Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

TRIM45 facilitates NASH-progressed HCC by promoting fatty acid synthesis via catalyzing FABP5 ubiquitylation

Abstract

Non-alcoholic steatohepatitis (NASH) is rapidly surpassing viral hepatitis as the primary cause of hepatocellular carcinoma (HCC). However, understanding of NASH-progressed HCC remains poor, which might impede HCC diagnosis and therapy. In this study, we aim to identify shared transcriptional changes between NASH and HCC, of which we focused on E3 ligase TRIM45. We found TRIM45 exacerbates HCC cells proliferation and metastasis in vitro and in vivo. Further transcriptome analysis revealed TRIM45 predominantly affects fatty acid metabolism and oleic acid restored impaired proliferation and metastasis of TRIM45-deficient HCC cells. IP-tandem mass spectrum and FABP5 depriving experiment indicated that TRIM45 enhance fatty acid synthesis depending on FABP5 presence. Interestingly, we found TRIM45 directly added K33-type and K63-type poly-ubiquitin chains to FABP5 NLS domain, which ultimately promoted FABP5 nuclear translocation. Nuclear FABP5 interacted with PPARĪ³ to facilitate downstream lipid synthesis gene expression. We observed TRIM45 accelerated NASH-to-HCC transition and exacerbated both NASH and NASH-HCC with the enhanced fatty acid production in vivo. Moreover, high concentration of fatty acid increased TRIM45 expression. The established mechanism was substantiated by gene expression correlation in TCGA-LIHC. Collectively, our research revealed a common lipid reprograming process in NASH and HCC and identified the cyclical amplification of the TRIM45-FABP5-PPARĪ³-fatty acid axis. This signaling pathway offers potential therapeutic targets for therapeutic intervention in NASH and NASH-progressed HCC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: TRIM45 was predicted to be critical in NASH to HCC progression.
Fig. 2: TRIM45 enhances the proliferation and metastasis of HCC cells.
Fig. 3: TRIM45 exacerbates HCC in vivo.
Fig. 4: TRIM45 facilitated HCC proliferation by promoting lipid synthesis.
Fig. 5: TRIM45 increased fatty acids synthesis through interaction with FABP5.
Fig. 6: TRIM45 promoted FABP5 nuclear entry via adding polyubiquitin chains to FABP5 NLS domain.
Fig. 7: FABP5 regulated the expression of fatty acid synthesis genes across PPARĪ³.
Fig. 8: TRIM45 augmented NASH-progressed HCC and lipid synthesis in vivo.

Similar content being viewed by others

Data availability

Full data will be available from the corresponding author upon reasonable request. The RNA-sequencing data for this study are deposited in GEO database (GSE261075).

References

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2021;71:209ā€“49.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  2. Huang DQ, El-Serag HB, Loomba R. Global epidemiology of NAFLD-related HCC: trends, predictions, risk factors and prevention. Nat Rev Gastroenterol Hepatol. 2021;18:223ā€“38.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  3. Rumgay H, Arnold M, Ferlay J, Lesi O, Cabasag CJ, Vignat J, et al. Global burden of primary liver cancer in 2020 and predictions to 2040. J Hepatol. 2022;77:1598ā€“606.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  4. Asrani SK, Devarbhavi H, Eaton J, Kamath PS. Burden of liver diseases in the world. J HEPATOL. 2019;70:151ā€“71.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  5. Yang JD, Hainaut P, Gores GJ, Amadou A, Plymoth A, Roberts LR. A global view of hepatocellular carcinoma: trends, risk, prevention and management. Nat Rev Gastroenterol Hepatol. 2019;16:589ā€“604.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  6. Younossi ZM. Non-alcoholic fatty liver diseaseā€“a global public health perspective. J HEPATOL. 2019;70:531ā€“44.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  7. Organization, GWH. Global health sector strategies on HIV, viral hepatitis and sexually transmitted infections for the period 2022ā€“2030. 2022.

  8. Hindson J. Molecular landscape of NASH-HCC. Nature Reviews Gastroenterology & Hepatology. 2021;18:456ā€“456.

    Google ScholarĀ 

  9. Nakagawa H, Hayata Y, Kawamura S, Yamada T, Fujiwara N, Koike K. Lipid metabolic reprogramming in hepatocellular carcinoma. Cancers. 2018;10:447.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  10. Xu K, Xia P, Chen X, Ma W, Yuan Y. ncRNA-mediated fatty acid metabolism reprogramming in HCC. Trends Endocrinol Metab. 2023;34:278ā€“91.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  11. Xiong L, Wu F, Wu Q, Xu L, Cheung OK, Kang W, et al. Aberrant enhancer hypomethylation contributes to hepatic carcinogenesis through global transcriptional reprogramming. Nat Commun. 2019;10:335.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  12. Horisawa K, Udono M, Ueno K, Ohkawa Y, Nagasaki M, Sekiya S, et al. The dynamics of transcriptional activation by hepatic reprogramming factors. MOL CELL. 2020;79:660ā€“676.e668.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  13. JĆ¼hling F, Hamdane N, Crouchet E, Li S, El Saghire H, Mukherji A, et al. Targeting clinical epigenetic reprogramming for chemoprevention of metabolic and viral hepatocellular carcinoma. Gut. 2021;70:157ā€“69.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  14. Schuster S, Cabrera D, Arrese M, Feldstein AE. Triggering and resolution of inflammation in NASH. Nat Rev Gastroenterol Hepatol. 2018;15:349ā€“64.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  15. Hall Z, Chiarugi D, Charidemou E, Leslie J, Scott E, Pellegrinet L, et al. Lipid remodeling in hepatocyte proliferation and hepatocellular carcinoma. Hepatol (Baltim, Md). 2021;73:1028ā€“44.

    ArticleĀ  CASĀ  Google ScholarĀ 

  16. Chen Z, Tian R, She Z, Cai J, Li H. Role of oxidative stress in the pathogenesis of nonalcoholic fatty liver disease. Free Radic Biol Med. 2020;152:116ā€“41.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  17. Arroyave-Ospina JC, Wu Z, Geng Y, Moshage H. Role of oxidative stress in the pathogenesis of non-alcoholic fatty liver disease: Implications for prevention and therapy. Antioxidants. 2021;10:174.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  18. Ma Y, Lee G, Heo S-Y, Roh Y-S. Oxidative stress is a key modulator in the development of nonalcoholic fatty liver disease. Antioxidants. 2021;11:91.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  19. Geng Y, Faber KN, de Meijer VE, Blokzijl H, Moshage H. How does hepatic lipid accumulation lead to lipotoxicity in non-alcoholic fatty liver disease? Hepatol Int. 2021;15:21ā€“35.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  20. Rada P, GonzĆ”lez-RodrĆ­guez Ɓ, GarcĆ­a-MonzĆ³n C, Valverde ƁM. Understanding lipotoxicity in NAFLD pathogenesis: is CD36 a key driver? Cell death Dis. 2020;11:802.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  21. Sangineto M, Villani R, Cavallone F, Romano A, Loizzi D, Serviddio G. Lipid metabolism in development and progression of hepatocellular carcinoma. Cancers. 2020;12:1419.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  22. Kim H, Rodriguez-Navas C, Kollipara RK, Kapur P, Pedrosa I, Brugarolas J, et al. Unsaturated fatty acids stimulate tumor growth through stabilization of Ī²-catenin. Cell Rep. 2015;13:495ā€“503.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  23. Ishida T, Ciulli A. E3 ligase ligands for PROTACs: how they were found and how to discover new ones. SLAS Discov: Advancing Sci Drug Discov. 2021;26:484ā€“502.

    ArticleĀ  CASĀ  Google ScholarĀ 

  24. Anstee QM, Reeves HL, Kotsiliti E, Govaere O, Heikenwalder M. From NASH to HCC: current concepts and future challenges. Nat Rev Gastroenterol Hepatol. 2019;16:411ā€“28.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  25. Pickart CM. Mechanisms underlying ubiquitination. Annu Rev Biochem. 2001;70:503ā€“33.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  26. Ge M-K, Zhang N, Xia L, Zhang C, Dong S-S, Li Z-M, et al. FBXO22 degrades nuclear PTEN to promote tumorigenesis. Nat Commun. 2020;11:1720.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  27. Lu F, Ye M, Hu C, Chen J, Yan L, Gu D, et al. FABP5 regulates lipid metabolism to facilitate pancreatic neuroendocrine neoplasms progression via FASN mediated Wnt/Ī²ā€catenin pathway. Cancer Sci. 2023;114:3553ā€“67.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  28. Matsumoto M, Han S, Kitamura T, Accili D. Dual role of transcription factor FoxO1 in controlling hepatic insulin sensitivity and lipid metabolism. J Clin Investig. 2006;116:2464ā€“72.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  29. Li Y, Ma Z, Jiang S, Hu W, Li T, Di S, et al. A global perspective on FOXO1 in lipid metabolism and lipid-related diseases. Prog lipid Res. 2017;66:42ā€“49.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  30. Younossi Z, Anstee QM, Marietti M, Hardy T, Henry L, Eslam M, et al. Global burden of NAFLD and NASH: trends, predictions, risk factors and prevention. Nat Rev Gastroenterol Hepatol. 2018;15:11ā€“20.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  31. Shah PA, Patil R, Harrison SA. NAFLDā€related hepatocellular carcinoma: The growing challenge. Hepatol (Baltim, Md). 2023;77:323ā€“38.

    ArticleĀ  Google ScholarĀ 

  32. Xia SW, Wang ZM, Sun SM, Su Y, Li ZH, Shao JJ, et al. Endoplasmic reticulum stress and protein degradation in chronic liver disease. Pharmacol Res. 2020;161:105218.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  33. Park JS, Ma H, Roh YS. Ubiquitin pathways regulate the pathogenesis of chronic liver disease. Biochemical Pharmacol. 2021;193:114764.

    ArticleĀ  CASĀ  Google ScholarĀ 

  34. Herhaus L, Dikic I. Expanding the ubiquitin code through post-translational modification. EMBO Rep 2015;16:1071ā€“83.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  35. Wang Y, Wang F. Post-translational modifications of deubiquitinating enzymes: expanding the ubiquitin code. Front Pharm. 2021;12:685011.

    ArticleĀ  CASĀ  Google ScholarĀ 

  36. Hunter T. The age of crosstalk: phosphorylation, ubiquitination, and beyond. Mol Cell. 2007;28:730ā€“8.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  37. Deng L, Meng T, Chen L, Wei W, Wang P. The role of ubiquitination in tumorigenesis and targeted drug discovery. Signal Transduct Target Ther. 2020;5:11.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  38. Sun T, Liu Z, Yang Q. The role of ubiquitination and deubiquitination in cancer metabolism. MOL Cancer. 2020;19:146.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  39. Yao F, Zhou Z, Kim J, Hang Q, Xiao Z, Ton BN, et al. SKP2- and OTUD1-regulated non-proteolytic ubiquitination of YAP promotes YAP nuclear localization and activity. NAT COMMUN. 2018;9:2269.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  40. Trotman LC, Wang X, Alimonti A, Chen Z, Teruya-Feldstein J, Yang H, et al. Ubiquitination regulates PTEN nuclear import and tumor suppression. Cell. 2007;128:141ā€“56.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  41. Seo J, Jeong DW, Park JW, Lee KW, Fukuda J, Chun YS. Fatty-acid-induced FABP5/HIF-1 reprograms lipid metabolism and enhances the proliferation of liver cancer cells. Commun Biol. 2020;3:638.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  42. Pan L, Xiao H, Liao R, Chen Q, Peng C, Zhang Y, et al. Fatty acid binding protein 5 promotes tumor angiogenesis and activates the IL6/STAT3/VEGFA pathway in hepatocellular carcinoma. Biomedicine Pharmacother. 2018;106:68ā€“76.

    ArticleĀ  CASĀ  Google ScholarĀ 

  43. Armstrong EH, Goswami D, Griffin PR, Noy N, Ortlund EA. Structural basis for ligand regulation of the fatty acid-binding protein 5, peroxisome proliferator-activated receptor Ī²/Ī“ (FABP5-PPARĪ²/Ī“) signaling pathway. J Biol Chem. 2014;289:14941ā€“54.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  44. Suppresses H. Genetic ablation of the fatty acid. Cancer Res. 2013;73:4770.

    Google ScholarĀ 

  45. Chen, H, Tan, H, Wan, J, Zeng, Y, Wang, J, Wang, H et al. PPAR-Ī³ signaling in nonalcoholic fatty liver disease: Pathogenesis and therapeutic targets. Pharmacology & therapeutics, 108391 (2023).

  46. Xiong Z, Chan SL, Zhou J, Vong JS, Kwong TT, Zeng X, et al. Targeting PPAR-gamma counteracts tumour adaptation to immune-checkpoint blockade in hepatocellular carcinoma. Gut. 2023;72:1758ā€“73.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  47. Peiseler M, Schwabe R, Hampe J, Kubes P, Heikenwaelder M, Tacke F. Immune mechanisms linking metabolic injury to inflammation and fibrosis in fatty liver diseaseā€“novel insights into cellular communication circuits. J HEPATOL. 2022;77:1136ā€“60.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  48. Pfister D, NĆŗƱez NG, Pinyol R, Govaere O, Pinter M, Szydlowska M, et al. NASH limits anti-tumour surveillance in immunotherapy-treated HCC. Nature. 2021;592:450ā€“6.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  49. Hirsova P, Ibrabim SH, Gores GJ, Malhi H. Lipotoxic lethal and sublethal stress signaling in hepatocytes: relevance to NASH pathogenesis [S]. J lipid Res. 2016;57:1758ā€“70.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  50. Lebeaupin C, VallĆ©e D, Hazari Y, Hetz C, Chevet E, Bailly-Maitre B. Endoplasmic reticulum stress signalling and the pathogenesis of non-alcoholic fatty liver disease. J HEPATOL. 2018;69:927ā€“47.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  51. Flessa C-M, Kyrou I, Nasiri-Ansari N, Kaltsas G, Papavassiliou AG, Kassi E, et al. Endoplasmic reticulum stress and autophagy in the pathogenesis of non-alcoholic fatty liver disease (NAFLD): current evidence and perspectives. Curr Obes Rep. 2021;10:134ā€“61.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  52. Vincenzi M, Mercurio FA, Leone M. Protein Interaction domains: structural features and drug discovery applications (Part 2). Curr Med Chem. 2021;28:854ā€“92.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  53. Goggins S, Marsh BJ, Lubben AT, Frost CG. Signal transduction and amplification through enzyme-triggered ligand release and accelerated catalysis. Chem Sci. 2015;6:4978ā€“85.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  54. Scott DE, Bayly AR, Abell C, Skidmore J. Small molecules, big targets: drug discovery faces the proteinā€“protein interaction challenge. Nat Rev Drug Discov. 2016;15:533ā€“50.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  55. Tward AD, Jones KD, Yant S, Cheung ST, Fan ST, Chen X, et al. Distinct pathways of genomic progression to benign and malignant tumors of the liver. Proc Natl Acad Sci USA. 2007;104:14771ā€“6.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  56. Stewart SA, Dykxhoorn DM, Palliser D, Mizuno H, Yu EY, An DS, et al. Lentivirus-delivered stable gene silencing by RNAi in primary cells. RNA (N. Y). 2003;9:493ā€“501.

    CASĀ  Google ScholarĀ 

  57. Chow S-C, Shao J, Wang H & Lokhnygina Y. Sample size calculations in clinical research. (chapman and hall/CRC, 2017).

Download references

Acknowledgements

We would like to acknowledge and thank the teachers from the Scientific Research Center of Zhongnan Hospital of Wuhan University for their help in this study.

Funding

This work was supported by Key Research and Development Program of Hubei Province (Grant No. 2021BCA114) and National Natural Science Foundation of China (Grant No. 82300675).

Author information

Authors and Affiliations

Authors

Contributions

XL, WH, XC, TW and YY devised and coordinated the project. WH, XC, TW and YY supervised the project. XL, HW and FL collected clinical HCC samples, XL, FL, JZ, DZ and YZ performed most of the experiments, XL, WH analyzed data. XL, PX, and WM provided significant intellectual input. XL, WH and WM wrote the manuscript with input from all other authors.

Corresponding authors

Correspondence to Tiangen Wu, Haitao Wang or Yufeng Yuan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics

The study was conducted in accordance with the principles of the Declaration of Helsinki principles. All animal experiments were approved by the Animal Use and Care Committees at Zhongnan Hospital, Wuhan University (License No. WP20220494). The human samples and data usage was reviewed and approved by the Scientific Research Ethics Committee of Zhongnan Hospital, Wuhan University (License No. 2022076ā€‰K).

Additional information

Publisherā€™s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., He, W., Chen, X. et al. TRIM45 facilitates NASH-progressed HCC by promoting fatty acid synthesis via catalyzing FABP5 ubiquitylation. Oncogene (2024). https://doi.org/10.1038/s41388-024-03056-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41388-024-03056-7

Search

Quick links