Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Itaconate protects ferroptotic neurons by alkylating GPx4 post stroke

Abstract

Neuronal ferroptosis plays a key role in neurologic deficits post intracerebral hemorrhage (ICH). However, the endogenous regulation of rescuing ferroptotic neurons is largely unexplored. Here, we analyzed the integrated alteration of metabolomic landscape after ICH using LC-MS and MALDI-TOF/TOF MS, and demonstrated that aconitate decarboxylase 1 (Irg1) and its product itaconate, a derivative of the tricarboxylic acid cycle, were protectively upregulated. Deficiency of Irg1 or depletion of neuronal Irg1 in striatal neurons was shown to exaggerate neuronal loss and behavioral dysfunction in an ICH mouse model using transgenic mice. Administration of 4-Octyl itaconate (4-OI), a cell-permeable itaconate derivative, and neuronal Irg1 overexpression protected neurons in vivo. In addition, itaconate inhibited ferroptosis in cortical neurons derived from mouse and human induced pluripotent stem cells in vitro. Mechanistically, we demonstrated that itaconate alkylated glutathione peroxidase 4 (GPx4) on its cysteine 66 and the modification allosterically enhanced GPx4’s enzymatic activity by using a bioorthogonal probe, itaconate-alkyne (ITalk), and a GPx4 activity assay using phosphatidylcholine hydroperoxide. Altogether, our research suggested that Irg1/itaconate-GPx4 axis may be a future therapeutic strategy for protecting neurons from ferroptosis post ICH.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Irg1/itaconate level is elevated in ICH mouse brains.
Fig. 2: Irg1/itaconate protects against neuronal death and improves acute outcomes after ICH.
Fig. 3: Irg1/itaconate in MMΦ didn’t protect acute hemorrhagic mouse brains in vivo.
Fig. 4: Neuronal Irg1/itaconate protects hemorrhagic mouse brains in vivo.
Fig. 5: Irg1/itaconate protects against hemin-induced ferroptosis in vitro.
Fig. 6: Itaconate increases GPx4 activity by covalently alkylating cysteine residue 66 on GPx4 in vitro.
Fig. 7: Irg1/Itaconate increases GPx4 activity and rescues neuronal ferroptosis in vivo.

Similar content being viewed by others

Data availability

All the data used in this manuscript are available from the corresponding author upon reasonable request.

References

  1. Madangarli N, Bonsack F, Dasari R, Sukumari-Ramesh S. Intracerebral hemorrhage: blood components and neurotoxicity. Brain Sci. 2019;9:316.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Yao Z, Bai Q, Wang G. Mechanisms of oxidative stress and therapeutic targets following intracerebral hemorrhage. Oxid Med Cell Longev. 2021;2021:8815441.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Martin SS, Aday AW, Almarzooq ZI, Anderson CAM, Arora P, Avery CL, et al. 2024 Heart Disease and Stroke Statistics: A Report of US and Global Data From the American Heart Association. Circulation. 2024;149:e347–e913.

    Article  PubMed  Google Scholar 

  4. Zille M, Karuppagounder SS, Chen Y, Gough PJ, Bertin J, Finger J, et al. Neuronal death after hemorrhagic stroke in vitro and in vivo shares features of ferroptosis and necroptosis. Stroke. 2017;48:1033–43.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Li Q, Weiland A, Chen X, Lan X, Han X, Durham F, et al. Ultrastructural characteristics of neuronal death and white matter injury in mouse brain tissues after intracerebral hemorrhage: coexistence of ferroptosis, autophagy, and necrosis. Front Neurol. 2018;9:581.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Chen CW, Chen TY, Tsai KL, Lin CL, Yokoyama KK, Lee WS, et al. Inhibition of autophagy as a therapeutic strategy of iron-induced brain injury after hemorrhage. Autophagy. 2012;8:1510–20.

    Article  CAS  PubMed  Google Scholar 

  7. Li Q, Wan J, Lan X, Han X, Wang Z, Wang J. Neuroprotection of brain-permeable iron chelator VK-28 against intracerebral hemorrhage in mice. J Cereb Blood Flow Metab. 2017;37:3110–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Li Q, Han X, Lan X, Gao Y, Wan J, Durham F, et al. Inhibition of neuronal ferroptosis protects hemorrhagic brain. JCI Insight. 2017;2:e90777.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Karuppagounder SS, Alin L, Chen Y, Brand D, Bourassa MW, Dietrich K, et al. N-acetylcysteine targets 5 lipoxygenase-derived, toxic lipids and can synergize with prostaglandin E2 to inhibit ferroptosis and improve outcomes following hemorrhagic stroke in mice. Ann Neurol. 2018;84:854–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Alim I, Caulfield JT, Chen Y, Swarup V, Geschwind DH, Ivanova E, et al. Selenium drives a transcriptional adaptive program to block ferroptosis and treat stroke. Cell. 2019;177:1262–79.e1225.

    Article  CAS  PubMed  Google Scholar 

  11. Yang WS, SriRamaratnam R, Welsch ME, Shimada K, Skouta R, Viswanathan VS, et al. Regulation of ferroptotic cancer cell death by GPX4. Cell. 2014;156:317–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yang WS, Kim KJ, Gaschler MM, Patel M, Shchepinov MS, Stockwell BR. Peroxidation of polyunsaturated fatty acids by lipoxygenases drives ferroptosis. Proc Natl Acad Sci USA. 2016;113:E4966–4975.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gao M, Yi J, Zhu J, Minikes AM, Monian P, Thompson CB, et al. Role of mitochondria in ferroptosis. Mol Cell. 2019;73:354–63.e353.

    Article  CAS  PubMed  Google Scholar 

  14. Homma T, Kobayashi S, Sato H, Fujii J. Superoxide produced by mitochondrial complex III plays a pivotal role in the execution of ferroptosis induced by cysteine starvation. Arch Biochem Biophys. 2021;700:108775.

    Article  CAS  PubMed  Google Scholar 

  15. Michelucci A, Cordes T, Ghelfi J, Pailot A, Reiling N, Goldmann O, et al. Immune-responsive gene 1 protein links metabolism to immunity by catalyzing itaconic acid production. Proc Natl Acad Sci USA. 2013;110:7820–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhu Z, Umehara T, Tsujita N, Kawai T, Goto M, Cheng B, et al. Itaconate regulates the glycolysis/pentose phosphate pathway transition to maintain boar sperm linear motility by regulating redox homeostasis. Free Radic Biol Med. 2020;159:44–53.

    Article  CAS  PubMed  Google Scholar 

  17. Qin W, Qin K, Zhang Y, Jia W, Chen Y, Cheng B, et al. S-glycosylation-based cysteine profiling reveals regulation of glycolysis by itaconate. Nat Chem Biol. 2019;15:983–91.

    Article  CAS  PubMed  Google Scholar 

  18. Liao ST, Han C, Xu DQ, Fu XW, Wang JS, Kong LY. 4-Octyl itaconate inhibits aerobic glycolysis by targeting GAPDH to exert anti-inflammatory effects. Nat Commun. 2019;10:5091.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Cordes T, Wallace M, Michelucci A, Divakaruni AS, Sapcariu SC, Sousa C, et al. Immunoresponsive gene 1 and itaconate inhibit succinate dehydrogenase to modulate intracellular succinate levels. J Biol Chem. 2016;291:14274–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bambouskova M, Gorvel L, Lampropoulou V, Sergushichev A, Loginicheva E, Johnson K, et al. Electrophilic properties of itaconate and derivatives regulate the IkappaBzeta-ATF3 inflammatory axis. Nature. 2018;556:501–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Mills EL, Ryan DG, Prag HA, Dikovskaya D, Menon D, Zaslona Z, et al. Itaconate is an anti-inflammatory metabolite that activates Nrf2 via alkylation of KEAP1. Nature. 2018;556:113–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Daniels BP, Kofman SB, Smith JR, Norris GT, Snyder AG, Kolb JP, et al. The nucleotide sensor ZBP1 and kinase RIPK3 induce the enzyme IRG1 to promote an antiviral metabolic state in neurons. Immunity. 2019;50:64–76.e64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Cordes T, Lucas A, Divakaruni AS, Murphy AN, Cabrales P, Metallo CM. Itaconate modulates tricarboxylic acid and redox metabolism to mitigate reperfusion injury. Mol Metab. 2020;32:122–35.

    Article  CAS  PubMed  Google Scholar 

  24. Liu H, Feng Y, Xu M, Yang J, Wang Z, Di G. Four-octyl itaconate activates Keap1-Nrf2 signaling to protect neuronal cells from hydrogen peroxide. Cell Commun Signal. 2018;16:81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Vigil TM, Frieler RA, Kilpatrick KL, Wang MM, Mortensen RM. Aconitate decarboxylase 1 suppresses cerebral ischemia-reperfusion injury in mice. Exp Neurol. 2022;347:113902.

    Article  CAS  PubMed  Google Scholar 

  26. He R, Liu B, Xiong R, Geng B, Meng H, Lin W, et al. Itaconate inhibits ferroptosis of macrophage via Nrf2 pathways against sepsis-induced acute lung injury. Cell Death Discov. 2022;8:43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhao Y, Liu Z, Liu G, Zhang Y, Liu S, Gan D, et al. Neutrophils resist ferroptosis and promote breast cancer metastasis through aconitate decarboxylase 1. Cell Metab. 2023;35:1688–703.e1610.

    Article  CAS  PubMed  Google Scholar 

  28. Ingold I, Berndt C, Schmitt S, Doll S, Poschmann G, Buday K, et al. Selenium Utilization by GPX4 Is Required to Prevent Hydroperoxide-Induced Ferroptosis. Cell. 2018;172:409–22.e421.

    Article  CAS  PubMed  Google Scholar 

  29. Qin W, Zhang Y, Tang H, Liu D, Chen Y, Liu Y, et al. Chemoproteomic profiling of itaconation by bioorthogonal probes in inflammatory macrophages. J Am Chem Soc. 2020;142:10894–8.

    Article  CAS  PubMed  Google Scholar 

  30. Wu R, Liu J, Wang N, Zeng L, Yu C, Chen F, et al. Aconitate decarboxylase 1 is a mediator of polymicrobial sepsis. Sci Transl Med. 2022;14:eabo2028.

    Article  CAS  PubMed  Google Scholar 

  31. Sohail A, Iqbal AA, Sahini N, Chen F, Tantawy M, Waqas SFH, et al. Itaconate and derivatives reduce interferon responses and inflammation in influenza A virus infection. PLoS Pathog. 2022;18:e1010219.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lampropoulou V, Sergushichev A, Bambouskova M, Nair S, Vincent EE, Loginicheva E, et al. Itaconate links inhibition of succinate dehydrogenase with macrophage metabolic remodeling and regulation of inflammation. Cell Metab. 2016;24:158–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Luo Z, Sheng Z, Hu L, Shi L, Tian Y, Zhao X, et al. Targeted macrophage phagocytosis by Irg1/itaconate axis improves the prognosis of intracerebral hemorrhagic stroke and peritonitis. EBioMedicine. 2024;101:104993.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Xiong XY, Wang J, Qian ZM, Yang QW. Iron and intracerebral hemorrhage: from mechanism to translation. Transl Stroke Res. 2014;5:429–41.

    Article  CAS  PubMed  Google Scholar 

  35. Salvador GA. Iron in neuronal function and dysfunction. Biofactors. 2010;36:103–10.

    Article  CAS  PubMed  Google Scholar 

  36. Stankiewicz JM, Brass SD. Role of iron in neurotoxicity: a cause for concern in the elderly? Curr Opin Clin Nutr Metab Care. 2009;12:22–29.

    Article  CAS  PubMed  Google Scholar 

  37. Gaasch JA, Lockman PR, Geldenhuys WJ, Allen DD, Van der Schyf CJ. Brain iron toxicity: differential responses of astrocytes, neurons, and endothelial cells. Neurochem Res. 2007;32:1196–208.

    Article  CAS  PubMed  Google Scholar 

  38. Selim M, Yeatts S, Goldstein JN, Gomes J, Greenberg S, Morgenstern LB, et al. Safety and tolerability of deferoxamine mesylate in patients with acute intracerebral hemorrhage. Stroke. 2011;42:3067–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Selim M, Foster LD, Moy CS, Xi G, Hill MD, Morgenstern LB, et al. Deferoxamine mesylate in patients with intracerebral haemorrhage (i-DEF): a multicentre, randomised, placebo-controlled, double-blind phase 2 trial. Lancet Neurol. 2019;18:428–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Umbrasas D, Cizas P, Arandarcikaite O, Vanagas T, Borutaite V. Effects of itaconic acid on neuronal viability and brain mitochondrial functions. J Bioenerg Biomembr. 2021;53:499–511.

    Article  CAS  PubMed  Google Scholar 

  41. Qu C, Dai E, Lai T, Cao G, Liu J, Kang R, et al. Itaconic acid induces ferroptosis by activating ferritinophagy. Biochem Biophys Res Commun. 2021;583:56–62.

    Article  CAS  PubMed  Google Scholar 

  42. Zhang Z, Wu Y, Yuan S, Zhang P, Zhang J, Li H, et al. Glutathione peroxidase 4 participates in secondary brain injury through mediating ferroptosis in a rat model of intracerebral hemorrhage. Brain Res. 2018;1701:112–25.

    Article  CAS  PubMed  Google Scholar 

  43. Shin D, Kim EH, Lee J, Roh JL. Nrf2 inhibition reverses resistance to GPX4 inhibitor-induced ferroptosis in head and neck cancer. Free Radic Biol Med. 2018;129:454–62.

    Article  CAS  PubMed  Google Scholar 

  44. Kerins MJ, Milligan J, Wohlschlegel JA, Ooi A. Fumarate hydratase inactivation in hereditary leiomyomatosis and renal cell cancer is synthetic lethal with ferroptosis induction. Cancer Sci. 2018;109:2757–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lapchak PA, Zhang JH, Noble-Haeusslein LJ. RIGOR guidelines: escalating STAIR and STEPS for effective translational research. Transl Stroke Res. 2013;4:279–85.

    Article  PubMed  Google Scholar 

  46. Sagal J, Zhan X, Xu J, Tilghman J, Karuppagounder SS, Chen L, et al. Proneural transcription factor Atoh1 drives highly efficient differentiation of human pluripotent stem cells into dopaminergic neurons. Stem Cells Transl Med. 2014;3:888–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Du SQ, Wang XR, Zhu W, Ye Y, Yang JW, Ma SM, et al. Acupuncture inhibits TXNIP-associated oxidative stress and inflammation to attenuate cognitive impairment in vascular dementia rats. CNS Neurosci Ther. 2018;24:39–46.

    Article  CAS  PubMed  Google Scholar 

  48. Nakajima H, Kubo T, Semi Y, Itakura M, Kuwamura M, Izawa T, et al. A rapid, targeted, neuron-selective, in vivo knockdown following a single intracerebroventricular injection of a novel chemically modified siRNA in the adult rat brain. J Biotechnol. 2012;157:326–33.

    Article  CAS  PubMed  Google Scholar 

  49. Witcher KG, Bray CE, Chunchai T, Zhao F, O’Neil SM, Gordillo AJ, et al. Traumatic brain injury causes chronic cortical inflammation and neuronal dysfunction mediated by microglia. J Neurosci. 2021;41:1597–616.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Li B, Li L, Li M, Lam SM, Wang G, Wu Y, et al. Microbiota depletion impairs thermogenesis of brown adipose tissue and browning of white adipose tissue. Cell Rep. 2019;26:2720–37.e2725.

    Article  CAS  PubMed  Google Scholar 

  51. Pu H, Shi Y, Zhang L, Lu Z, Ye Q, Leak RK, et al. Protease-independent action of tissue plasminogen activator in brain plasticity and neurological recovery after ischemic stroke. Proc Natl Acad Sci USA. 2019;116:9115–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Wu H, Wu T, Hua W, Dong X, Gao Y, Zhao X, et al. PGE2 receptor agonist misoprostol protects brain against intracerebral hemorrhage in mice. Neurobiol Aging. 2015;36:1439–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Wu H, Wu T, Han X, Wan J, Jiang C, Chen W, et al. Cerebroprotection by the neuronal PGE2 receptor EP2 after intracerebral hemorrhage in middle-aged mice. J Cereb Blood Flow Metab. 2017;37:39–51.

    Article  CAS  PubMed  Google Scholar 

  54. Chang CF, Cho S, Wang J. (-)-Epicatechin protects hemorrhagic brain via synergistic Nrf2 pathways. Ann Clin Transl Neurol. 2014;1:258–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Liu H, Forouhar F, Seibt T, Saneto R, Wigby K, Friedman J, et al. Characterization of a patient-derived variant of GPX4 for precision therapy. Nat Chem Biol. 2022;18:91–100.

    Article  PubMed  Google Scholar 

  56. Li C, Deng X, Zhang W, Xie X, Conrad M, Liu Y, et al. Novel allosteric activators for ferroptosis regulator glutathione peroxidase 4. J Med Chem. 2019;62:266–75.

    Article  CAS  PubMed  Google Scholar 

  57. Xu T, Park SK, Venable JD, Wohlschlegel JA, Diedrich JK, Cociorva D, et al. ProLuCID: an improved SEQUEST-like algorithm with enhanced sensitivity and specificity. J Proteomics. 2015;129:16–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Chi H, Liu C, Yang H, Zeng WF, Wu L, Zhou WJ, et al. Comprehensive identification of peptides in tandem mass spectra using an efficient open search engine. Nat Biotechnol. 2018;36:1059–61.

Download references

Acknowledgements

The purified GPx4U46C mutant protein is generously gifted from Dr. Luhua Lai (Peking University). We thank for suggestions from Dr. Zufeng Guo (Chongqing Medical University) and Dr. Li Su (Peking University Health Science Center). We thank the Computing Platform of the Center for Life Science at Peking University for supporting the LC−MS/MS data analysis. We are grateful to Prof. Renxiao Wang’s group at the School of Pharmacy, Fudan University, for their technical aid in the virtual screening job described in this work. Graphical abstract has been created with BioRender (https://BioRender.com).

Funding

National Natural Science Foundation of China (32070735 and 82371321 to Q. Li, 81971037 and 82271240 to F.Yang, 21925701, 92153301 and 91953109 to C. Wang, 22207126 to Yanling Zhang). Beijing Natural Science Foundation Program and Scientific Research Key Program of Beijing Municipal Commission of Education (KZ202010025033 to Q. Li). The Special Research Fund for Central Universities, Peking Union Medical College (3332022042 to Yanling Zhang).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Wei C., Xiao Z., Zhang Yanling, Luo Z., Wang C., Yang F., and Li Q. In vitro experiments: Wei C., Lan T., Liu M., and Hu L. Established ICH animal models and performed behavior tests: Xiao Z., Wei C., Luo Z., Shen D., Liu J., and Wang X. Identified GPx4 itaconation: Zhang Yanling, Wei C., Liu D., Hu J., and Wang C. Collected data: Wei C., Xiao Z., Luo Z., Shen D., Liu J., Dai Q., Zhang Yurui, Sun Q., Shi L., and Wu W. Analyzed data: Wei C., Xiao Z., Luo Z., Shen D., Zhang C., Wang P., Wang C., Yang F., and Li Q. Writing–original draft: Wei C., Xiao Z., Zhang Yanling, Luo Z., Wang C., Yang F., and Li Q. Writing—review & editing: Wei C., Xiao Z., Zhang Yanling, Luo Z., Wang C., Yang F., and Li Q. All authors have agreed on the final version to be published.

Corresponding authors

Correspondence to Chu Wang, Fei Yang or Qian Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics

Our studies did not include human participants or human tissue. All procedures on mice were approved by the Experimental Animal Ethics Committee of Capital Medical University, Beijing, China.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, C., Xiao, Z., Zhang, Y. et al. Itaconate protects ferroptotic neurons by alkylating GPx4 post stroke. Cell Death Differ (2024). https://doi.org/10.1038/s41418-024-01303-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41418-024-01303-8

Search

Quick links