-1-reverse 5’ CAAAGTCGATGTAAGCGGTGG

Tnf-forward 5’ CCCTCACACTCAGATCATCTTCT

Tnf-reverse 5’ GCTACGACGTGGGCTACAG

Zbtb32-forward 5’ GGTACAGTTAGCGGCTAGACT

Zbtb32-reverse 5’ GGAAGGGCTTATGTCTTCAACC

Cdkn1a-forward 5’ CCTGGTGATGTCCGACCTG

Cdkn1a-reverse 5’ CCATGAGCGCATCGCAATC

Tigit-forward 5’ GAATGGAACCTGAGGAGTCTCT

Tigit-reverse 5’ AGCAATGAAGCTCTCTAGGCT

Gpr55-forward 5’ CACTAAGGGCTGGGTACAAAAG

Gpr55-reverse 5’ GCGGTTCCTCACCAGATACTG

Perp-forward 5’ ATCGCCTTCGACATCATCGC
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Table a. continued

Oligonucleotides

Perp-reverse 5’ CCCCATGCGTACTCCATGAG

Phlda1-forward 5’ GGGCTACTGCTCATACCGC

Phlda1-reverse 5’ AAAAGTGCAATTCCTTCAGCTTG

Prkca-forward 5’ GTTTACCCGGCCAACGACT

Prkca-reverse 5’ GGGCGATGAATTTGTGGTCTT

Pros1-forward 5’ CGCTTTCGGGTGCTACTGG

Pros1-reverse 5’ CACTCTCGTTCAAGGTTGCC

Skap1-forward 5’ AGGACGAGGGAATAGAAGACATC

Skap1-reverse 5’ TTCTTGGAATCTTTTCGCAGGT

Snd1-forward 5’ TCTGGGTGCGCCATAATTGTC

Snd1-reverse 5’ TCAGCTTCTTGCGAAGGAACT

Themis-forward 5’ AGTCACCATGTAGACAGACCC

Themis-reverse 5’ GTGGCCCATGCTTGCTCTT

Txnip-forward 5’ TCTTTTGAGGTGGTCTTCAACG

Txnip-reverse 5’ GCTTTGACTCGGGTAACTTCACA

Zbtb20-forward 5’ GCGAGCCCAAAGGTGAAAG

Zbtb20-reverse 5’ GCTGTAGGACGCCCTTATCG

Dock2-forward 5’ GCATCTCACGCTACAGATTGG

Dock2-reverse 5’ GGAAAATGCCCTGTGACAGTT

Quantification and statistical analysis
All data were analyzed using GraphPad Prism 9 software. An unpaired two-
tailed Student’s t-test was used to compare variables between two groups;
one-way ANOVA (with Tukey’s multiple-comparison post-tests) was used to
compare variables between more than two groups. All P-values < 0.05 were
considered to be statistically significant (*p < 0.05, **p < 0.01, ***p < 0.001,
****p < 0.0001, NS- not significant).

DATA AVAILABILITY
RNA-seq data has been uploaded on public database and can be found in the GSA
database (CRA013136).
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