Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

m6A demethylation of FOSL1 mRNA protects hepatoma cells against necrosis under glucose deprivation

Abstract

Stress-adaptive mechanisms enabling cancer cells to survive under glucose deprivation remain elusive. N6-methyladenosine (m6A) modification plays important roles in determining cancer cell fate and cellular stress response to nutrient deficiency. However, whether m6A modification functions in the regulation of cancer cell survival under glucose deprivation is unknown. Here, we found that glucose deprivation reduced m6A modification levels. Increasing m6A modification resulted in increased hepatoma cell necrosis under glucose deprivation, whereas decreasing m6A modification had an opposite effect. Integrated m6A-seq and RNA-seq revealed potential targets of m6A modification under glucose deprivation, including the transcription factor FOSL1; further, glucose deprivation upregulated FOSL1 by inhibiting FOSL1 mRNA decay in an m6A-YTHDF2-dependent manner through reducing m6A modification in its exon1 and 5’-UTR regions. Functionally, FOSL1 protected hepatoma cells against glucose deprivation-induced necrosis in vitro and in vivo. Mechanistically, FOSL1 transcriptionally repressed ATF3 by binding to its promoter. Meanwhile, ATF3 and MAFF interacted via their leucine zipper domains to form a heterodimer, which competed with NRF2 for binding to antioxidant response elements in the promoters of NRF2 target genes, thereby inhibiting their transcription. Consequently, FOSL1 reduced the formation of the ATF3-MAFF heterodimer, thereby enhancing NRF2 transcriptional activity and the antioxidant capacity of glucose-deprived-hepatoma cells. Thus, FOSL1 alleviated the necrosis-inducing effect of glucose deprivation-induced reactive oxygen species accumulation. Collectively, our study uncovers the protective role of m6A-FOSL1-ATF3 axis in hepatoma cell necrosis under glucose deprivation, and may provide new targets for cancer therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: m6A regulates hepatoma cell necrosis under glucose deprivation.
Fig. 2: FOSL1 is a target of m6A and upregulated in an m6A-dependent manner under glucose deprivation.
Fig. 3: YTHDF2 binds to m6A-modified FOSL1 mRNA to regulate its decay under glucose deprivation.
Fig. 4: FOSL1 protects hepatoma cells against necrosis under glucose deprivation.
Fig. 5: FOSL1 suppresses ATF3 by direct promoter binding in glucose-deprived hepatoma cells.
Fig. 6: ATF3 competes with NRF2 for binding to ARE to inhibit NRF2 transcriptional activity in glucose-deprived hepatoma cells.

Similar content being viewed by others

Data availability

The raw sequence data produced in this study have been deposited in the Genome Sequence Archive of the National Genomics Data Center, China National Center for Bioinformation. These raw data are publicly accessible at https://ngdc.cncb.ac.cn/gsa-human using the following accession numbers: MeRIP-seq, HRA007033; RNA-seq, HRA007034; ChIP-seq, HRA007037. All uncropped western blots involved in this study have been placed in the supplementary files. Any additional data required to reanalyze the results reported in this paper are available from the corresponding author upon request.

References

  1. Li Y, Liang R, Sun M, Li Z, Sheng H, Wang J, et al. AMPK-dependent phosphorylation of HDAC8 triggers PGM1 expression to promote lung cancer cell survival under glucose starvation. Cancer Lett. 2020;478:82–92.

    Article  CAS  PubMed  Google Scholar 

  2. Joly JH, Delfarah A, Phung PS, Parrish S, Graham NA. A synthetic lethal drug combination mimics glucose deprivation-induced cancer cell death in the presence of glucose. J Biol Chem. 2020;295:1350–65.

    Article  PubMed  Google Scholar 

  3. Deng X, Qing Y, Horne D, Huang H, Chen J. The roles and implications of RNA m(6)A modification in cancer. Nat Rev Clin Oncol. 2023;20:507–26.

    Article  CAS  PubMed  Google Scholar 

  4. Delaunay S, Frye M. RNA modifications regulating cell fate in cancer. Nat Cell Biol. 2019;21:552–9.

    Article  CAS  PubMed  Google Scholar 

  5. Liu L, Li H, Hu D, Wang Y, Shao W, Zhong J, et al. Insights into N6-methyladenosine and programmed cell death in cancer. Mol Cancer. 2022;21:32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Liu J, Harada BT, He C. Regulation of gene expression by N(6)-methyladenosine in cancer. Trends Cell Biol. 2019;29:487–99.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Wang Z, Dong C. Gluconeogenesis in cancer: function and regulation of PEPCK, FBPase, and G6Pase. Trends Cancer. 2019;5:30–45.

    Article  CAS  PubMed  Google Scholar 

  8. Feng J, Li J, Wu L, Yu Q, Ji J, Wu J, et al. Emerging roles and the regulation of aerobic glycolysis in hepatocellular carcinoma. J Exp Clin Cancer Res. 2020;39:126.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wang X, Li Y, Xiao Y, Huang X, Wu X, Zhao Z, et al. The phospholipid flippase ATP9A enhances macropinocytosis to promote nutrient starvation tolerance in hepatocellular carcinoma. J Pathol. 2023;260:17–31.

    Article  CAS  PubMed  Google Scholar 

  10. Graham NA, Tahmasian M, Kohli B, Komisopoulou E, Zhu M, Vivanco I, et al. Glucose deprivation activates a metabolic and signaling amplification loop leading to cell death. Mol Syst Biol. 2012;8:589.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Edinger AL, Thompson CB. Death by design: apoptosis, necrosis and autophagy. Curr Opin Cell Biol. 2004;16:663–9.

    Article  CAS  PubMed  Google Scholar 

  12. Khan MR, Xiang S, Song Z, Wu M. The p53-inducible long noncoding RNA TRINGS protects cancer cells from necrosis under glucose starvation. EMBO J. 2017;36:3483–3500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gonzalez-Menendez P, Hevia D, Alonso-Arias R, Alvarez-Artime A, Rodriguez-Garcia A, Kinet S, et al. GLUT1 protects prostate cancer cells from glucose deprivation-induced oxidative stress. Redox Biol. 2018;17:112–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ping XL, Sun BF, Wang L, Xiao W, Yang X, Wang WJ, et al. Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltransferase. Cell Res. 2014;24:177–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yankova E, Blackaby W, Albertella M, Rak J, De Braekeleer E, Tsagkogeorga G, et al. Small-molecule inhibition of METTL3 as a strategy against myeloid leukaemia. Nature. 2021;593:597–601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Risk MC, Knudsen BS, Coleman I, Dumpit RF, Kristal AR, LeMeur N, et al. Differential gene expression in benign prostate epithelium of men with and without prostate cancer: evidence for a prostate cancer field effect. Clin Cancer Res. 2010;16:5414–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hsu CL, Lee WC. Detecting differentially expressed genes in heterogeneous diseases using half Student’s t-test. Int J Epidemiol. 2010;39:1597–604.

    Article  PubMed  Google Scholar 

  18. Sobolev VV, Khashukoeva AZ, Evina OE, Geppe NA, Chebysheva SN, Korsunskaya IM, et al. Role of the transcription factor FOSL1 in organ development and tumorigenesis. Int J Mol Sci. 2022;23:1521.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zaccara S, Ries RJ, Jaffrey SR. Reading, writing and erasing mRNA methylation. Nat Rev Mol Cell Biol. 2019;20:608–24.

    Article  CAS  PubMed  Google Scholar 

  20. Shi H, Wang X, Lu Z, Zhao BS, Ma H, Hsu PJ, et al. YTHDF3 facilitates translation and decay of N(6)-methyladenosine-modified RNA. Cell Res. 2017;27:315–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Li F, Zhao D, Wu J, Shi Y. Structure of the YTH domain of human YTHDF2 in complex with an m(6)A mononucleotide reveals an aromatic cage for m(6)A recognition. Cell Res. 2014;24:1490–2.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Zhu T, Roundtree IA, Wang P, Wang X, Wang L, Sun C, et al. Crystal structure of the YTH domain of YTHDF2 reveals mechanism for recognition of N6-methyladenosine. Cell Res. 2014;24:1493–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Talotta F, Casalino L, Verde P. The nuclear oncoprotein Fra-1: a transcription factor knocking on therapeutic applications’ door. Oncogene. 2020;39:4491–506.

    Article  CAS  PubMed  Google Scholar 

  24. Wu H, Li Y, Shi G, Du S, Wang X, Ye W, et al. Hepatic interferon regulatory factor 8 expression suppresses hepatocellular carcinoma progression and enhances the response to anti-programmed cell death protein-1 therapy. Hepatology. 2022;76:1602–16.

    Article  CAS  PubMed  Google Scholar 

  25. Taha NA, Shafiq AM, Mohammed AH, Zaky AH, Omran OM, Ameen MG. FOS-like antigen 1 expression was associated with survival of hepatocellular carcinoma patients. World J Oncol. 2023;14:285–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Li L, Zhang W, Zhao S, Sun M. FOS-like antigen 1 is a prognostic biomarker in hepatocellular carcinoma. Saudi J Gastroenterol. 2019;25:369–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gao XQ, Ge YS, Shu QH, Ma HX. Expression of Fra-1 in human hepatocellular carcinoma and its prognostic significance. Tumour Biol. 2017;39:1010428317709635.

    Article  PubMed  Google Scholar 

  28. Ren Y, Shen HM. Critical role of AMPK in redox regulation under glucose starvation. Redox Biol. 2019;25:101154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ahmad IM, Aykin-Burns N, Sim JE, Walsh SA, Higashikubo R, Buettner GR, et al. Mitochondrial O2*- and H2O2 mediate glucose deprivation-induced stress in human cancer cells. J Biol Chem. 2005;280:4254–63.

    Article  CAS  PubMed  Google Scholar 

  30. Liu J, Lao L, Chen J, Li J, Zeng W, Zhu X, et al. The IRENA lncRNA converts chemotherapy-polarized tumor-suppressing macrophages to tumor-promoting phenotypes in breast cancer. Nat Cancer. 2021;2:457–73.

    Article  CAS  PubMed  Google Scholar 

  31. Aki T, Nara A, Uemura K. Cytoplasmic vacuolization during exposure to drugs and other substances. Cell Biol Toxicol. 2012;28:125–31.

    Article  CAS  PubMed  Google Scholar 

  32. Cubillos-Ruiz JR, Bettigole SE, Glimcher LH. Tumorigenic and immunosuppressive effects of endoplasmic reticulum stress in cancer. Cell. 2017;168:692–706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hetz C, Papa FR. The unfolded protein response and cell fate control. Mol Cell. 2018;69:169–81.

    Article  CAS  PubMed  Google Scholar 

  34. Rohini M, Haritha Menon A, Selvamurugan N. Role of activating transcription factor 3 and its interacting proteins under physiological and pathological conditions. Int J Biol Macromol. 2018;120:310–7.

    Article  CAS  PubMed  Google Scholar 

  35. Ku HC, Cheng CF. Master regulator activating transcription factor 3 (ATF3) in metabolic homeostasis and cancer. Front Endocrinol. 2020;11:556.

    Article  Google Scholar 

  36. Chen C, Ge C, Liu Z, Li L, Zhao F, Tian H, et al. ATF3 inhibits the tumorigenesis and progression of hepatocellular carcinoma cells via upregulation of CYR61 expression. J Exp Clin Cancer Res. 2018;37:263.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Li X, Zang S, Cheng H, Li J, Huang A. Overexpression of activating transcription factor 3 exerts suppressive effects in HepG2 cells. Mol Med Rep. 2019;19:869–76.

    CAS  PubMed  Google Scholar 

  38. Sivinski J, Zhang DD, Chapman E. Targeting NRF2 to treat cancer. Semin Cancer Biol. 2021;76:61–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ma Q, He X. Molecular basis of electrophilic and oxidative defense: promises and perils of Nrf2. Pharmacol Rev. 2012;64:1055–81.

    Article  CAS  PubMed  Google Scholar 

  40. Fernández-Ginés R, Encinar JA, Hayes JD, Oliva B, Rodríguez-Franco MI, Rojo AI, et al. An inhibitor of interaction between the transcription factor NRF2 and the E3 ubiquitin ligase adapter β-TrCP delivers anti-inflammatory responses in mouse liver. Redox Biol. 2022;55:102396.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Bi Z, Fu Y, Wadgaonkar P, Qiu Y, Almutairy B, Zhang W, et al. New discoveries and ambiguities of Nrf2 and ATF3 signaling in environmental arsenic-induced carcinogenesis. Antioxidants. 2021;11:77.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Brown SL, Sekhar KR, Rachakonda G, Sasi S, Freeman ML. Activating transcription factor 3 is a novel repressor of the nuclear factor erythroid-derived 2-related factor 2 (Nrf2)-regulated stress pathway. Cancer Res. 2008;68:364–8.

    Article  CAS  PubMed  Google Scholar 

  43. Tonelli C, Chio IIC, Tuveson DA. Transcriptional regulation by Nrf2. Antioxid Redox Signal. 2018;29:1727–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Miller M. The importance of being flexible: the case of basic region leucine zipper transcriptional regulators. Curr Protein Pept Sci. 2009;10:244–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Niu X, Cui H, Gu X, Wu T, Sun M, Zhou C, et al. Nuclear receptor PXR confers irradiation resistance by promoting DNA damage response through stabilization of ATF3. Front Oncol. 2022;12:837980.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Yan C, Lu D, Hai T, Boyd DD. Activating transcription factor 3, a stress sensor, activates p53 by blocking its ubiquitination. EMBO J. 2005;24:2425–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Katsuoka F, Yamamoto M. Small Maf proteins (MafF, MafG, MafK): history, structure and function. Gene. 2016;586:197–205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Schmidlin CJ, Shakya A, Dodson M, Chapman E, Zhang DD. The intricacies of NRF2 regulation in cancer. Semin Cancer Biol. 2021;76:110–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Dhakshinamoorthy S, Jain AK, Bloom DA, Jaiswal AK. Bach1 competes with Nrf2 leading to negative regulation of the antioxidant response element (ARE)-mediated NAD(P)H:quinone oxidoreductase 1 gene expression and induction in response to antioxidants. J Biol Chem. 2005;280:16891–900.

    Article  CAS  PubMed  Google Scholar 

  50. Sankaranarayanan K, Jaiswal AK. Nrf3 negatively regulates antioxidant-response element-mediated expression and antioxidant induction of NAD(P)H:quinone oxidoreductase1 gene. J Biol Chem. 2004;279:50810–7.

    Article  CAS  PubMed  Google Scholar 

  51. Wang X, Zeng C, Lai Y, Su B, Chen F, Zhong J, et al. NRF2/HO-1 pathway activation by ATF3 in a noise-induced hearing loss murine model. Arch Biochem Biophys. 2022;721:109190.

    Article  CAS  PubMed  Google Scholar 

  52. Rao J, Qian X, Li G, Pan X, Zhang C, Zhang F, et al. ATF3-mediated NRF2/HO-1 signaling regulates TLR4 innate immune responses in mouse liver ischemia/reperfusion injury. Am J Transplant. 2015;15:76–87.

    Article  CAS  PubMed  Google Scholar 

  53. Newman JR, Keating AE. Comprehensive identification of human bZIP interactions with coiled-coil arrays. Science. 2003;300:2097–101.

    Article  CAS  PubMed  Google Scholar 

  54. Lee J, Kim K, Kwon IC, Lee KY. Intracellular glucose-depriving polymer micelles for antiglycolytic cancer treatment. Adv Mater. 2023;35:e2207342.

    Article  PubMed  Google Scholar 

  55. Korupalli C, Kuo CC, Getachew G, Dirersa WB, Wibrianto A, Rasal AS, et al. Multifunctional manganese oxide-based nanocomposite theranostic agent with glucose/light-responsive singlet oxygen generation and dual-modal imaging for cancer treatment. J Colloid Interface Sci. 2023;643:373–84.

    Article  CAS  PubMed  Google Scholar 

  56. Keller KE, Tan IS, Lee YS. SAICAR stimulates pyruvate kinase isoform M2 and promotes cancer cell survival in glucose-limited conditions. Science. 2012;338:1069–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ameri K, Jahangiri A, Rajah AM, Tormos KV, Nagarajan R, Pekmezci M, et al. HIGD1A regulates oxygen consumption, ROS production, and AMPK activity during glucose deprivation to modulate cell survival and tumor growth. Cell Rep. 2015;10:891–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors sincerely thank Drs. Xing-Xian Guo and Yan-Ping Li (Centre for Lipid Research, the Second Affiliated Hospital of Chongqing Medical University) for their help in experimental methods. Meanwhile, the authors sincerely thank Dr. Feng Qi, Miss Min-Jie Zhao, Mr Yi-Fan Zhang, and Mr Yue-Zhou Zhang (Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Chongqing Medical University) for their warm help during the study. In addition, The authors sincerely thank Prof. Yong Zhao (Department of Nutrition and Food Hygiene, School of Public Health and Management of Chongqing Medical University) for his warm help in statistical analyses. 

Funding

This study was supported by grants from the National Natural Science Foundation of China (Grant number 82203391), China Postdoctoral Science Foundation (Project number: 2021M700638), and the Special Funding for Postdoctoral Research Project of Chongqing (Grant No. 2021XM2043). The funding supporters had no role in study design, data acquisition and analysis, decision to publish, or the preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

CRW and GCZ conceived the study idea. CRW was responsible for experiment design and data analyses. JHG, QZ, ZBZ, and BS performed all experiments. JJH and DC collected tumor sample. GCZ was responsible for experiment guidance and funding acquisition, and supervised the study. CRW drafted the initial manuscript. CRW, JHG, and GCZ interpreted the results of experiments and statistical analyses together. All authors made critical comments and revisions for the initial manuscript. All authors approved the final version of the article, including the authorship list.

Corresponding author

Correspondence to Guo-Chao Zhong.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

This study was approved by the Institutional Review Boards of the Second Affiliated Hospital of Chongqing Medical University (approval numbers RER2021-036 and RER2022-237). Written informed consents were obtained from all included patients.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary figures

Supplementary methods and materials

Table S1. Individual and common genes in glucose deprivation and high glucose groups

Table S2. Analysis results of MeRIP-seq data

41418_2024_1308_MOESM5_ESM.docx

Table S3. The KEGG pathway enrichment analysis of the significant differential peak-associated genes between glucose-deprived hepatoma cells and control cells

Table S4. Analysis results of RNA-seq data.

Table S5. Comparisons of clinicopathologic characteristics between groups with high and low FOSL1 expression

Table S6. ChIP-seq-identified genes whose FOSL1 binding peaks were located within the promoter region

Table S7. Oligonucleotide sequences used in the present study

Table S8. The specific information of antibodies used in the current study

Table S9. The specific information of main reagents used in the current study

Original western blot image

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, CR., Gong, JH., Zhao, ZB. et al. m6A demethylation of FOSL1 mRNA protects hepatoma cells against necrosis under glucose deprivation. Cell Death Differ (2024). https://doi.org/10.1038/s41418-024-01308-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41418-024-01308-3

Search

Quick links