Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Allogeneic haematopoietic stem cell transplantation might overcome the poor prognosis of adolescents and adult patients with T-lineage acute lymphoblastic leukaemia and CDKN2 deletion

Abstract

This study delves into the clinical implications of cyclin-dependent kinase inhibitor 2 (CDKN2) deletion in adult T-lineage acute lymphoblastic leukemia (T-ALL). Among 241 patients included in this study, 57 had CDKN2 deletion and 184 had CDKN2 wild-type (WT), and 165 underwent allogeneic hematopoietic stem cell transplantation (allo-HSCT) and 76 did not undergo allo-HSCT. CDKN2 deletion correlated with higher white blood cell count, more high-risk diseases, and complex karyotype. The 5-year overall survival (OS) was 36.8% and 58.2% (P < 0.001), 5-year disease-free survival (DFS) was 47.1% and 59.3% (P = 0.018), and 5-year cumulative incidence of relapse (CIR) was 33.7% and 22.3% (P = 0.019) in patients with CDKN2 deletion and WT, respectively. Multivariate analysis identified CDKN2 deletion as an independent adverse prognostic factor for OS (HR 2.11, P = 0.003). In the CDKN2 deletion subgroup, landmark analysis showed that the 5-year OS was 56.7% and 19% (P = 0.002) for patients who underwent allo-HSCT and those who did not, respectively. And multivariate analysis confirmed the beneficial role of allo-HSCT in OS (HR 0.23, P < 0.001). In conclusion, CDKN2 deletion was associated with a poor prognosis in adult T-ALL, and allo-HSCT might be beneficial for this population.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2: Outcomes for CDKN2 Deletion vs. CDKN2 Wild-type.
Fig. 3: CDKN2 Deletion Subgroup Outcomes with Non-HSCT vs. Allo-HSCT.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon request.

References

  1. Van Vlierberghe P, Ambesi-Impiombato A, De Keersmaecker K, Hadler M, Paietta E, Tallman MS, et al. Prognostic relevance of integrated genetic profiling in adult T-cell acute lymphoblastic leukemia. Blood. 2013;122:74–82. https://doi.org/10.1182/blood-2013-03-491092.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Jabbour E, Pui CH, Kantarjian H. Progress and innovations in the management of adult acute lymphoblastic leukemia. JAMA Oncol. 2018;4:1413–20. https://doi.org/10.1001/jamaoncol.2018.1915.

    Article  PubMed  Google Scholar 

  3. La Starza R, Pierini V, Pierini T, Nofrini V, Matteucci C, Arniani S, et al. Design of a comprehensive fluorescence in situ hybridization assay for genetic classification of T-cell acute lymphoblastic leukemia. J Mol Diagn. 2020;22:629–39. https://doi.org/10.1016/j.jmoldx.2020.02.004.

    Article  CAS  PubMed  Google Scholar 

  4. Iacobucci I, Ferrari A, Lonetti A, Papayannidis C, Paoloni F, Trino S, et al. CDKN2A/B alterations impair prognosis in adult BCR-ABL1-positive acute lymphoblastic leukemia patients. Clin Cancer Res. 2011;17:7413–23. https://doi.org/10.1158/1078-0432.Ccr-11-1227.

    Article  CAS  PubMed  Google Scholar 

  5. Moorman AV, Schwab C, Ensor HM, Russell LJ, Morrison H, Jones L, et al. IGH@ translocations, CRLF2 deregulation, and microdeletions in adolescents and adults with acute lymphoblastic leukemia. J Clin Oncol. 2012;30:3100–8. https://doi.org/10.1200/jco.2011.40.3907.

    Article  PubMed  Google Scholar 

  6. Ribera J, Morgades M, Zamora L, Montesinos P, Gómez-Seguí I, Pratcorona M, et al. Prognostic significance of copy number alterations in adolescent and adult patients with precursor B acute lymphoblastic leukemia enrolled in PETHEMA protocols. Cancer. 2015;121:3809–17. https://doi.org/10.1002/cncr.29579.

    Article  CAS  PubMed  Google Scholar 

  7. Patel S, Mason CC, Glenn MJ, Paxton CN, South ST, Cessna MH, et al. Genomic analysis of adult B-ALL identifies potential markers of shorter survival. Leuk Res. 2017;56:44–51. https://doi.org/10.1016/j.leukres.2017.01.034.

    Article  CAS  PubMed  Google Scholar 

  8. Marks DI, Paietta EM, Moorman AV, Richards SM, Buck G, DeWald G, et al. T-cell acute lymphoblastic leukemia in adults: clinical features, immunophenotype, cytogenetics, and outcome from the large randomized prospective trial (UKALL XII/ECOG 2993). Blood. 2009;114:5136–45. https://doi.org/10.1182/blood-2009-08-231217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Grossmann V, Haferlach C, Weissmann S, Roller A, Schindela S, Poetzinger F, et al. The molecular profile of adult T-cell acute lymphoblastic leukemia: mutations in RUNX1 and DNMT3A are associated with poor prognosis in T-ALL. Genes Chromosomes Cancer. 2013;52:410–22. https://doi.org/10.1002/gcc.22039.

    Article  CAS  PubMed  Google Scholar 

  10. Dirse V, Bertasiute A, Gineikiene E, Zvirblis T, Dambrauskiene R, Gerbutavicius R, et al. A population-based single nucleotide polymorphism array analysis of genomic aberrations in younger adult acute lymphoblastic leukemia patients. Genes Chromosomes Cancer. 2015;54:326–33. https://doi.org/10.1002/gcc.22246.

    Article  CAS  PubMed  Google Scholar 

  11. Jang W, Park J, Kwon A, Choi H, Kim J, Lee GD, et al. CDKN2B downregulation and other genetic characteristics in T-acute lymphoblastic leukemia. Exp Mol Med. 2019;51:1–15. https://doi.org/10.1038/s12276-018-0195-x.

    Article  CAS  PubMed  Google Scholar 

  12. Xu N, Li YL, Zhou X, Cao R, Li H, Lu QS, et al. CDKN2 gene deletion as poor prognosis predictor involved in the progression of adult B-lineage acute lymphoblastic leukemia patients. J Cancer. 2015;6:1114–20. https://doi.org/10.7150/jca.11959.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Xu N, Li YL, Li X, Zhou X, Cao R, Li H, et al. Correlation between deletion of the CDKN2 gene and tyrosine kinase inhibitor resistance in adult Philadelphia chromosome-positive acute lymphoblastic leukemia. J Hematol Oncol. 2016;9:40. https://doi.org/10.1186/s13045-016-0270-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Fang Q, Yuan T, Li Y, Feng J, Gong X, Li Q, et al. Prognostic significance of copy number alterations detected by multi-link probe amplification of multiple genes in adult acute lymphoblastic leukemia. Oncol Lett. 2018;15:5359–67. https://doi.org/10.3892/ol.2018.7985.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ribera J, Zamora L, Morgades M, Vives S, Granada I, Montesinos P, et al. Molecular profiling refines minimal residual disease-based prognostic assessment in adults with Philadelphia chromosome-negative B-cell precursor acute lymphoblastic leukemia. Genes Chromosomes Cancer. 2019;58:815–9. https://doi.org/10.1002/gcc.22788.

    Article  CAS  PubMed  Google Scholar 

  16. Genescà E, Lazarenkov A, Morgades M, Berbis G, Ruíz-Xivillé N, Gómez-Marzo P, et al. Frequency and clinical impact of CDKN2A/ARF/CDKN2B gene deletions as assessed by in-depth genetic analyses in adult T cell acute lymphoblastic leukemia. J Hematol Oncol. 2018;11:96. https://doi.org/10.1186/s13045-018-0639-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wang HP, Zhou YL, Huang X, Zhang Y, Qian JJ, Li JH, et al. CDKN2A deletions are associated with poor outcomes in 101 adults with T-cell acute lymphoblastic leukemia. Am J Hematol. 2021;96:312–9. https://doi.org/10.1002/ajh.26069.

    Article  CAS  PubMed  Google Scholar 

  18. Arber DA, Orazi A, Hasserjian R, Thiele J, Borowitz MJ, Le Beau MM, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016;127:2391–405. https://doi.org/10.1182/blood-2016-03-643544.

    Article  CAS  PubMed  Google Scholar 

  19. Alvarnas JC, Brown PA, Aoun P, Ballen KK, Bellam N, Blum W, et al. Acute lymphoblastic leukemia. J Natl Compr Canc Netw. 2012;10:858–914. https://doi.org/10.6004/jnccn.2012.0089.

    Article  CAS  PubMed  Google Scholar 

  20. A Chinese expert panel consensus on diagnosis and treatment of adult acute lymphoblastic leukemia. Zhonghua Xue Ye Xue Za Zhi. 2012;33:789–92. https://doi.org/10.3760/cma.j.issn.0253-2727.2012.09.028.

  21. Huang K, Dai M, Li Q, Liu N, Lin D, Wang Q, et al. Early T-cell precursor leukemia has a higher risk of induction-related infection among T-cell acute lymphoblastic leukemia in adult. Mediators Inflamm. 2020;2020:8867760. https://doi.org/10.1155/2020/8867760.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhang XH, Chen J, Han MZ, Huang H, Jiang EL, Jiang M, et al. The consensus from The Chinese Society of Hematology on indications, conditioning regimens and donor selection for allogeneic hematopoietic stem cell transplantation: 2021 update. J Hematol Oncol. 2021;14:145. https://doi.org/10.1186/s13045-021-01159-2.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Qi HZ, Xu J, Yang QQ, Lin R, Wang ZX, Zhao K, et al. Effect of pediatric- versus adult-type chemotherapy regimens on outcomes of allogeneic hematopoietic stem cell transplants for adult T-cell acute lymphoblastic leukemia in first complete remission. Bone Marrow Transpl. 2022;57:1704–11. https://doi.org/10.1038/s41409-022-01796-2.

    Article  CAS  Google Scholar 

  24. Yu S, Huang F, Fan Z, Xuan L, Nie D, Xu Y, et al. Haploidentical versus HLA-matched sibling transplantation for refractory acute leukemia undergoing sequential intensified conditioning followed by DLI: an analysis from two prospective data. J Hematol Oncol. 2020;13:18. https://doi.org/10.1186/s13045-020-00859-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yu S, Huang F, Wang Y, Xu Y, Yang T, Fan Z, et al. Haploidentical transplantation might have superior graft-versus-leukemia effect than HLA-matched sibling transplantation for high-risk acute myeloid leukemia in first complete remission: a prospective multicentre cohort study. Leukemia. 2020;34:1433–43. https://doi.org/10.1038/s41375-019-0686-3.

    Article  CAS  PubMed  Google Scholar 

  26. Wang Y, Liu QF, Lin R, Yang T, Xu YJ, Mo XD, et al. Optimizing antithymocyte globulin dosing in haploidentical hematopoietic cell transplantation: long-term follow-up of a multicenter, randomized controlled trial. Sci Bull (Beijing). 2021;66:2498–505. https://doi.org/10.1016/j.scib.2021.06.002.

    Article  CAS  PubMed  Google Scholar 

  27. Zhao XS, Liu YR, Xu LP, Wang Y, Zhang XH, Chen H, et al. Minimal residual disease status determined by multiparametric flow cytometry pretransplantation predicts the outcome of patients with ALL receiving unmanipulated haploidentical allografts. Am J Hematol. 2019;94:512–21. https://doi.org/10.1002/ajh.25417.

    Article  PubMed  Google Scholar 

  28. Brothman AR, Persons DL, Shaffer LG. Nomenclature evolution: changes in the ISCN from the 2005 to the 2009 edition. Cytogenet Genome Res. 2009;127:1–4. https://doi.org/10.1159/000279442.

    Article  CAS  PubMed  Google Scholar 

  29. Wang Y, Chen G, Cao R, Li J, He L, Guo X, et al. Allogeneic hematopoietic stem cell transplantation improves the prognosis of p16-deleted adult patients with acute lymphoblastic leukemia. Pharmacogenomics. 2017;18:77–84. https://doi.org/10.2217/pgs-2016-0075.

    Article  CAS  PubMed  Google Scholar 

  30. Austin PC, Fine JP. Practical recommendations for reporting Fine-Gray model analyses for competing risk data. Stat Med. 2017;36:4391–400. https://doi.org/10.1002/sim.7501.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Liggett WH Jr., Sidransky D. Role of the p16 tumor suppressor gene in cancer. J Clin Oncol. 1998;16:1197–206. https://doi.org/10.1200/jco.1998.16.3.1197.

    Article  CAS  PubMed  Google Scholar 

  32. Ling Y, Xu N, Zhao K, Han L, Zhang Q, Fan Z, et al. Allogeneic hematopoietic cell transplant overcomes the poor prognostic value of CDKN2 deletion in adult B-lineage acute lymphoblastic leukemia. Cancer Lett. 2021;510:59–66. https://doi.org/10.1016/j.canlet.2021.04.009.

    Article  CAS  PubMed  Google Scholar 

  33. Mirji G, Bhat J, Kode J, Banavali S, Sengar M, Khadke P, et al. Risk stratification of T-cell Acute Lymphoblastic Leukemia patients based on gene expression, mutations and copy number variation. Leuk Res. 2016;45:33–9. https://doi.org/10.1016/j.leukres.2016.03.002.

    Article  CAS  PubMed  Google Scholar 

  34. Wetzler M, Sanford BL, Kurtzberg J, DeOliveira D, Frankel SR, Powell BL, et al. Effective asparagine depletion with pegylated asparaginase results in improved outcomes in adult acute lymphoblastic leukemia: cancer and leukemia group B study 9511. Blood. 2007;109:4164–7. https://doi.org/10.1182/blood-2006-09-045351.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Rosen O, Müller HJ, Gökbuget N, Langer W, Peter N, Schwartz S, et al. Pegylated asparaginase in combination with high-dose methotrexate for consolidation in adult acute lymphoblastic leukaemia in first remission: a pilot study. Br J Haematol. 2003;123:836–41. https://doi.org/10.1046/j.1365-2141.2003.04707.x.

    Article  CAS  PubMed  Google Scholar 

  36. Jain N, Lamb AV, O’Brien S, Ravandi F, Konopleva M, Jabbour E, et al. Early T-cell precursor acute lymphoblastic leukemia/lymphoma (ETP-ALL/LBL) in adolescents and adults: a high-risk subtype. Blood. 2016;127:1863–9. https://doi.org/10.1182/blood-2015-08-661702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Patrick K, Wade R, Goulden N, Mitchell C, Moorman AV, Rowntree C, et al. Outcome for children and young people with Early T-cell precursor acute lymphoblastic leukaemia treated on a contemporary protocol, UKALL 2003. Br J Haematol. 2014;166:421–4. https://doi.org/10.1111/bjh.12882.

    Article  CAS  PubMed  Google Scholar 

  38. Beldjord K, Chevret S, Asnafi V, Huguet F, Boulland ML, Leguay T, et al. Oncogenetics and minimal residual disease are independent outcome predictors in adult patients with acute lymphoblastic leukemia. Blood. 2014;123:3739–49. https://doi.org/10.1182/blood-2014-01-547695.

    Article  CAS  PubMed  Google Scholar 

  39. Toft N, Schmiegelow K, Klausen TW, Birgens H. Adult acute lymphoblastic leukaemia in Denmark. A national population-based retrospective study on acute lymphoblastic leukaemia in Denmark 1998–2008. Br J Haematol. 2012;157:97–104. https://doi.org/10.1111/j.1365-2141.2011.09020.x.

    Article  CAS  PubMed  Google Scholar 

  40. Toft N, Birgens H, Abrahamsson J, Griškevičius L, Hallböök H, Heyman M, et al. Results of NOPHO ALL2008 treatment for patients aged 1–45 years with acute lymphoblastic leukemia. Leukemia. 2018;32:606–15. https://doi.org/10.1038/leu.2017.265.

    Article  CAS  PubMed  Google Scholar 

  41. Xiao J, Cai Z, Wang H, Li X, Zhou B, Liu Y, et al. The clinical characteristics and prognosis of AYA and older adult ETP-ALL/LBL: a real-world multicenter study in China. Front Oncol. 2022;12:846573. https://doi.org/10.3389/fonc.2022.846573.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Luo L, Jiao Y, Yang P, Li Y, Huang WY, Ke XY, et al. Efficacy and prognostic factors of allogeneic hematopoietic stem cell transplantation treatment for T lymphoblastic leukemia/lymphoma. Zhonghua Xue Ye Xue Za Zhi. 2023;44:388–94. https://doi.org/10.3760/cma.j.issn.0253-2727.2023.05.006.

    Article  CAS  PubMed  Google Scholar 

  43. Raetz EA, Rebora P, Conter V, Schrappe M, Devidas M, Escherich G, et al. Outcome for children and young adults with T-cell ALL and induction failure in contemporary trials. J Clin Oncol. 2023;41:5025–34. https://doi.org/10.1200/jco.23.00088.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Projects of China (2021YFC2500301-4, 2022YFA1105003, and 2022YFC2502600-5), the Major Project of the National Natural Science Foundation of China (No.82293634), and the National Natural Science Foundation of China (82200241).

Author information

Authors and Affiliations

Authors

Contributions

XSH wrote the initial manuscript, ZXW designed tables and figures and YTQ performed the MRD analysis. QFL and SJY designed the initial outline, contributed to the writing, and finalized the manuscript. All authors have read and approved the final manuscript. Xiaoshan Hu: Conceptualization, Methodology, Formal analysis, Writing-original draft. Zhixiang Wang: Methodology and Formal Analysis. Yuting Qin: Formal analysis. Jun Xu, Na Xu, Qiang Wang, Ren Lin, Ke Zhao, Hongsheng Zhou, Li Xuan: Resources, Data Curation. Sijian Yu and Qifa Liu: Conceptualization, writing–review and editing, visualization, supervision, and funding acquisition.

Corresponding authors

Correspondence to Sijian Yu or Qifa Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, X., Wang, Z., Qin, Y. et al. Allogeneic haematopoietic stem cell transplantation might overcome the poor prognosis of adolescents and adult patients with T-lineage acute lymphoblastic leukaemia and CDKN2 deletion. Bone Marrow Transplant (2024). https://doi.org/10.1038/s41409-024-02306-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41409-024-02306-2

Search

Quick links