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Pannexins in the musculoskeletal system: new targets for
development and disease progression
Yan Luo 1,2,3, Shengyuan Zheng1,2,3, Wenfeng Xiao1,2, Hang Zhang 4✉ and Yusheng Li 1,2✉

During cell differentiation, growth, and development, cells can respond to extracellular stimuli through communication channels.
Pannexin (Panx) family and connexin (Cx) family are two important types of channel-forming proteins. Panx family contains three
members (Panx1-3) and is expressed widely in bone, cartilage and muscle. Although there is no sequence homology between Panx
family and Cx family, they exhibit similar configurations and functions. Similar to Cxs, the key roles of Panxs in the maintenance of
physiological functions of the musculoskeletal system and disease progression were gradually revealed later. Here, we seek to
elucidate the structure of Panxs and their roles in regulating processes such as osteogenesis, chondrogenesis, and muscle growth.
We also focus on the comparison between Cx and Panx. As a new key target, Panxs expression imbalance and dysfunction in
muscle and the therapeutic potentials of Panxs in joint diseases are also discussed.

Bone Research           (2024) 12:26 ; https://doi.org/10.1038/s41413-024-00334-8

INTRODUCTION
A plethora of mechanical and interactive signals exist in the
musculoskeletal system, necessitating tight cellular communica-
tion to maintain the integrity of cellular structure and function.1

Such communication channels as gap junctions (GJs), hemichan-
nels (HCs), and ion channels respond directly or indirectly to the
coordinated cells of these extracellular signals. Two crucial channel
component proteins, the connexin (Cx) (particularly Cx43) and
pannexin (Panx), are abundantly expressed in the extensively
interconnected bone network that is formed by osteoblasts and
osteocytes.2,3 This osteogenic network plays a pivotal role in the
process of bone responding to various stimuli such as mechanical
loading, hormone, and growth factor signals, thereby regulating
bone quality.4 In addition to their presence in the bone network,
Panxs and Cx43 have also been reported to be expressed in
osteoclasts, undifferentiated muscle precursor cells, mature muscle
cells, and chondrocytes.5,6 Currently, Panxs are beginning to come
into focus like Cx43, with increasing evidence suggesting that
Panxs contribute significantly to the function of these cells.
Panchin et al. were the first to identify the Panx family in

mammalian genomes, which includes Panx1, Panx2, and Panx3.7

Panxs are capable of forming nonselective large-pore membrane
channels, serving as a bridge between the intracellular and
extracellular environments.8,9 These channels facilitate the
exchange of ions and small molecules between adjacent cells
and between cells and the extracellular matrix. Examples of these
ions or molecules include K+, Cl-, Ca2+, glutamate, adenosine
triphosphate (ATP), and inositol triphosphate 3 (IP3).10–14

Although Panxs do not share significant homology with Cxs,15,16

they are considered to possess many functional characteristics
similar to Cxs.17

Currently, the role of Panxs in the musculoskeletal system has
not been thoroughly studied. This review will provide an overview
of the basic structure and functions of Panxs in the musculoske-
letal system. We will also discuss the key roles of Panxs in
osteoblasts, osteoclasts, osteocytes, chondrocytes, tendon, and
ligament. Particular attention will be paid to the newly discovered
roles of Panxs in osteogenesis, chondrogenesis, and myoblast
differentiation. Additionally, we will compare Panxs with Cxs (with
Cx43 as a representative), and discuss the latest research on Panxs
and their potential as new therapeutic targets.

EXPRESSION, BASIC MOLECULAR STRUCTURE AND FUNCTION
OF PANXS
Expression of Panxs
The Cx family, with nearly 21 members, has been well defined and
characterized. They are expressed in the musculoskeletal system,
including in bone, cartilage, skeletal muscle, and synovium, with
Cx43 being the most widely expressed connexin in these tissues.18 In
contrast, the Panx family has been not as well characterized, and only
three members (Panx1–3) have been found to be ubiquitously
expressed. Panx1 has been reported to be widely expressed at both
the mRNA and protein levels in many tissues, including the eye, liver,
kidney, and bone.19–21 Panx1 has also been detected in the skeletal
muscle system of mice, rats, and humans,22–24 including in
differentiated myoblasts,25 myotubes,26 and myofibers.24,27 Further-
more, Panx1 expression has been detected in the periodontal
ligament,28 but not in the tendon. On the other hand, Panx2 mRNA
appears to be highly enriched in the central nervous system, and the
Panx2 protein (664 amino acids, 73.3 kD) is mainly located in the
cytoplasmic compartment.29 Panx3 mRNA and protein have primarily
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been reported in the skin, chondrocytes, osteoblasts, and synovial
fibroblasts.20,22,30,31 The Panx3 protein is also expressed in skeletal
muscle of mouse, rat, and human.25 However, recent studies have
found that Panx2 expression is not restricted to the central nervous
system, but has a more ubiquitous expression than previously
predicted32 and has been detected in osteoblasts.21 In addition to
Panx1 and Panx3, the Panx2 protein has been found to express in
mouse skeletal muscle32 and in human primary myotubes.33

Basic molecular structure of Panxs
Several recent studies have utilized cryo-electron microscopy
(cryo-EM) to discover that Panx1 (426 amino acids, 47.6 kD)
channels form heptameric assemblies, each of which demon-
strates the typical topology of four transmembrane proteins which
is also seen in other large pore channels, such as Innexin and
Cx.34–39 Panx2, which was once proposed to form an octamer,40 is
now revealed by the latest cryo-EM structure to have seven
identical prototypes forming a heptamer. Each protomer is
assembled symmetrically around the central axis of the channel
pore.41 The structure of Panx3 (392 amino acids, 43 kD), however,
has not yet been defined, and its oligomeric state remains
unstudied.
The Panx1 protomer structure contains four transmembrane

helices (TM1–TM4), two extracellular loops, and one intracellular
loop. The amino terminus (NT) and carboxyl terminus (CT) of the
protein are located on the cytoplasmic side facing the center of the
channel, where the NT region is short and completely invisible in the
structure, whereas the CT domain contains two α-helices (ICH3 and
ICH4).35,42–44 The intracellular loop contains two α-helices (ICH1 and
ICH2) and a disordered region consisting of 2 residues.35 In
comparison, each protomer of Panx2 can be divided into three
domains: extracellular domain (ECD), transmembrane domain (TMD)
and intracellular domain (ICD). The ECD consists of 2 extracellular
loops, and the TMD consists of four helices (TM1–TM4). The ICD is a
helix-rich structure consisting of a cytoplasmic loop connecting TM2
and TM3 and the CT residues following TM4.41 Within the Panx
family, Panx1 and Panx3 exhibit high structural similarity, while Panx2
has a longer intracellular CT domain, which regulates and targets its
interaction with macromolecules.22 Unlike Cxs, Panx has no sequence
homology, but they can form channel proteins in a similar way, and
both their NT and CT face the cytoplasm,2 and share similar structural
features: they both have 4 α-helices TMD, 2 extracellular loops, 1
intracellular loop, 1 intracellular NT segment, and 1 intracellular CT
segment22 (Fig. 1).

Panxs formed channels
The channels formed by Panxs are primarily HCs. HC mainly exists
on the single-layer membrane and is responsible for commu-
nicating between the inside and outside of the cell. So far, the jury
is still out on whether Panxs can form GJs. Taking Panx1 as an
example, there have been many reports that it does not form
GJ.45,46 Previous studies have generally suggested that Panxs form
complexes similar to Cx HCs.47–49 But there is also evidence that all
three Panxs are able to form GJs between cells.30,50 Furthermore,
some studies have found that Panxs can form both HCs and GJs in
bone, and can even function as unique Ca2+ channels in the
endoplasmic reticulum (ER).30,51 Since the possibility of Panxs
forming GJs cannot be completely denied, we will still include
discussions related to GJs in subsequent descriptions. GJs facilitate
signal transmission and transduction between cells, coordinating
cellular responses and regulating physiological functions. GJs can
also allow the exchange of ions and small molecules (such as ATP,
Ca2+, and IP3) between cells and the extracellular matrix or
between adjacent cells. GJs are formed by the interaction of two
HCs in adjacent cells, with each HC composed of six Cxs on the
plasma membrane surface (Fig. 1).18,52,53 In contrast to the
hexameric structure of Cxs,39,54–58 the Panx hemichannel is a
heptameric channel34,36,38 (Fig. 2). And according to the research

conclusions of Bruzzone et al., Panxs may be similar to Cxs and can
also form heteromeric channels (Panx3 has not yet been
confirmed to participate in the formation of heteromeric
channels).50

Basic functions of Panx-channel
Panx channels are involved in the transport of important
physiological molecules, such as ATP, intracellular Ca2+, glucose,
and dye uptake, across membranes.59–62 These channels can be
activated in various ways. For example, Panx channels can release
ATP by interacting with purinergic receptors (P2 receptors),
including P2X7 receptors, and can be activated by membrane
depolarization and mechanical stretch (Current evidence suggests
that Panx1 is not directly activated by membrane stretch, but
relies on Piezo1 Channel activation and submembrane increase in
Ca2+ signal).11,63 As a result, Panx channels are associated with a
wide range of cellular physiological and pathophysiological
functions.17,64

Studies demonstrated that Panxs participate in various biolo-
gical processes, including inflammation,8,65 ATP signaling, long-
range Ca2+ wave propagation,66 synaptic plasticity regulation,67

vascular homeostasis,68 and neurotoxicity.7 Additionally, Panxs
may contribute to tumor suppression, ischemic cell death,
atherosclerosis, apoptosis,11,69 human immunodeficiency virus
(HIV), and epileptic seizures.7 Panxs also play a crucial role in
immune function, and cleaving the CT of Panx1 is a means to
activate channel opening. The interaction between Panxs and
P2X7 receptors stimulates the release of the pro-inflammatory
cytokine interleukin-1β through ATP receptor activation, subse-
quently activating caspase 1.70 Panxs can also clear apoptotic cells
through ATP and uridine triphosphate (UTP) release.71 Further-
more, Panxs can recognize bacterial molecules delivered from
endosomes to the cytoplasm and trigger the Toll-like receptor-
independent inflammasome.72

PANXS IN MUSCULOSKELETAL SYSTEM
Panxs in development of bone
Bone formation involves two highly coordinated processes:
endochondral and intramembranous ossification.73 Initially,
mesenchymal cells derived from the embryonic lineage migrate
to the future bone site. Subsequently, these mesenchymal cells
differentiate into either chondrocytes, leading to bone formation
through endochondral ossification, or osteoblasts, which directly
form bone through intramembranous ossification.74 The develop-
ment and maintenance of bone tissue rely on the coordinated
actions of osteocytes, osteoblasts, and osteoclasts.
Studies have examined the impact of Panxs on bone density,

cortical bone, and diaphyseal structure in Panxs knockout (KO)
mice; however, the phenotype of cancellous bone has not been
investigated. An in vivo genetic experiment conducted in mice
revealed that Panx1 KO had no effect on backbone structure, and
intracortical bone resorption did not increase under fatigue load.75

Another study demonstrated that Panx3 KO mice exhibited
shorter and stronger femoral and humeral diaphyses compared
to wild type (WT) mice, with no difference in bone density.76 In
2016, the first patient with a homozygous Panx1 variant
(c.650 G→ A) was reported.77 This patient displayed skeletal
defects, including kyphoscoliosis, as well as intellectual disability
and primary ovarian failure, among other abnormalities. Further-
more, studies have indicated that Panx3 can regulate the
proliferation and differentiation of chondrocytes,61 osteoblasts,30

and osteoprogenitor cells.78

Panxs in osteocytes. Osteocytes are the most abundant cells in
bone tissue and are embedded within the bone matrix.79 They
play a pivotal role in coordinating the balance between bone
formation and bone resorption by integrating mechanical loading
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and hormonal signals.80–84 Fatigue micro-injury, estrogen loss,
disuse and other factors can lead to osteocytes apoptosis, and
conversely, osteocyte apoptosis can also promote fatigue micro-
injury, and osteopenia, etc.83,85–88 During this process, apoptotic
osteocytes release signals that stimulate the expression of
osteoclastic factors in neighboring osteocytes. The release of a
large amount of ATP from Panx1 channels during osteocyte
apoptosis is a key trigger for this osteocyte-bystander signal-
ing.75,89 This signaling relies on the release of apoptosis-
dependent signaling factors through Panx1 channels and the
activation of P2 receptors.89 The presence of Panx1 is crucial in
this process, as the loss of Panx1 channels prevents the activation
of cortical bone remodeling induced by fatigue. Furthermore, Liu
et al. discovered that TGF-β1 increases the expression of Cx43 and
Panx1 in osteocytes by activating ERK1/2 and Smad3/4 signaling.
This process contributes to the formation of GJs in osteocytes and
regulates the intercellular communication of osteocytes.90 In
addition, Panx1 in osteocytes is also involved in the regulation of
muscle mass in mice. Aguilar-Perez et al. found that deletion of
Panx1 in bone cells increased muscle mass in young female mice
but had deleterious effects on muscle strength in male mice.
Researchers propose that the function of Panx1 in osteocytes is
dually age- and sex-dependent.91

Panxs in osteoblasts. Pre-osteogenic cells derived from mesench-
ymal stem cells have the ability to differentiate into osteoblasts.
This differentiation process is regulated by various growth factors,
including RUNT-related transcription factor 2 (Runx2), osterix
(Osx), osteopontin (OPN), osteocalcin (OCN), and bone morpho-
genetic protein 2 (BMP2).92–95 BMP2 plays a crucial role in
inducing the expression of Runx2 and Osx, which are two major
transcription factors involved in osteoblastogenesis.96 This activa-
tion of Runx2 and Osx leads to the expression of downstream
osteogenic marker genes, ultimately promoting the terminal
differentiation of osteoblasts.97–99 The interaction between Runx2
and Smad, a key component of BMP2 signaling, is responsible for
the BMP2-induced osteoblastogenesis.100,101

Panx3, which is highly expressed in bone and perichondrium/
periosteum in the growth plate, including preosteoblasts and
osteoblasts,61 plays a role in osteoblast differentiation. The
expression of Panx3 is promoted by the transcription factor
Runx2, but the endogenous expression of Panx3 is not affected in
Runx2-Cre transgenic mice.102–104 Panx3 expression increases
during osteoblastogenesis, and its overexpression can activate the
expression of Sp7/Osx and osteocalcin, thereby promoting
osteogenic differentiation.30 Studies have shown that Panx3 is
upregulated during osteoblast differentiation in various cell
models, such as C2C12 cells, primary calvarial cells, and MC3T3E1
preosteoblasts.19,30 However, the activation of Panx3 alone is not
sufficient to initiate osteoblast differentiation, as signals from
BMP2 or β-glycerophosphate and ascorbic acid are also
required.19,30 In addition, both ex vivo and in vitro studies have
demonstrated that Panx3 overexpression enhances osteoblasto-
genesis and bone length, while knockdown of Panx3 inhibits
osteoblastogenesis and differentiation.30,105 Panx3 has been
shown to promote mitogen-activated protein kinase signaling
(MAPK) and Wnt/β-catenin pathway activation during osteoblast
differentiation. The Wnt/β-catenin signaling pathway can also
positively regulate Panx3 expression, suggesting a reciprocal
relationship between Panx3 and Wnt signaling.105 However, the
downstream effects that promote Wnt activation may be inhibited
by other factors during osteoblast differentiation.105

Panx3 channels not only serve as direct channels between
intracellular and extracellular spaces, but they may also act as
calcium channels in the ER, with their function relying on the Akt
signaling network. ATP can be released into the microenvironment
in an autocrine or paracrine manner through Panx3 and bind to
purinergic receptors to activate the phosphatidylinositol 3-kinase
(PI3K)/Akt signaling pathway. Furthermore, this process can help
open Panx3 ER Ca2+ channels, resulting in the release of Ca2+ from
the ER lumen into the cytoplasm. Increased intracellular Ca2+ can
bind to calmodulin (CaM) and further activate downstream
signaling molecules, such as calmodulin kinase II (CaMKII) and
the phosphatase calcineurin (CN). When CN is dephosphorylated,
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it further activates the nuclear factor of activated T cell calcineurin-
independent 1 (NFATc1) transcription factor, resulting in NFATc1
nuclear translocation.30,78,106 Activated NFATc1 can promote the
expression of osteogenic genes and osteogenic markers, such as
Osx and alkaline phosphatase (ALP).30,107–109 In addition, the
overexpression of Panx3 can phosphorylate Akt through the P2
receptor/PI3K pathway, thereby inducing mouse double minute 2
homolog (MDM2) and promoting the degradation of p53 (a
negative regulator of osteoblast differentiation)30,109,110

(Figs. 3 and 4). These findings suggest that Panxs play critical
roles in osteoblast differentiation, although Panx1 and Panx2 have
not been extensively studied compared to Panx3.

Panxs in osteoprogenitor cells. Like promoting osteoblast differ-
entiation, Panx3 induces osteoprogenitor cells to switch from a
proliferation trend to a differentiation trend by utilizing multiple
signaling pathways (Fig. 3). Panx3 promotes osteoprogenitor cell
cycle arrest at the gap 0/gap 1 (G0/G1) phase by inhibiting
corresponding cell cycle molecules such as retinoblastoma protein
and cyclin D1.78 As previously mentioned, Panx3-mediated ATP
release and inhibition of the Wnt/β-catenin pathway can further
inhibit cell growth,51,78 while Panx3-mediated activation of the Akt
pathway can increase Smad1/5 signaling and the level of the cell
cycle inhibitor p21.78 Interestingly, Ser68 phosphorylation of Panx3
only affects osteoprogenitor cell differentiation but not proliferation,
whereas disruption of the putative phosphorylation site Ser303
inhibits both proliferation and differentiation.111 Additionally, Panx3
hemichannel inhibits osteoprogenitor cell proliferation by promoting
β-catenin degradation through activating glycogen synthase kinase
3-β (GSK3β), and promotes cell cycle exit by increasing the activity of
the cell cycle inhibitor p21, thereby facilitating the transition of
osteoblasts from proliferation to differentiation.78,112,113 These
signaling cascades work together to cause osteoprogenitor cells to
exit the cell proliferation cycle and differentiate into osteoblasts.78

Panxs in osteoclasts. Osteoclasts are a resident bone cell type. The
function of Panx channels may impact their differentiation (Fig. 4).
Ishikawa et al. demonstrated that the expression of osteoclasts and
osteoclast differentiation markers decreased in the bones of
Panx3−/− mice.51 Osteoblasts can regulate the differentiation of
bone resorption cells through receptor activator of NF-κB ligand
(RANKL) and osteoprotegerin (OPG). Co-culture experiments with
osteoblast progenitors and osteoclast progenitors from WT and
Panx3−/− calvaria revealed a decreased level of osteoclast
differentiation in the Panx3−/− group compared to the WT group.51

This suggests that Panx3-mediated osteoblast differentiation may
regulate osteoclast differentiation.51 In Panx1 KO mice, the increase
in RANKL in the vicinity of apoptotic osteocytes following micro-
injury stimulation is attenuated. RANKL is a cytokine required for
osteoclast differentiation, indicating that Panx1 may be involved in
osteoclast differentiation.114 McCutcheon et al. found that both
female and male Panx1-deficient mice had significantly reduced
cancellous bone in the distal femur and lumbar spine, with higher
osteoclast activity observed in female Panx1-deficient mice, while
there was no change in males.115 Conversely, Panx1-deficient mice
exhibited higher osteoclast differentiation and in vitro osteoclast
bone resorption activity.115 This evidence suggests that alterations
in the osteoclast secretome lead to reduced osteoblast function and
low bone mass in male Panx1-deficient mice.115

Panxs in cartilage, ligaments and tendons
Currently, Panxs are only known to be expressed in cartilage,
ligament, and tendon tissues, however, their function in these
cells and how it affects cell function remains poorly understood.

Panxs in cartilages. Panxs are involved in regulating the
transition between proliferative chondrocytes, prehypertrophic
chondrocytes, and terminally differentiated hypertrophic chon-
drocytes.19,61 Transfecting Panx3 promotes chondrogenic
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differentiation of ATDC5 and N1511 cells, whereas inhibition of
endogenous Panx3 impedes differentiation. Furthermore, Panx3
promotes ATP release from the chondrocyte’s intracellular to
extracellular space, subsequently inhibiting parathyroid hormone-
mediated cell proliferation, intracellular cAMP levels, and phos-
phorylation of cAMP response element binding (CREB) family
transcription factors (Fig. 5). These findings indicate that Panx3
can regulate the transition from proliferation to differentiation of
chondrocytes.61

Notably, Panx3 deficiency in mice disrupts the normal progres-
sion of chondrogenesis while not affecting the initiation of
hypertrophic chondrocyte differentiation (Fig. 6). This disruption
leads to chondrocyte proliferation, prolongation of the prehyper-
trophic zone, and disorganization of the hypertrophic and terminal
chondrocyte layers.51,116 However, a study using a chick embryo
model yielded inconsistent results: The overexpression of Panx3 did
not disrupt chondrocyte arrangement in the avian growth plate,
and there were no differences in cartilage histology, chondrocyte
proliferation, and hypertrophic markers after a knockdown of
Panx3.117 Obviously, there are inter-species differences between
the avian model of chicken embryo gene knockout or ectopic
expression and the mouse gene knockout model. However, in
terms of the applicability of the research results to human diseases,
the mouse gene knockout model may be more credible.

Panxs in ligaments and tendons. In periodontal ligament cells,
mechanical strain stimulation causes Panx1 to interact with P2X7
receptors, resulting in the extracellular release of ATP through
Panx1 channels.28 This interaction between Panx1 and P2X7

receptors may also play a role in the cellular vesicle secretion of
interleukin 1β.28 However, the detailed molecular mechanism
underlying this process remains unclear. Thus far, there have been
no reports investigating the role of Panx proteins in ligaments or
tendons at the in vivo level. Although in vivo animal studies
involving the KO of Panxs have not reported significant
abnormalities in these tissues, it is still possible that Panxs may
influence the development or function of these tissues.103

Panxs in skeletal muscles
Recently, there has been a focus on studying Panxs in skeletal
muscle. However, the potential functions of Panxs in the
differentiation and proliferation of skeletal muscle cell have not
been thoroughly evaluated yet. So far, only Panx1 and Panx3 in
skeletal muscle have been investigated.
In a study conducted by Langlois et al., it was found that Panx1

and Panx3 exhibited differential expression in fetal and adult
skeletal muscle tissues. Moreover, they were differentially
regulated during the proliferation and differentiation of skeletal
muscle myoblast.25 Initially, Panx1 levels were observed to be very
low in undifferentiated “human primary skeletal muscle cells and
myoblasts” (HSMM). However, during the differentiation,
the expression of Panx1 increased significantly, becoming the
predominant Panx type expressed in differentiated cells. On the
other hand, Panx3 showed high expression in adult skeletal
muscle but was found to be very low in fetal tissue as well as
undifferentiated myoblasts.25

It is known that the transformation of pluripotential mesoder-
mal or satellite cells into proliferative myoblasts requires myogenic
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commitment, which is facilitated by an increase in intracellular
free Ca2+ concentration ([Ca2+]i).118 Despite being expressed in
small amounts in non-differentiated myoblasts, Panx1 plays a
crucial role in myogenic commitment.119 Panx1 is predominantly
localized in the T-tubules of fully differentiated myofibers, where it
forms Panx1 HCs that release ATP into the extracellular
medium.24,120 The released ATP then activates P2 receptors,
leading to an elevation in [Ca2+]i and subsequent enhancement of
muscle contraction.24 This response is absent in muscles of
Panx1−/− mice and can be blocked by Panx1 channel inhibitors.24

During skeletal muscle contraction, serine and threonine protein
kinases, such as CaMKII, PKA, and PKC, are activated,121 resulting in
the phosphorylation of serine and threonine residues in the CT
domain of Panx1. Additionally, repeated electrical stimulation of
muscle fibers promotes the phosphorylation of Panx1.24 Conse-
quently, electrical stimulation of skeletal muscle myotubes can

induce the opening of Panx1 channels, ATP release, and activation
of plasma membrane P2X (ionotropic) and P2Y (metabotropic)
receptors, thereby modulating both Ca2+ homeostasis and muscle
physiology.26 These findings collectively suggest that Panx1 is
involved in muscle plasticity and influences muscle strength.
Mechanistically, Suarez-Berumen et al. demonstrated that Panx1
activates lipid-based signaling pathways, coordinating myoblast
activities necessary for skeletal muscle regeneration.122 They
observed that Panx1 activation of P2 receptors mediates lipid
signaling cascades in myoblasts, supporting myoblast migration
and fusion. Furthermore, Panx1 regulates the interaction between
myoblasts and the extracellular matrix by inducing ADAMTS
proteins, facilitating extracellular matrix remodeling.122 However,
the specific role of Panx1 phosphorylation in muscle contraction
and potentiation remains unclear, and the protein kinase
responsible for mediating this effect has yet to be identified.
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Fig. 5 Panxs regulate chondrogenesis, osteogenesis, and myoblast proliferation and differentiation. (Osx Osterix, BMP2 Bone morphogenetic
protein 2, NFATc1 Nuclear factor of calcineurin-dependent 1.)
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Recently, a unique sex-dependent function of Panx1 has been
discovered in skeletal muscle.123 In global Panx1 KO male mice,
muscle fiber size and strength, as well as the number of satellite
cells (SCs), are reduced. Additionally, early SC differentiation and
myoblast fusion are also altered in these male mice. However, no
such effects were observed in Panx1 KO female mice. Interestingly,
although Panx1 KO mice show an increased number of regenerated
fibers after acute injury, these newly formed fibers are smaller in
male mice.123 These findings indicate that Panx1 plays a crucial role
in regulating muscle development, regeneration, and the number
of satellite cells in mice, with notable sex differences.
The pathways regulating Panx3 expression during myogenesis

remain unclear. However, the activation of the Toll-like receptor 4
(TLR4)/nuclear factor-κB (NF-κB) pathway in L6 myotubes can
significantly increase Panx3 expression.33 Moreover, when ectopi-
cally expressed in HSMM, Panx3 inhibits cell proliferation.25

Additionally, Panx3 overexpression promotes the differentiation
and fusion of HSMM, as evidenced by an increased percentage of
myosin heavy chain-positive HSMM and multinucleated cells.25

Notably, undifferentiated HSMM express a high level of an
approximately 70 kD immunoreactive species of Panx3, which is
dramatically downregulated during differentiation. Knockdown of
this species significantly reduces HSMM proliferation.25 These
findings suggest that Panx3 species may play a crucial role in
maintaining the differentiated and nonproliferative state of
skeletal muscle. However, it is important to exercise caution when
interpreting these results due to the uncertain specific mechan-
isms mentioned earlier.

Panxs in musculoskeletal system disease
Panxs in osteoarthritis. Osteoarthritis (OA) is a prevalent degen-
erative joint disease characterized by a combination of inflammatory
and metabolic factors.124 Prominent manifestations of OA include

progressive pain, joint swelling, and limited mobility.125 It affects the
entire joint, leading to pathological changes in bones and soft
tissues such as the synovium, meniscus, and ligaments. However,
cartilage loss and the inability to repair damaged cartilage remain
significant pathological features of OA.126

Panxs are associated with OA and have distinct molecular
mechanisms and roles in the pathobiology of primary and
secondary OA development.127 (Fig. 6) In a study of surgically
induced OA in rats, it was found that Panx3 mRNA was
significantly increased in osteoarthritic cartilage compared with
controls.127 The expressions of matrix metalloproteinase 13
(MMP13) and Panx3 were upregulated in the cartilage degenera-
tion area caused by surgery for medial meniscal instability in WT
mice, but were not observed in the cartilage of sham-operated
controls.128 Additionally, Panx3 expression is upregulated in
human weight-bearing osteoarthritic cartilage compared with
non-weight-bearing controls.129

Compared with controls, chondrocyte-specific Panx3 KO mice
had milder OA symptoms, showing mostly normal joints, and
reduced proteoglycan loss and cartilage degeneration.76,129

Interestingly, another study showed that Panx3 deletion had an
opposite, more deleterious effect on primary OA: aged
(18–24 months old) Panx3 KO mice exhibited full-thickness
articular cartilage erosion, increased osteophyte size, and low-
grade synovitis in their knees, whereas WT knees exhibited
minimal cartilage damage.130 Therefore, it can be explained that
Panx3 deficiency accelerates the progression of OA during aging
but has a chondroprotective effect on post-operative OA in young
mice.129,130

In cell and animal models of temporomandibular joint
osteoarthritis (TMJOA), the expression of Panx3, P2X7R, and
cartilage matrix degradation-related enzymes increased, and
inflammation-related pathways were activated, leading to the
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Fig. 6 The role of Pannexin channels in healthy and arthritic joints. In healthy cartilage, chondrocytes mediate ATP release through Panx3, and
then intracellular ATP reduction activates phosphokinase A and CREB phosphorylation. In arthritic diseases, Panx3 activates P2 receptors
through Runx2-mediated ATP release in chondrocytes. Replicate cascades leading to ERK1/2 and MMP13-mediated signaling. Abnormal
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regulated kinase 1/2, PKA protein kinase A, RUNX2 Runt-related transcription factor 2.)
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release of ATP from intracellular to extracellular compartments.131

However, in TMJOA rats, the deletion of Panx3 reduced condylar
cartilage injury and hindered the increase of P2X7R, cartilage
matrix degradation-related enzymes, and NLRP3 in the condylar
cartilage tissue. On the other hand, overexpression of Panx3
enhanced these responses, which could be reversed by silencing
Panx3. Additionally, the regulation of Panx3 overexpression was
reversed by a P2X7R antagonist. Therefore, it can be inferred that
Panx3 may activate P2X7R by releasing ATP and contribute to
inflammation and cartilage matrix degradation in TMJOA.131

Panxs in intervertebral disc degeneration. Intervertebral disc (IVD)
degeneration is a common spinal disease and a frequent cause of
low back pain, with its prevalence increasing with age. The
degeneration of IVD involves progressive structural changes in the
disc, along with significant alterations in metabolic homeostasis.132

Similar to its role in OA,129,130 Panx3 exhibits distinct functions
in age-related primary IVD degeneration and injury-induced
secondary IVD degeneration. In normal aging mice, there were
no significant differences in histopathological scores, chondrocyte
hypertrophy, and extracellular matrix between WT and Panx3 KO
lumbar IVDs, indicating that Panx3 deletion did not affect primary
IVD degeneration. However, in a model of injury-induced IVD
degeneration, the detrimental effects of Panx3 on IVD were
evident in Panx3 KO mice, as evidenced by increased structural
integrity of the annulus fibrosus (AF), reduced mast cells, and
increased average AF lamellar thickness.133 Importantly, it was
observed that in Panx3 KO mice, the uninjured IVD adjacent to the
acupuncture site exhibited accelerated degeneration of the
nucleus pulposus, while the adjacent IVD in WT mice remained
completely healthy.133 This suggests that mechanosensitive Panx3
channels may participate in IVD homeostasis mechanisms,
regulating the altered biomechanics of adjacent healthy joints.

Panxs in Duchennes muscular dystrophy. Duchennes muscular
dystrophy (DMD) is a severe and common muscle disease
characterized by X-linked mutations in the dystrophin gene. This
genetic mutation leads to the loss of dystrophin, making muscle
fibers more susceptible to mechanical damage and impairing
satellite cell activation and muscle fiber regeneration. Patients
with DMD experience progressive muscle atrophy, adipocyte
infiltration, and ultimately suffer from paralysis and death.134,135

Panx1, a protein, has been found to play a role in excitation-
transcription coupling in skeletal muscle as part of a multi-protein
complex that includes dihydropyridine receptors, P2Y2 receptors,
and caveolin-3.136 Interestingly, this complex also interacts with
dystrophin.136 Mdx mice, which carry mutations in the dystrophin
gene, are commonly used as animal models for DMD.134 In mdx
mice, Panx1 expression levels are higher in myofibers compared
to control mice,137 and there is an increased release of ATP
through Panx1 channels.138 While exogenous ATP has anti-
apoptotic effects on normal skeletal muscle fibers, it activates
pro-apoptotic pathways in myofibers from mdx mice.138

A study using mouse models of mild and severe DMD
(dystrophin-deficient and dystrophin/dystrophin double KO, respec-
tively) found significantly reduced levels of Panx3 in the dystrophic
muscles of these mice, suggesting dysregulation of Panx3 expres-
sion in DMD.139 Based on these findings, targeting Panx1 channel
activity to reduce ATP release may hold potential for benefiting
DMD patients, although further research is needed to confirm this.
Additionally, more investigation is required to understand the levels
and potential dysfunction of Panx3 in mdx fibers.

PERSPECTIVE OF PANXS IN MUSCULOSKELETAL SYSTEM
Association with Cx43 in musculoskeletal system
Cx43 is the most highly expressed Cx isoform in the musculoske-
letal system and is considered one of the most important Cxs. It is

found in various bone cells, synovial tissue, cartilage, and other
tissues, and plays a pivotal role in the musculoskeletal system140

(Table 1). Panx proteins are also highly expressed during
musculoskeletal system development and are considered major
GJ proteins.141 Interestingly, Panx channels can be blocked by
several Cx hemichannel and channel inhibitors, such as carbenox-
olone. This suggests that Panx channels may share a common
gating mechanism and similar physiological functions with Cxs.141

There is evidence that Cx43-KO and Panx3-KO mice develop
bone abnormalities. In fact, Cx43-KO mice were found to have
abnormal bone development during the embryonic period, and
these mice died after birth.142 Roberto Civitelli’s group further
found that lack of Cx43 resulted in delayed endosteal and
endochondral ossification. Specifically in the skull, osteoblast
abnormalities and known defects in neural crest cell migration
combine to cause craniofacial defects and patent foramen.143 In
contrast, Panx3-KO mice have no other obvious abnormalities
except for shortened long bone length.76 Compared with Cx43-KO
mice, Panx3-KO mice showed obvious bone abnormalities during
the neonatal period, and Cx43 expression was reduced in the
limbs and skull; however, Panx3 expression was normal in Cx43-
KO mice. Notably, the body size of Panx3- and Cx43-double KO
mice was similar to that of Panx3-KO mice.116 These results
suggest that the effect of Panx3 may take precedence over the
effect of Cx43. In fact, Panx3 can serve as an upstream regulator of
Cx43. It can regulate the expression of Cx43 through the Wnt/
β-catenin signaling pathway and the Osx pathway.144 During the
osteoblast proliferation stage, Panx3 promotes β-catenin degrada-
tion by activating osteocyte GSK3β, thereby inhibiting the Wnt/
β-catenin signaling pathway and cell proliferation.78 As immature
osteoblasts differentiate into mature osteoblasts, the expression of
Panx3 gradually decreases.105 This leads to the synthesis of
β-catenin mRNA during osteoblast development, resulting in the
recovery of Wnt/β-catenin signaling and increased Cx43 expres-
sion.51,145 Additionally, Panx3 can upregulate intracellular Ca2+

levels to induce the expression of Osx, thereby activating the CaM/
NFAT pathway and increasing Cx43 expression.30,51,146 Functional
similarities and differences in the musculoskeletal system between
Panx3 and Cx43 have also been recognized. Panxs function
through ATP HCs, ER Ca2+ channels, and GJs to transfer
intracellular Ca2+ to neighboring cells and the extracellular
environment. In contrast, Cx43 channels currently have no
evidence of functioning as Ca2+ channels in the ER and have
only been found to have hemichannel and GJ activities on the cell
membrane,51 which is a major functional difference between the
two. Previous studies have shown that Panx3, but not Cx43,
localizes to the ER and functions as an ER Ca2+ channel.51,147 The
specific mechanism underlying this functional difference may
originate from the structural differences between Panx3 and Cx43,
although it is not yet clear.
In this article, we have discussed the presence of Panx in the

musculoskeletal system and its physiological functions. We have
also explored its relevance in the development of musculoskeletal
diseases such as OA and IVD degeneration. The major cell types
found in joints, including osteoblasts, osteoclasts, osteocytes, and
chondrocytes, express one or more isoforms of Panx. In joint
diseases, the expression levels of Cx43, another protein involved in
GJs, increase in bone, cartilage, and synovial tissues during disease
and inflammatory episodes.147–150 Most studies have indicated
that inhibiting the reduction of Cx43 in joint tissues could be
beneficial in preventing the occurrence and progression of joint
diseases, considering the inflammatory component of their
pathology and the role of matrix metalloproteinases (MMPs).151,152

On the other hand, Panx1 is involved in the pathological response
of cartilage stiffness and mediates joint pain.147,153,154 Panx3 is
implicated in cartilage damage in both mouse and human OA155

and promotes hypertrophic chondrocyte differentiation.50,61 Since
chondrocytes in OA patients exhibit a hypertrophic-like
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phenotype, and pain is a major factor leading to disability in joint
diseases,156 it is an attractive target to consider combining Cx43
and Panxs-targeted drugs when developing treatments for joint
diseases, aiming to slow disease progression and reduce pain.157

Moreover, the Panx1/P2X7 receptor complex function and ATP
release act as a “find me” signal, necessary for macrophage
recruitment,158 osteocyte apoptosis, and enhanced bone resorp-
tion.65,159 This suggests that Panxs could be potential preventive
and therapeutic targets for bone lesions such as osteoporosis.160

However, to further explore these ideas, we need a better
understanding of the similarities and differences in the roles of
Panx and Cx GJs in joint tissue and how their interactions impact
joint disease.
However, it should be noted that Cx is almost not expressed in

mature skeletal muscle cells. The muscle fibers of most innervated
skeletal muscles do not contain GJs.5 Likewise, Cx HCs are absent
in innervated skeletal muscles of adult rodents.27 However, the
lack of Cx expression in skeletal muscle is not a universal feature of
all vertebrates.161 In contrast, normal adult muscle expresses
Panx1 but not Panx2 or Panx3.5,24,120 Panx1 forms HC and is
localized in the transverse T-tubule, next to the dihydropyridine
receptor,5 and participates in skeletal muscle contraction response
and glucose uptake.24

Similar treatments on Panxs and Cxs
Treatments targeting Panxs and Cxs exhibit similarities and can
even utilize the same drugs (Table 2). Currently, there are five
complexes that can be targeted for treatment: Panxs or Cxs GJs
and plasma membrane HCs, as well as mitochondrial HCs.162

These treatment options include drugs specifically designed for
Panxs and Cxs, as well as repurposing of existing drugs. For
instance, Carbenoxolone, an anti-gastric ulcer medication, was
discovered to block Cx43 channels as early as 1986.163 Bruzzone
et al. demonstrated its inhibitory effect on Panx1 channels, and it
has since been widely used in Panx1 research.163–165 The

inhibition of Panx1 channels by carbenoxolone exhibits a
concentration-dependent response.62,164 Recent cryo-EM analysis
of Panx1 channels revealed that carbenoxolone triggers allosteric
inhibition by clustering in the groove between the extracellular
loop 1 and extracellular loop 2 domains of Panx1, thereby
stabilizing its closed conformation.36,166 Despite its defective
selectivity, studies have shown that carbenoxolone-induced
inhibition of Panx1 channels attenuates cancer metastasis in
mice,167 reduces platelet aggregation,165 and inhibits the activa-
tion of the NLRP3 inflammasome.168 Carbenoxolone has also
demonstrated protective effects against various types of ischemic
injury, such as acute renal ischemia/reperfusion injury,169

pulmonary ischemia/reperfusion injury,170 and stroke.171 Probe-
necid, a drug commonly used for gout treatment, has been found
to be effective in targeting the channels formed by Panxs and Cxs.
The mechanism of action of probenecid is similar to that of
carbenoxolone, but unlike carbenoxolone, probenecid interacts
with the first extracellular loop of the protein and specifically
inhibits Panx1 channels at high concentrations.65 Tenofovir, an
antiviral drug primarily used for treating viral hepatitis, has also
been discovered to inhibit Panx1-mediated ATP release.172

So far, only part of the mechanism of action of these inhibitors
has been revealed. It is believed that glycyrrhetinic acid (GA) may
directly interact with channels when inserted into the cell
membrane, thereby binding to channels and causing conforma-
tional changes.173,174 In addition, changes in the phosphorylation
status of channel subunits or reduced expression of subunits are
also potential mechanisms for the effects of GA.175,176 Carbenox-
olone is a more water-soluble derivative of GA,177 and its
inhibitory mechanism on Panx1 channels has been initially
revealed: Carbenoxolone may act on W74 in the first extracellular
loop. And when this site is mutated to a nonaromatic residue,
Carbenoxolone reverses its inhibitory effect and enhances the
voltage-gated channel activity of Panx1.166 Similarly, Probencid is
also thought to bind to the first extracellular loop of Panx1, further

Table 1. Panxs and Cxs in musculoskeletal system

Cx43 Panx3 Panx1

Cell type Process Ref. Cell type Process Ref. Cell type Process Ref.

Osteoblast Differentiation (early
stage)

187–191 Osteoblast Differentiation 192 Osteoclast Differentiation 114

Cell survival 193–196 Mineralization 30 Bone
resorption
activity

115

Mineralization 197–200 ER Ca2+

releasing

30,78,106 Periodontal
ligament cell

Mechano-
sensation

103

Osteoclast Differentiation,
preosteoclast fusion,
survival

201–204 Osteoprogenitor
cell

Differentiation 78,112,113 Myoblast Differentiation 25

Osteoclastic bone
resorption

202,205 Osteoclast Differentiation 51 Migration and
fusion

122

Osteocyte Mechano-sensation 206–210 Chondrocyte Differentiation 19,61 Fully
differentiated
myofiber

T-tubule
releasing ATP

24

Myoblast Transducing biophysical
signals

140 Myoblast Differentiation 25

Cell activities and lifespan 191,205,211–213

Synovial macrophage-
like type A cells

Inflammation 214–217

Chondrocyte Mechanotransduction 140

Cell-to-cell
communication

140

Proliferation and
biosynthesis

218
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prompting that Panx1 may undergo conformational changes: this
includes the bending of the N-terminal region toward the
cytoplasm and the changed tilt angle between each subunit
and the membrane plane.178 In addition, there are many reagents
that inhibit the channels formed by Panxs and Cxs, but more
inhibitory mechanisms have yet to be explored.179,180

In various diseases, targeting Cxs has proven to be an effective
therapeutic approach by either permanently or temporarily closing
the channels. This strategy holds great potential for systematic
research and targeted therapy of Panxs in the future. Peptides that
specifically target Cxs can also be utilized for intervention (Table 2).
For instance, the peptide α-connexin carboxyl terminus (ACT1),
which is used clinically, can localize Cx43 at the GJ site on the cell
membrane boundary of breast cancer cells. This localization
enhances the functional activity of GJs, leading to impaired
proliferation and survival of breast cancer cells.181 10Panx1 is a 10-
amino acid peptide derived from the extracellular link of the Panx1
protein that selectively inhibits Panx1 without affecting ATP-
induced currents.8 This peptide is made by simulating the
sequence (WRQAAFVDSY) in the second extracellular loop region
of Panx1, and may exert an inhibitory effect on Panx1-channel
through the side chains of Gln3 and Asp8.182 Furthermore,
antisense oligonucleotides have emerged as a promising ther-
apeutic modality for targeting channel proteins. Clinical application
of Cx43 antisense oligodeoxynucleotides has been successful in
treating severe ocular surface burns.183 Considering these findings,
Panxs-targeted treatment strategies can draw valuable insights
from the ideas and approaches employed in Cxs research.

Panx2, which has yet to make its mark
Additionally, Panx2 is an important member of the Panx family and
holds significant potential. While Panx1 and Panx3 have been
confirmed to play roles in the musculoskeletal system, Panx2 has
not yet been implicated in any cellular activities or pathogenesis.
Panx2 is primarily localized in the membrane-binding region within
the cytoplasm, whereas other Panxs are predominantly found in the
plasma membrane.184 Intriguingly, a recent study identified Panx2
as a novel mammalian cell mitochondria-associated membrane
protein, suggesting its potential localization at the ER-mitochondria
contact site.185 This implies that Panx2 may serve as a novel contact
protein, connecting the ER and mitochondria. Given the involve-
ment of the ER-mitochondria tethering complex in the regulation of
calcium or lipid homeostasis, cell survival, apoptosis, and its

importance in degenerative diseases,186 Panx2 is likely to exert
significant effects in the musculoskeletal system.

CONCLUSION
Panxs play a crucial role in various cellular activities within the
musculoskeletal system, serving as components of cellular GJ or
HCs. However, the study of Panxs is still limited and lacks in-depth
exploration. Cxs, which share similarities with Panxs, particularly in
certain functions, can provide valuable insights into the intercellular
signaling dynamics of Panxs. By combining the knowledge of both
Panxs and Cxs, new therapeutic targets can be discovered, and
novel treatment strategies can be developed. Manipulating the
expression or activity of Panxs and Cxs could optimize the
musculoskeletal system and enhance the efficacy of current
therapeutic agents. With the aging population and the increasing
prevalence of muscle and joint diseases, there is a growing
socioeconomic burden and a pressing need for innovative concepts
and treatments. We firmly believe that Panxs hold great promise as
targeting molecules and warrant further attention and research.
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