Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Basic Science Article
  • Published:

Paediatrics congenital heart disease is associated with plasma miRNAs

Abstract

Background

Congenital heart disease (CHD) are the most common malformations from birth. The severity of the different forms of CHD varies extensively from superficial mild lesions with follow-up for decades without any treatment to complex cyanotic malformations requiring urgent surgical intervention. microRNAs have been found to be crucial in cardiac development, giving rise to possible phenotypes in CHD.

Objectives

We aimed to evaluate the expression of miRNAs in 86 children with CHD and divided into cyanotic and non-cyanotic heart defects and 110 controls.

Methods

The miRNAs expression of miR-21-5p, miR-155-5p, miR-221-3p, miR-26a-5p, and miR-144-3p were analyzed by RT-qPCR. In addition, the expressions of the miRNAs studied were correlated with the clinical characteristics of both the children and the mothers.

Results

The expression levels of miR-21-5-5p, miR-15-5p5, miR-221-3p, and miR-26-5p significantly differed between CHD and control subjects. Moreover, miR-21-5p levels were higher in patients with cyanotic versus non-cyanotic CHD patients.

Conclusion

The expression levels of miRNAs of pediatric patients with CHD could participating in the development of cardiac malformations. Additionally, the high expression of miR-21-5p in cyanotic CHD children may be related to greater severity of illness relative to non-cyanotic CHD.

Impact

  • This study adds to knowledge of the association between microRNAs and congenital heart disease in children.

  • The expression levels of miR-21-5-5p, miR-15-5p5, miR-221-3p, and miR-26-5p of pediatric patients with CHD could be involved in the development and phenotype present in pediatric patients.

  • miR-21-5p may help to discriminate between cyanotic and non-cyanotic CHD.

  • In the future, the miRNAs studied could have applications as clinical biomarkers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: miRNAs expression in plasma.
Fig. 2: miRNAs levels expression in plasma of non-cyanotic congenital heart disease group (nc-CHD) and cyanotic CHD.
Fig. 3: ROC curve analysis.

Similar content being viewed by others

Data availability

Data and materials are available for transparency. All data generated or analyzed during this study are included in this article. Further inquiries can be directed to the corresponding author.

References

  1. Marquez-González, H., Yañez-Gutierrez, L., Rivera-May, J., Lopez-Gallegos, D. & Gutierrez, E. Análisis Demográfico de Una Clínica de Cardiopatías Congénitas Del Instituto Mexicano Del Seguro Social, Con Interés En El Adulto. Arch. Cardiol. Méx. 88, 360–368 (2018).

    PubMed  Google Scholar 

  2. Smith, T., Rajakaruna, C., Caputo, M. & Emanueli, C. MicroRNAs in congenital heart disease. Ann. Transl. Med. 3, 333 (2015).

    PubMed  PubMed Central  Google Scholar 

  3. Claeys, M. J., Bondue, A., Lancellotti, P. & De Pauw, M. Summary of 2020 ESC guidelines on non-STE ACS, adult congenital heart disease, sports cardiology and atrial fibrillation. Acta Cardiol. 77, 864–872 (2022).

    Article  PubMed  Google Scholar 

  4. Saliba, A. et al. Genetic and genomics in congenital heart disease: a clinical review. J. Pediatr. 96, 279–288 (2019).

    Article  Google Scholar 

  5. Rohit, M. & Shrivastava, S. Acyanotic and cyanotic congenital heart diseases. Indian J. Pediatr. 85, 454–460 (2018).

    Article  PubMed  Google Scholar 

  6. Quien, M., Ryzhkov, I., Miras, L. & Zarich, S. Complex congenital heart disease: gerbode defect with a bicuspid aortic valve and coarctation of the aorta. CASE 7, 242–244 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Lim, T. B., Foo, S. Y. R. & Chen, C. K. The role of epigenetics in congenital heart disease. Genes 12, 390 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kalayinia, S., Arjmand, F., Maleki, M., Malakootian, M. & Singh, C. P. MicroRNAs: roles in cardiovascular development and disease. Cardiovasc. Pathol. 50, 107296 (2021).

    Article  CAS  PubMed  Google Scholar 

  9. Saliminejad, K., Khorram-Khorshid, H. R., Soleymani-Fard, S. & Ghaffari, S. H. An overview of MicroRNAs: biology, functions, therapeutics, and analysis methods. J. Cell Physiol. 234, 5451–5465 (2019).

    Article  CAS  PubMed  Google Scholar 

  10. Eddy, A. A. The TGF-β route to renal fibrosis is not linear: the MiR-21 Viaduct. J. Am. Soc. Nephrol. 22, 1573–1575 (2011).

    Article  CAS  PubMed  Google Scholar 

  11. Yuan, X. et al. MiR-144-3p enhances cardiac fibrosis after myocardial infarction by targeting PTEN. Front. Cell Dev. Biol. 7, 249 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Icli, B., Dorbala, P. & Feinberg, M. W. An emerging role for the MiR-26 family in cardiovascular disease. Trends Cardiovasc. Med. 24, 241–248 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wu, X. G. et al. Cancer-derived exosomal MiR-221-3p promotes angiogenesis by targeting THBS2 in cervical squamous cell carcinoma. Angiogenesis 22, 397–410 (2019).

    Article  CAS  PubMed  Google Scholar 

  14. Clement, M., Viggiani, G., Chen, Y. W., Coulis, G. & Castaldi, A. MicroRNA and ROS Crosstalk in Cardiac and Pulmonary Diseases. Int. J. Mol. Sci. 21, 4370 (2020).

    Article  Google Scholar 

  15. Wang, G., Wang, B. & Yang, P. Epigenetics in congenital heart disease. J. Am. Heart Assoc. 11, e025163 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhu, S. et al. Identification of maternal serum microRNAs as novel non-invasive biomarkers for prenatal detection of fetal congenital heart defects. Clin. Chim. Acta 424, 66–72 (2013).

    Article  CAS  PubMed  Google Scholar 

  17. Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT Method. Methods 25, 402–408 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. Kumaraswamy, R., Volkmann, I. & Thum, T. Regulation and function of MiRNA-21 in health and disease. RNA Biol. 8, 706–713 (2011).

    Article  Google Scholar 

  19. Li, M. et al. MiR-1-3p that correlates with left ventricular function of HCM can serve as a potential target and differentiate HCM from DCM. J. Transl. Med. 16, 161 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Rubis, P. et al. Relations between circulating micrornas (Mir-21, Mir-26, Mir-29, Mir-30 And Mir-133a), extracellular matrix fibrosis and serum markers of fibrosis in dilated cardiomyopathy. Int. J. Cardiol. 231, 201–206 (2017).

    Article  PubMed  Google Scholar 

  21. Liu, S. et al. Micro-RNA 21targets dual specific phosphatase 8 to promote collagen synthesis in high glucose treated primary cardiac fibroblasts. Can. J. Cardiol. 30, 1689–1699 (2014).

    Article  PubMed  Google Scholar 

  22. Xiao, J. et al. Cardiac progenitor cell-derived exosomes prevent cardiomyocytes apoptosis through exosomal Mir-21 by targeting PDCD4. Cell Death Dis. 7, e2277 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Liu, Y. et al. A feedback regulatory loop between HIF-1 Alpha and Mir-21 in response to hypoxia in cardiomyocytes. FEBS Lett. 588, 3137–3146 (2014).

    Article  CAS  PubMed  Google Scholar 

  24. Zlabinger, K. et al. MiR-21, MiR-29a, GATA4, and MEF2c expression changes in Endothelin-1 and Angiotensin II cardiac hypertrophy stimulated Isl-1(+) Sca-1(+) c-kit(+) porcine cardiac progenitor cells in vitro. Cells 8, 1416 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Cheng, Y. et al. MicroRNA-21 protects against the H(2)O(2)-induced injury on cardiac myocytes via its target gene PDCD4. J. Mol. Cell Cardiol. 47, 5–14 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Xu, H. F. et al. MicroRNA21 regulation of the progression of viral myocarditis to dilated cardiomyopathy. Mol. Med. Rep. 10, 161–168 (2014).

    Article  CAS  PubMed  Google Scholar 

  27. Sayed, D. et al. MicroRNA-21 Targets Sprouty2 and promotes cellular outgrowths. Mol. Biol. Cell 19, 3272–3282 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Li, Q. et al. Inhibition of miR-21 alleviated cardiac perivascular fibrosis via repressing EndMT in T1DM. J. Cell Mol. Med. 24, 910–920 (2020).

    Article  CAS  PubMed  Google Scholar 

  29. Sanford, L. P. et al. TGF beta2 knockout mice have multiple developmental defects that are non-overlapping with other TGF beta knockout phenotypes. Development 124, 2659–2670 (1997).

    Article  CAS  PubMed  Google Scholar 

  30. Bartram, U. et al. Double-outlet right ventricle and overriding tricuspid valve reflect disturbances of looping, myocardialization, endocardial cushion differentiation, and apoptosis in TGF-Beta (2)- knockout mice. Circulation 103, 2745–2752 (2001).

    Article  CAS  PubMed  Google Scholar 

  31. Jiao, K. et al. TGF beta signaling is required for atrioventricular cushion mesenchyme remodeling during in vivo cardiac development. Development 133, 4585–4593 (2006).

    Article  CAS  PubMed  Google Scholar 

  32. Sridurongrit, S. et al. Signaling via the TGF beta Type I Receptor Alk5 in heart development. Dev. Biol. 322, 208–218 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Chuppa, S. et al. MicroRNA-21 regulates peroxisome proliferator-activated receptor alpha, a molecular mechanism of cardiac pathology in cardiorenal syndrome Type 4. Kidney Int. 93, 375–389 (2018).

    Article  CAS  PubMed  Google Scholar 

  34. Shen, H. et al. miR-21 enhances the protective effect of loperamide on rat cardiomyocytes against hypoxia/reoxygenation, reactive oxygen species production and apoptosis via regulating Akap8 and Bard1 expression. Exp. Ther. Med. 17, 1312–1320 (2019).

    CAS  PubMed  Google Scholar 

  35. Zhou, X. L. et al. miR-21 promotes cardiac fibroblast-to-myofibroblast transformation and myocardial fibrosis by targeting Jagged1. J. Cell Mol. Med. 22, 3816–3824 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bang, C. et al. Cardiac fibroblast-derived microRNA passenger strand-enriched exosomes mediate cardiomyocyte hypertrophy. J. Clin. Investig. 124, 2136–2146 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kang, Z. et al. Remote ischemic preconditioning upregulates MicroRNA-21 to protect the kidney in children with congenital heart disease undergoing cardiopulmonary bypass. Pediatr. Nephrol. 33, 911–919 (2018).

    Article  PubMed  Google Scholar 

  38. Lacedonia, D. et al. MicroRNA expression profile during different conditions of hypoxia. Oncotarget 9, 35114–35122 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Wang, J. et al. Hypoxia adipose stem cell-derived exosomes promote high-quality healing of diabetic wound involves activation of PI3K/Akt Pathways. J. Nanobiotechnol. 19, 1–13 (2021).

    Google Scholar 

  40. Li, C., Fei, K., Tian, F., Gao, C. & Song, Y. Adipose-derived mesenchymal stem cells attenuate ischemic brain injuries in rats by modulating MiR-21-3p/MAT2B signaling transduction. Croat. Med. 60, 439 (2019).

    Article  CAS  Google Scholar 

  41. Jiang, Y. et al. Exosomes secreted by HUVECs attenuate hypoxia/reoxygenation-induced apoptosis in neural cells by suppressing MiR-21-3p. Am. J. Transl. Res. 10, 3529 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Peñaloza, E., Soto-Carrasco, G. & Krause, B. J. MiR-21-5p directly contributes to regulating eNOS expression in human artery endothelial cells under normoxia and hypoxia. Biochem. Pharm. 182, 114288 (2020).

    Article  PubMed  Google Scholar 

  43. Chen, L., Zheng, S. Y., Yang, C. Q., Ma, B. M. & Jiang, D. Mir-155-5p inhibits the proliferation and migration of VSMCs and HUVECs in atherosclerosis by targeting ATK1. Eur. Rev. Med. Pharm. Sci. 23, 2223 (2019).

    CAS  Google Scholar 

  44. Zhao, J. & Zeng, Z. Combined effects of AKT Serine/Threonine Kinase 1 polymorphisms and environment on congenital heart disease risk: a case-control study. Medicine 99, e20400 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Chang, Z. et al. Deletion of Akt1 causes heart defects and abnormal cardiomyocyte proliferation. Dev. Biol. 347, 384–391 (2010).

    Article  CAS  PubMed  Google Scholar 

  46. Zhao, D. et al. Integrative bioinformatics analysis revealed mitochondrial defects underlying hypoplastic left heart syndrome. Int. J. Gen. Med. 14, 9747–9760 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Gordon, J. W., Shaw, J. A. & Kirshenbaum, L. A. Multiple facets of NF-ΚB in the Heart: To Be or Not to NF-ΚB. Circ. Res. 108, 1122–1132 (2011).

    Article  CAS  PubMed  Google Scholar 

  48. Zhou, X. et al. Plasma miRNAs in diagnosis and prognosis of pancreatic cancer: a MiRNA expression analysis. Gene 673, 181–193 (2018).

    Article  CAS  PubMed  Google Scholar 

  49. Cordenonsi, M. et al. Links between tumor suppressors: P53 is required for TGF-β gene responses by cooperating with smads. Cell 113, 301–314 (2003).

    Article  CAS  PubMed  Google Scholar 

  50. Hanna, A., Humeres, C. & Frangogiannis, N. G. The role of smad signaling cascades in cardiac fibrosis. Cell Signal. 77, 109826 (2021).

    Article  CAS  PubMed  Google Scholar 

  51. Lu, M., Qin, Q., Yao, J., Sun, L. & Qin, X. Induction of LOX by TGF-Β1/Smad/AP-1 signaling aggravates rat myocardial fibrosis and heart failure. IUBMB Life 71, 1729–1739 (2019).

    Article  CAS  PubMed  Google Scholar 

  52. Zhong, L. et al. The TBX1/MiR-193a-3p/TGF-Β2 axis mediates CHD by promoting ferroptosis. Oxid. Med. Cell Longev. 7, 1–13 (2022).

    Google Scholar 

  53. Telkoparan-Akillilar, P., Cevik, D. & Yilmaz, A. Expression patterns of MiR-34a, MiR-125b, MiR-221 and antioxidant gene NRF2 in plasma samples of patients with atherosclerosis. J. Biosci. 47, 1 (2022).

    Article  CAS  PubMed  Google Scholar 

  54. Zhang, Z. H. et al. MicroRNA-26 was decreased in rat cardiac hypertrophy model and may be a promising therapeutic target. J. Cardiovasc. Pharm. 62, 312–319 (2013).

    Article  CAS  Google Scholar 

  55. Monteiro da Rocha, A., Ding, J., Slawny, N., Wolf, A. M. & Smith, G. D. Loss of glycogen synthase kinase 3 isoforms during murine oocyte growth induces offspring cardiac dysfunction. Biol. Reprod. 92, 127 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Luo, X. et al. MicroRNA-26 governs profibrillatory inward-rectifier potassium current changes in atrial fibrillation. J. Clin. Investig. 123, 1939–1951 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ding, H. et al. Combined detection of MiR-21-5p, MiR-30a-3p, MiR-30a-5p, MiR-155-5p, MiR-216a, and MiR-217 for early heart failure diseases screening. Biosci. Rep. 40, 3 (2020).

    Article  Google Scholar 

  58. Jenike, A. E. & Halushka, M. K. MiR-21: a non-specific biomarker of all maladies. Biomark. Res. 9, 18 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Surina, S. et al. MiR-21 in human cardiomyopathies. Front. Cardiovasc. Med. 8, 767064 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the patients and relatives for collaborating on this project. This work was financed by the budget granted to the Department of Physiology by the National Institute of Cardiology Ignacio Chavez.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed substantially to the conception, design, acquisition of information, and writing for this commentary. All authors approved the final version.

Corresponding author

Correspondence to Ricardo Gamboa.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

This study was conducted by the Declaration of Helsinki and approved by the locally appointed Ethics Committee, Institutional Review Board, Instituto Nacional de Cardiologia Ignacio Chavez, and Instituto Nacional de Perinatologia: Number: 20-1181.

Informed consent

Informed consent was obtained from the parents of participants included in the study.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

González-Moyotl, N., Huesca-Gómez, C., Torres-Paz, Y.E. et al. Paediatrics congenital heart disease is associated with plasma miRNAs. Pediatr Res (2024). https://doi.org/10.1038/s41390-024-03230-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41390-024-03230-3

Search

Quick links