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In-utero exposure to maternal psychological distress is increasingly linked with disrupted fetal and neonatal brain development and
long-term neurobehavioral dysfunction in children and adults. Elevated maternal psychological distress is associated with changes
in fetal brain structure and function, including reduced hippocampal and cerebellar volumes, increased cerebral cortical gyrification
and sulcal depth, decreased brain metabolites (e.g., choline and creatine levels), and disrupted functional connectivity. After birth,
reduced cerebral and cerebellar gray matter volumes, increased cerebral cortical gyrification, altered amygdala and hippocampal
volumes, and disturbed brain microstructure and functional connectivity have been reported in the offspring months or even years
after exposure to maternal distress during pregnancy. Additionally, adverse child neurodevelopment outcomes such as cognitive,
language, learning, memory, social-emotional problems, and neuropsychiatric dysfunction are being increasingly reported after
prenatal exposure to maternal distress. The mechanisms by which prenatal maternal psychological distress influences early brain
development include but are not limited to impaired placental function, disrupted fetal epigenetic regulation, altered microbiome
and inflammation, dysregulated hypothalamic pituitary adrenal axis, altered distribution of the fetal cardiac output to the brain, and
disrupted maternal sleep and appetite. This review will appraise the available literature on the brain structural and functional
outcomes and neurodevelopmental outcomes in the offspring of pregnant women experiencing elevated psychological distress. In
addition, it will also provide an overview of the mechanistic underpinnings of brain development changes in stress response and
discuss current treatments for elevated maternal psychological distress, including pharmacotherapy (e.g., selective serotonin
reuptake inhibitors) and non-pharmacotherapy (e.g., cognitive-behavior therapy). Finally, it will end with a consideration of future

directions in the field.
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INTRODUCTION

Mental health disorders, including stress, anxiety, and depression,
are the most common complications of pregnancy. They affect up
to 15% of women in the prenatal period or first postpartum year
[1, 2]. This number is even higher in women with stress-related
symptoms that have not reached the severity of a mental disorder.
The term psychological distress is often used to encompass issues
like stress, depression, or anxiety that may fall short of meeting
the criteria for a mental disorder [3]. A recent study intent on
measuring prenatal maternal psychological distress in healthy,
highly educated, and well-resourced women suggests that 25% of
women test positive for elevated levels of anxiety and stress [4].
Similarly, nearly 1 out of every 5 women experience depressive
symptoms during pregnancy and after giving birth [5, 6]. The
prevalence of maternal psychosocial distress has been connected
to both daily life events and environmental hardships [7, 8].
Common reasons for distress include changes in the hormones
related to mood changes, dealing with discomforts of pregnancy,
financial problems, worries about what to expect during birth and
taking care of the baby, problems with their partner or family,
medical complications during pregnancy, and managing work
tasks [9].

Prenatal psychological distress is widely associated with
pregnancy complications, including preeclampsia [10], sponta-
neous abortion [11], preterm delivery [12], lower birth weight [13],
and neurodevelopmental problems in the offspring. Studies
examining the effects of prenatal maternal stress exposure on
brain development in the offspring have focused on newborns
[14-19], children [20-27], adults [28-31], and more recently,
fetuses [4, 32-35]. Importantly, exposure to prenatal maternal
stress is shown to have enduring and wide-ranging consequences
on brain development in the offspring, including altered regional
brain volumetric growth, cortical folding, metabolism, microstruc-
ture, and functional connectivity [4, 15, 19, 23-27, 35-39]. In
addition, the long-term neurodevelopmental impairments of the
offspring include a spectrum of cognitive, language, social-
emotional, learning and memory, and behavioral problems, as
well as neuropsychiatric dysfunction [13, 24, 26, 34, 40-46]. These
findings underscore the need for routine mental health surveil-
lance for all pregnant women and targeted interventions in
women with elevated psychological distress.

This paper will provide an overview of normal fetal brain
development while also appraising the current literature on the
brain structural, functional, and neurodevelopmental outcomes in

"Developing Brain Institute, Children’s National Hospital, Washington, DC 20010, USA. 2Department of Diagnostic Imaging and Radiology, Children’s National Hospital,
Washington, DC 20010, USA. These authors contributed equally: Yao Wu, Josepheen De Asis-Cruz *email: climpero@childrensnational.org

Received: 17 June 2023 Revised: 19 January 2024 Accepted: 23 January 2024

Published online: 28 February 2024

SPRINGER NATURE


http://crossmark.crossref.org/dialog/?doi=10.1038/s41380-024-02449-0&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41380-024-02449-0&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41380-024-02449-0&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41380-024-02449-0&domain=pdf
http://orcid.org/0000-0003-1735-0069
http://orcid.org/0000-0003-1735-0069
http://orcid.org/0000-0003-1735-0069
http://orcid.org/0000-0003-1735-0069
http://orcid.org/0000-0003-1735-0069
https://doi.org/10.1038/s41380-024-02449-0
mailto:climpero@childrensnational.org
www.nature.com/mp

Y. Wu et al.

20 GW 23 GW 26 GW 29 GW 32 GW 35GW

Fig. 1 Fetal brain segmentation. Brain tissue segmentation of fetuses at 24, 29, and 35 gestational weeks (GW) (the first row); brain 3D
surfaces of fetuses at 20, 23, 26, 29, 32 and 35 GW (the second row). The brain segmentation includes left (green) and right (blue) cortex, left
(yellow) and right (light green) subplate, left (grass green) and right (light pink) intermediate zone, left (light purple) and right (light brown)
germinal matrix, left (light orange) and right (orange) hippocampi, left (pink) and right (beige) white matter, left (light blue) and right (deep
green) deep gray matter, corpus callosum (light grass green), lateral ventricle (cyan), left (purple) and right (red) cerebellum, and brainstem
(brown).
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Fig. 2 2 Fetal functional connectivity. Functional connectivity strength follows a medial to lateral developmental gradient [56, 62] (A). In
brain regions (red dots in (B)) such as inferior frontal cortex (Brodmann areas, BA, 44), primary sensorimotor cortex (BA 2), middle temporal
gyrus (BA 21), and inferior temporal gyrus (BA 20), connectivity strength between homologous areas increases with advancing gestational age
[56]. In utero, overall brain connectivity showed a sigmoid, non-linear expansion curve, peaking between 26 and 29 weeks [adapted from [65]]

(€). Connections arising from regions in (D) reliably predict biologic sex; BG basal ganglia, CRB cerebellum, and FRO frontal [68].

the offspring of pregnant women experiencing elevated psycho-
logical distress. In the paper we will also review the mechanisms
underlying atypical brain development in prenatal stress expo-
sure and summarize current treatments for elevated maternal
psychological distress. Lastly, we will explore future directions in
the field.

Fetal brain development in healthy pregnancies

The human fetal brain begins to develop during the third week of
gestation but grows rapidly during the prenatal period, especially
in the third trimester [47]. Ultrasound is the primary modality used
to assess the fetus, but its low image resolution limits detailed
anatomical evaluation of the brain. With advances in ultra-fast
magnetic resonance imaging (MRI) alongside the development of
dedicated postprocessing tools addressing fetal motion, it is now
possible to quantify global and regional tissue-specific fetal brain
growth and brain function in vivo (Figs. 1 and 2). Volumetric
growth of the fetal brain is reported to increase by an average of
2.3 mL per day, with fetal brain volume averaging 10% of total
fetal volume throughout the third trimester in healthy fetuses [48].
During mid-gestation, the supratentorial volume, subplate, inter-
mediate zone, and deep gray nuclei have all shown increases of
around 15% per week between the 20-31 gestational weeks (GW).
Likewise, the cortical plate increases by approximately 18% per
week. The ventricles also grow at a more modest rate of 9.18% per
week. Interestingly, the germinal matrix volume slightly increases
then decreases after 25 GW [49]. The cerebellum demonstrates the
greatest growth rate during mid-late gestation from 18-40 GW
[50] followed by the white matter, cortical gray matter, deep
subcortical structures, brainstem, and lateral ventricles [47, 50]. It is
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important to note that asymmetric brain growth is present
prenatally, where the left cerebellar hemisphere, cortical gray
matter, and deep subcortical structures have larger volumes than
the right in earlier gestation. These differences, though, equalize
by term, and the white matter volume is reported to be larger on
the right hemisphere before 28 GW and after 36 GW [50].

In addition to volumetric measures, 3D morphometric analysis
of the human fetal cerebellum shows that cerebellar growth out-
paces that of the cerebrum and describes how cerebellar growth
impacts the shape of the structure between 20-31GW [51].
Specifically, transcerebellar diameter, vermal height, and vermal
anterior to posterior diameter increase significantly at constant
rates. Expansion along the inferior and superior aspects of the
cerebellar hemispheres results in decreased convexity along the
inferior vermis and increased convexity of the medial hemisphere
representing development of the paravermian fissure [51].
Another study on shape analysis of the brainstem and cerebellum
compares healthy fetuses between 30-40 GW with age-matched
ex-utero premature infants [52] and suggests that the left and
right cerebellar hemispheres grow faster compared to the vermis,
and the pons grows faster than the midbrain and medulla in both
groups [52].

Cortical surface analyses and gyrification indices are also used
to characterize fetal cerebral cortical development [53, 54]. A
study of healthy fetuses at 25-35 GW shows an exuberant third-
trimester gyrification process and suggests a non-linear evolution
of sulcal development [53]. Another study of fetuses at
21.7-389 GW indicates that after a slow initial start, cortical
folding increases rapidly between weeks 25-30. Folding subse-
quently slows down closer to birth. The same study also analyzes
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regional patterns in folding by parcellating the fetal cortex using a
nine-region anatomical atlas. The results show regional differences
in growth rate, with the parietal and posterior temporal lobes
exhibiting the fastest growth. Additionally, the cingulate, frontal
and medial temporal lobes also develop, but at a slower rate [55].
Taken together, these in-vivo studies of the fetal brain using
quantitative MRI confirm the robust brain growth that takes place
in utero.

Apart from mapping trajectories of structural brain growth in
utero, MRI has also enabled in-vivo evaluation of fetal brain
functional connectivity [56, 57]. In fetuses and newborns, resting-
state fMRI (rs-fMRI) is the predominant technique for imaging
emerging brain networks for its ability to interrogate multiple
systems simultaneously with minimal demands on the participant.
Resting-state fMRI measures blood oxygenation level-dependent
(BOLD) signal changes; brain activity is inferred, in turn, from the
BOLD response. In 2012, early in utero rs-fMRI studies detected
occipital and frontal networks in the developing brain [58, 591.
Since then, advances in image preprocessing and analysis have
enabled more comprehensive evaluations of the fetal brain
[60, 61]. Akin to structural maturation, regional differences in
functional connectivity trajectories have also been observed in
utero. Consistent with axonal growth patterns, a medial-to-lateral
gradient of network organization has been demonstrated, such
that connections between homologous medial structures are
stronger than those connecting lateral areas in utero. Connectivity
strength between most symmetric regions has been shown to
increase with advancing gestational age [56, 62]. Related to this,
one recent study has suggested that select networks track brain
maturity. Specifically, a network resembling the global signal in
adults has been shown to reliably predict the gestational age [63].
The relationship between connectivity and age, however, is
neither always positive nor linear. Posterior cingulate connectivity
to the rest of the brain, for example, weakens with increasing
gestational age [64]. Likewise, network strength shows a non-
linear, sigmoid expansion mid-gestation first at the occipital lobe
at around 26 GW, followed by the temporal, frontal, and parietal
networks [65]. Notably, non-linear components of networks tend
to predict fetal age more accurately than conventional linear
models [66]. Associations between gestational age and connec-
tivity also varies with sex, with male-female differences seen in the
posterior cingulate-temporal, fronto-cerebellar, and intracerebellar
connections [67]. Connections involving the somatomotor regions,
frontal cortices, and basal ganglia have also been shown to
reliably predict biologic sex [68].

Beyond individual connections, systemic network approaches
have also provided researchers with a powerful tool to concisely
map fetal functional brain organization. Fetal networks, like adults,
exhibit efficient small-world organization, suggesting that regions
are simultaneously well integrated with topologically distant
regions of the brain while forming specialized clusters with their
close-by neighbors [69, 70]. Fetal resting-state networks also tend
to form clusters or modules; this tendency, called modularity,
decreases with advancing gestational age [69, 70]. Using this
analytic framework, regions critical to brain network integrity,
called hubs, have also been identified. Most hubs are localized in
the cerebellum, while some are in the primary and association
cortices [71].

In contrast to rs-fMRI, task-based experiments are designed to
elicit sensory-driven brain responses, thus, activating targeted
networks. Because of the demands on the subject, this setup is
often not ideal for fetuses. Even so, there have been a few in-utero
task-based studies [72-76]. Most of these examine fetal responses
to auditory stimulus (e.g., maternal voice and music) and show
activation in audition-related regions in the temporal lobe,
including the Heschl's gyrus. Although these studies are limited
by a small sample size, they suggest the potential of directly
exploring emerging sensory processes in the fetal brain.
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Altogether, MRI studies have provided unprecedented insights
into fetal brain development. However, several issues related to
both the technical challenges of in-vivo fetal MR imaging and the
rapidly evolving anatomy of the developing brain need to be
considered when planning and interpreting fetal MRI studies.
Motion correction remains challenging as fetuses move in a
relatively unconstrained manner, although advances in fetal MRI
methodologies [77-79] have helped reduce the impact of high
motion on MR images. Further, some brain regions, including
those that play a role in stress such as the amygdala and
hippocampus (discussed below), may be difficult to reliably
differentiate on fetal MRI due to their small size and the minimal
contrast between these regions in the fetal period; this is an issue
that could be further compounded by motion. Studies have
suggested combining the image intensity information with
anatomical features to segment the fetal hippocampus on
structural MRI [80, 81]. However, accurate segmentation of the
fetal amygdala is an unsolved challenge. For functional MR,
similar to adults, the neurobiology of the fetal BOLD response is
not well understood. Further investigation is needed to determine
whether hemodynamic responses in fetuses also arise from
postsynaptic local field potentials [82, 83], as suggested by
evidence in adults. Nevertheless, with all the ongoing changes in
the developing brain (e.g., angiogenesis, neurogenesis, synaptic
formation, etc.), significant differences between the adult and fetal
BOLD response may be equally as likely [84].

In summary, these structural and functional studies describing
normal in-vivo brain development with the use of safe and non-
invasive imaging techniques have provided critical insights into
the progression of in utero fetal brain development, and have
provided an important tool for measuring alterations in fetal brain
development associated with maternal stress exposure, facilitating
earlier identification and targeted early intervention [47, 55].

Brain development outcomes in the offspring of pregnant
women who experienced elevated maternal psychological
distress

Prenatal maternal psychological distress and brain structural
development. Intra-uterine exposure to maternal psychological
distress has been linked with early and long-term alterations to
brain development in the offspring (Table 1). Elevated maternal
psychological distress during mid-gestation is associated with a
decrease in the newborn’s head circumference [13], a decrease in
the regional cerebrum and cerebellum gray matter volumes of
children at 6-9 years of age [23], a reduction in cortical thickness
in the bilateral precentral gyrus and dorsolateral prefrontal cortex
in newborns [18], the right inferior frontal and middle temporal
regions at 2-5 years old [25], the frontal and temporal regions in
children at 7 years old [85], and the whole cortex and frontal lobes
in children at 6-9 years old [21, 24]. Interestingly, prenatal
maternal stress is also associated with decreased cortical gray
matter volume and increased cortical gyrification in adult
offspring [28, 30, 311.

In addition to the cortical area, the amygdala and hippocampus
are particularly vulnerable to prenatal psychological distress.
Greater prenatal maternal depressive symptoms are associated
with larger right amygdala volume in infants under 2 months old
and girls at 4.5 years old [39, 86, 87]. Consistently, higher maternal
cortisol levels in early gestation also lead to a larger right
amygdala volume in girls at 7 years old [26]. Similarly, disaster-
related prenatal maternal stress is associated with larger amygdala
volumes in children at 11 years old [88]. On the contrary, prenatal
maternal psychological problems and depressive symptoms are
negatively associated with amygdala volumes in newborns and
young children, especially in males [89, 90]. In the hippocampus,
elevated prenatal maternal anxiety is associated with slower
growth of the left and right hippocampus during the first
6 months of life [36]. A negative maternal cognitive appraisal of
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the 1998 Quebec ice storm’s consequences is associated with
smaller hippocampal volumes in children at 11 years old [38].
While prenatal maternal depression is positively associated with
the hippocampal volume in female infants at 2—-6 weeks old [86].
Recent fetal studies find that elevated maternal psychological
distress is associated with a decrease in fetal hippocampal,
cerebellar, and white matter volumes and increases in fetal
brainstem volume, cortical gyrification, and sulcal depth
[4, 32, 35, 91]. These data underscore the striking changes in
brain structure that ensue in the weeks, months, years, and
decades after offspring are exposed to maternal psychological
distress during pregnancy.

Prenatal maternal psychological distress and brain microstructural
development. Altered white matter microstructures after prenatal
stress exposure are also reported in the newborn, where maternal
depression is positively associated with fiber density in the
neonatal uncinate fasciculus [92]. Maternal anxiety is negatively
correlated with fractional anisotropy (FA) in the neonatal right
insular cortex, middle occipital and inferior temporal regions,
angular gyrus, uncinate fasciculus, posterior cingulate, parahippo-
campus, dorsolateral prefrontal, inferior frontal regions, and
inferior fronto-occipital fasciculus, and bilateral superior temporal
and left postcentral, orbitofrontal, prefrontal and middle frontal
gyrus regions [16, 93]. Maternal depression is also connected with
lower FA and axial diffusivity in the right amygdala of newborns
[15]. Compared with females, male offspring exposed to greater
maternal depressive symptoms at 14GW show higher left
amygdala mean diffusivity (MD) [17]. Additionally, elevated
maternal depression and anxiety are associated with decreased
neurite density and increased mean, radial, and axial diffusivity in
the right frontal white matter microstructure in infants [94]. In
children, elevated prenatal maternal depression also correlates
with lower radial and mean diffusivity in the lateral portions of the
uncinate, the inferior fronto-occipital, and the arcuate fasciculi. It is
also associated with higher MD in the cingulum, amygdala-frontal
tract, and uncinate fasciculus, and lower FA in the cingulum
[20, 25, 95]. Moreover, prenatal maternal stressful life events are
positively correlated with right uncinate fasciculus FA, and
negatively with right uncinate fasciculus perpendicular diffusivity
in children [27]. In adult offspring, prenatal maternal stress is
associated with lower magnetization transfer ratio and myelin
water fraction in the genu and splenium of the corpus callosum,
and lower magnetization transfer ratio in white matter in young
adults [96].

Prenatal maternal psychological distress and brain biochemistry.
Disturbances in important brain biochemicals in the setting of
maternal psychological distress have also been reported, mostly in
animal studies. These include reductions in N-acetylaspartate (a
marker of neuronal integrity) in the frontal cortex and hypotha-
lamus in early-life stress-exposed mice [97-99] and altered
neurotransmitter metabolism of gamma-aminobutyric acid and
glutamate in the right hippocampus of pre-gestational stress-
exposed rat offspring [100]. A decrease in choline and creatine
levels is also found in the left hippocampus and centrum
semiovale in human adults with anxiety disorder [101, 102]. A
recent human fetal study reports that prenatal maternal depres-
sion has a negative association with both creatine and choline
levels in the fetal brain [4]. Fetal brain N-acetylaspartate, creatine,
and choline levels also decrease as maternal stress score increases
[4]. The same group also suggests positive associations between
maternal stress and anxiety and lactate levels in the fetal brain
[103]. Metabolic alterations in the in utero fetal brain have been
shown to precede morphologic brain changes [104] and may
provide new insights into the mechanisms that underlie impair-
ments to fetal brain development concerning prenatal maternal
psychological distress [105]. These data suggest that altered brain
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metabolism in the setting of maternal psychological distress may
have important implications for impaired brain structural and
functional development in the offspring.

Prenatal maternal psychological distress and functional brain
connectivity. Prenatal exposure to psychological distress is also
associated with altered functional connectivity [19, 37]. In healthy
fetuses, in utero exposure to heightened maternal anxiety is linked
to altered functional connectivity in sensorimotor and association
cortices. Connections that develop earlier (i.e., brainstem and
sensorimotor areas) are stronger in high-anxiety states, while
parieto-frontal and occipital connections that develop later are
weaker. Increased hippocampal connectivity to medial and
superior frontal gyri is also present in fetuses of women with
high trait anxiety [33]. Higher maternal negative affect and stress
are linked to alterations in the insula and inferior cerebellar
functional connectivity as well as increased sleep problems at 3-5
years old, although connectivity changes do not seem to mediate
the maternal stress-behavior relationship [106]. Recently, increases
in hippocampal connectivity due to elevated maternal stress and
cortisol have also been reported [107]. Increased connectivity to
the right posterior parietal cortex is associated with elevated
maternal stress while increased coupling with the medial
prefrontal area and dorsal anterior cingulate cortex is related
to increased maternal cortisol. Importantly, the latter association,
but not the former, is moderated by fetal sex. This suggests
that there are different mechanisms by which stress and cortisol
impact the developing hippocampal circuitry. Altogether, these
studies demonstrate the susceptibility of fetal neural circuitry,
particularly the limbic structures, to maternal psychological
distress.

Aberrant hippocampal connectivity is also reported in infants
with prenatal exposure to elevated maternal distress. Symptoms
of stress correlate inversely with connectivity to the dorsal and
mid-cingulate areas, but positively to the temporal lobe; most
notably, increased 2nd-trimester cortisol levels correlate with
alterations in hippocampal connectivity [108]. Similarly, the
amygdala and medial prefrontal cortex coactivate less in stress-
exposed newborns. This contrasts with structural integrity, which
increases between these regions [109]. In-utero exposure to
maternal stress also exacerbates weakened limbic connectivity in
very premature newborns, such that reductions in connectivity
between the amygdala and subcortical areas are greater in stress-
exposed preterm infants compared to non-exposed preterm
infants [19]. Interestingly, weaker connectivity between the
amygdala and anterior default mode network is observed in
newborns whose mothers experience high psychosocial stress and
are living in neighborhoods with high property or violent crime
rates. The brain-neighborhood association is mediated, in part, by
maternal psychosocial stress. Weakened newborn amygdala-
hippocampus connectivity is also related to violent crime [110].
Alterations in infant amygdala circuitry are also reported in cases
of maternal depression. Experiencing elevated symptoms of
maternal depression during the 2™ trimester is closely associated
with increased connectivity of the amygdala to the left temporal
cortex, insula, anterior cingulate, and the medial and ventromedial
prefrontal cortices. Notably, these areas are involved in socio-
emotional processing and memory, similar to regions implicated
in depression in adults [37]. Later exposure (i.e., 3rd trimester) to
heightened depression symptoms is linked to decreased con-
nectivity to prefrontal circuits at around 5 weeks of life [111].
Higher maternal depression scores also correlate with weaker
connectivity between bilateral hippocampi and posterior cingu-
late cortex in newborns [108]. Associations between the amplitude
of regional neuronal activity (i.e., the fractional amplitude of low-
frequency fluctuation, as opposed to inter-regional co-activation
revealed by the canonical BOLD) in newborn’s medial prefrontal
cortex and combined maternal depression and anxiety scores
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have also been reported [112]. Infants of women who were
pregnant during the COVID-19 pandemic with low social support
reportedly display weaker connectivity between the right
amygdala and superior orbitofrontal cortex [113].

Associations between exposure to maternal psychological
distress and connectivity persist beyond the perinatal period. In
young girls, there is an association between greater maternal
depression and weakened connectivity of the amygdala to the
cortico-striatal circuitry, particularly in the insula, putamen,
orbitofrontal cortex, and temporal pole [114]. Similarly, elevated
maternal anxiety during the 2nd trimester is also linked to greater
negative amygdala connectivity to bilateral somatosensory
cortices and the left inferior parietal lobule [115]. In another
study, exposure to maternal depression in utero is linked to
amygdala hyperresponsivity during childhood [116]. Adult off-
spring of pregnant women with high anxiety display weakened
connectivity between the medial prefrontal cortex and inferior
gyrus and between the left lateral prefrontal cortex and
sensorimotor cortex. In women exposed to high levels of prenatal
stress, the stress and functional connectivity between the left
medial temporal lobe and the subgenual anterior cingulate cortex
are highly correlated [28]. More importantly, orbitofrontal cortex
and middle temporal cortex connectivity track the severity of
depression symptoms. Altogether, functional connectivity findings
suggest that disrupted neural circuitry related to maternal
psychological distress begins early and persists throughout the
lifespan and underscore the importance of addressing maternal
mental health issues to improve maternal-fetal care.

Sex differences in brain development after prenatal stress exposure.
There is a body of literature which suggests alterations in brain
development due to maternal stress, anxiety, or depression during
pregnancy may be sex-specific. Studies suggest that maternal
depression measured at 26 GW and saliva cortisol levels at 15 GW
are associated with larger right amygdala volume in girls only
[26, 39]. Also, elevated pregnancy-related anxiety in the 2nd
trimester is related to greater left-relative amygdala volume in
girls vs. boys [22]. These results underscore the selective
vulnerability of the amygdala to prenatal maternal stress,
especially in girls [39]. Additionally, early prenatal maternal stress
has been associated with increased temporal cortical gyrification
index in female adults [30]. Similarly, sexually dimorphic functional
brain changes that are related to stress have been documented in
the past. Sex-specific associations between maternal cortisol and
amygdala connectivity in newborns has also been demonstrated.
In females, higher cortisol levels are correlated with greater
amygdala connectivity to diverse networks (e.g., default mode
network and emotion regulation); the reverse is true in males
[117]. Elucidating sexual dimorphism in brain changes related to
maternal psychological distress is critical for understanding the
complex interplay between genetics, prenatal environment, and
neurodevelopment. It underscores the importance of considering
sex as an important variable while studying the effects of maternal
mental health on offspring brain development.

Neurobehavioral outcomes in the offspring of pregnancies
complicated by elevated maternal psychological distress
Prenatal maternal psychological distress has been shown to have
enduring consequences on long-term neurobehavioral develop-
ment in the offspring [13, 24, 26, 34, 40-46], partially through
altered brain structure and circuitry [118, 119]. Prenatal maternal
stress has recently been associated with decreased cognitive
performance of toddlers at 18 months [34]. This association is
partially mediated by fetal left hippocampal volume [34]. At later
ages, prenatal maternal depression and disaster-related stress are
associated with externalizing behaviors in children. These
associations are mediated by child cortical thinning in prefrontal
areas of the right hemisphere [24], amygdala volume [88], and an
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altered structural connectivity between the amygdala and frontal
cortex [95]. In addition, elevated levels of maternal pregnancy-
specific anxiety are also associated with child executive function,
including lower inhibitory control in girls and lower visuospatial
working memory performance in both boys and girls [44].
Moreover, a large body of research shows that prenatal maternal
psychological distress is associated with mental health problems
in children, adolescents, and even adult offspring [42, 45, 85]. One
study suggests that elevated pregnancy-related anxiety is
associated with more emotional symptoms, peer relationship
problems, and overall child difficulties in young children. The child
left amygdala volume may partly mediate the associations
between maternal anxiety and child behavioral difficulties [22].
The amygdala volume is also suggested to partially mediate the
associations between elevated maternal cortisol levels at 15 GW
and affective problems in girls [26]. In addition, prenatal maternal
stress has been associated with elevated depressive symptoms in
adolescent offspring, and early childhood changes in fronto-
temporal cortical thickness in the setting of prenatal maternal
stress are correlated with adolescent depressive symptoms [85]. In
adult offspring, prenatal maternal stress and depression are linked
to increased cortical gyrification index in the temporal region and
the brain age gap (i.e,, the differences between chronological and
structural brain age). These brain changes are further related to
adult mood disturbances [29, 30].

Additionally, some of the reported functional alterations related
to prenatal exposure to maternal psychological distress have been
linked to neurobehavioral outcomes. One previous study shows
that maternal cortisol predicts internalizing score on the Child
Behavior Checklist at 2 years of age. In girls, this relationship is
mediated by increased amygdala connectivity [117]. Also,
connectivity between the hippocampus and dorsal anterior
cingulate cortex, which is inversely associated with maternal
stress, has been noted to correlate positively with infant memory
[108]. Low socio-economic status, which has been linked to
maternal stress [120, 121], has also been correlated with altered
striatal and medial prefrontal connectivity at birth, which mediates
the relationship between low socio-economic status and beha-
vioral inhibition at 2 years of age [122].

These studies suggest that prenatal maternal mental distress,
even if not reaching the severity of a mental disorder, has an
impact on neurodevelopmental outcomes in the offspring, and
cannot be ignored.

Mechanistic underpinnings of brain development changes in
stress response

It is well-known that the intra-uterine environment plays a critical
role in supporting fetal brain growth and development. The
human brain begins to develop at the embryonic stage and
continues to grow rapidly throughout the fetal stage, particularly
over the third trimester of pregnancy [50]. Notably, this rapid
period of fetal brain growth and maturation is sensitive to hostile
intra-uterine conditions, such as prenatal malnutrition [123],
infection [124], drugs [125], and stress [126]. The mechanisms by
which maternal psychological distress influences early brain
development are complex and multifactorial. Impaired placental
function has previously been implicated, including a decrease in
placental expression of monoamine oxidase A [127] and 11pB-
hydroxysteroid dehydrogenase type 2 [128], which may increase
fetal exposure to 5-hydroxytryptamine and cortisol, respectively.
5-hydroxytryptamine affects cell neurogenesis, migration, and
differentiation of the fetal brain [129], and elevated cortisol
exposure affects gene expression in fetal brain cells [130]. In
addition, maternal distress is associated with increased uterine
artery resistance, which may impair placental perfusion and
decrease oxygen and nutrient delivery to the fetal brain [131]. A
recent study also suggests that elevated prenatal maternal
depression is associated with decreased fetal middle cerebral
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arterial resistive index, which reflects a redistribution of the
combined fetal cardiac output to the brain [35]. Elevated prenatal
maternal stress is also suggested to alter the microbiome, and the
maternal microbiome has been associated with the development
of the fetal brain and infant microbiome [132-134]. Disrupted
maternal sleep and appetite under stress is another possible factor
[135]. Moreover, maternal inflammation may play a role, given
that maternal stress has been associated with increased inflam-
matory markers and altered cytokine production during preg-
nancy [136-139]. The literature points to a relationship between
maternal Interleukin-6 concentration during pregnancy and
altered newborn brain structure and functional connectivity
[140, 141]. Additionally, C-reactive protein (CRP), an inflammatory
marker, is elevated as prenatal maternal mental distress increases
[142, 143], and elevated gestational CRP levels have been
associated with increased risk of preterm birth [144], adverse
infant and child brain developmental outcomes [144, 145], as well
as autism and schizophrenia in the offspring [146, 147]. The
hypothalamic pituitary adrenal (HPA) axis also plays a central role
in mediating the effect of maternal psychological distress on the
fetal brain [148]. Interestingly, there are reports that maternal
psychological distress affects DNA methylation in the
corticotropin-releasing hormone and glucocorticoid receptor gene
(NR3CT) in neonatal cord blood [149], and brain-derived neuro-
trophic factor in infants [150]. Additionally, there are reports of
higher stress-related gene SLC6A4 methylation in newborns after
exposure to elevated prenatal stress. The SLC6A4 methylation is
suggested to influence infants’ temperament [151]. These studies
address potential disturbances in fetal epigenetic regulation.
Importantly, the literature suggests a range of prenatal exposures
that can collectively impact fetal development [152-156]. Some
factors frequently overlap and may trigger similar biological
pathways [152, 153]. In addition to psychological distress,
exposures that may impact fetal brain development include social
determinants of health (income, education, racism, health care
access/quality, neighborhood disadvantage, parental care, social
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support), lifestyle factors (smoking, diet, sleep, exercise, alcohol
intake), physical and chemical exposures (radiation, pesticides,
food and water contaminants, air pollution, substance use),
medical problems (infections, hypertension, diabetes, obesity,
malnutrition, chronic medical conditions), ecosystems and climate
(green space, population density), etc. These factors can be
associated with one another [152]. It is possible that the
association between distress and the physiological response
may be mediated by other variables, or distress may be the
mediating variable to other exposures. The shared biological
mechanisms make it difficult to precisely map prenatal exposures
to their effects on fetal brain development, highlighting the need
to study these factors as a group rather than as single entities.
Lastly, it is noteworthy that maternal psychological stress during
pregnancy may not be transient but persistent across the
postnatal period with subsequent influences on both parent-
child interactions and infant self-requlation [35]. High levels of
maternal psychological distress during the postnatal period may
increase the possibility of exposing children to a harsh parenting
environment which could have lasting detrimental impacts on
children while increasing the likelihood of internalizing and
externalizing problems in the short and long term [157]. The
possible mechanisms underpinning brain development changes
due to stress response are summarized in Fig. 3.

Current treatment for elevated maternal psychological
distress

Maternal psychological distress is prevalent during pregnancy. The
main treatment strategies include pharmacotherapy and
psychotherapy.

Pharmacology. Although there are many antidepressants avail-
able, medication choices are often more limited for pregnant
women. Selective serotonin reuptake inhibitors (SSRIs) and
serotonin and norepinephrine reuptake inhibitors (SNRIs) are the
most commonly used antidepressants during pregnancy and the
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postpartum period. SSRIs work by increasing the levels of
serotonin in the brain. SNRIs work similarly to SSRIs by increasing
the levels of serotonin and norepinephrine in the brain. Both are
considered safe for use in pregnancy [158, 159]; however, they still
pose some risks. A treatment of SSRIs/SNRIs in the third trimester
of pregnancy may result in increased incidences of neonatal
adaptation syndrome, which is characterized by a low Apgar
score, hypoglycemia, weak muscle tone, respiratory difficulties,
and total restlessness [160, 161]. While the adaptation syndrome is
considered to be temporary, newborns exposed to SSRIs or SNRIs
at the end of the pregnancy could require longer hospitalization,
tube feeding, and breathing support [161]. The current literature
also suggests that women who received SSRI treatment during
pregnancy have a significantly higher risk of developing preterm
birth compared with controls and depressed women not on SSRls
[162]. Prenatal SSRI exposure is linked with alterations in the
postnatal brain, including increased gray matter volume in the
right amygdala and right insula, as well as increased structural
connectivity between the right amygdala and right insula in
infants [129]. It also relates to higher connectivity in putative
auditory resting-state networks [163] and lower fractional
anisotropy, increased mean and radial diffusivity for multiple
white matter fiber bundles in newborns [164]. Children exposed to
prenatal SSRIs are also more likely to have Chiari | malformations
when compared to children with no SSRI exposure [165].
Additionally, a meta-analysis study suggests that SSRI use during
pregnancy may have long-term effects on neurobehavior and
performance in the offspring [166]. Infants and toddlers exposed
to SSRIs prenatally have lower motor development scores and
decreased motor control [167]. In addition, infants who are
exposed to SSRIs may have an attenuated pain response and an
abnormal EEG, which is suggestive of encephalopathy. This
attenuated response may result from increased serotonin (5-HT)
and GABA agonists in the fetal brain under SSRI exposure
[166, 168]. In addition to SSRIs and SNRIs, tricyclic antidepressants
have also been prescribed to pregnant women for several
decades. However, tricyclic antidepressants are considered to
cause more side effects than SSRIs and SNRIs [169].

Non-pharmacology. Psychotherapy is an effective and
medication-free way of managing and treating mental distress.
Psychological interventions include different treatment formats
(i.e., individual therapy, group therapy, or guided self-help)
[170, 171]. There are many types of psychotherapy available,
including but not limited to cognitive-behavior therapy (CBT),
interpersonal psychotherapy (IPT), supportive treatment (ST),
psychodynamic treatment (PDT), mindfulness-based interventions,
and behavioral activation therapy [172, 173]. A review study
suggests that for the treatment of depression, patients receiving
CBT are more likely to see improvements than those receiving
PDT, IPT, ST, or treatment as usual [174]. For addressing prenatal
psychological distress, CBT helps to identify and change negative
thinking and behavioral patterns that affect how the patients feel.
CBT is considered an acceptable, feasible, and effective interven-
tion for women with anxiety and depression during pregnancy
[175, 176]. IPT, which focuses on improving the patients’ relation-
ships with others, is also commonly recommended during
pregnancy. IPT shows a moderate treatment effect for prenatal
anxiety and depression [175]. Mindfulness-based interventions
can be effective in improving prenatal maternal anxiety and
depressive symptoms [177, 178]. In addition, body-oriented
interventions and acupuncture may also reduce prenatal depres-
sive symptoms [175]. A review study of Black and Latin American
women in the United States concludes that participants with
psychotherapy interventions, including CBT (applied in most
studies), IPT, acceptance and commitment therapy, problem-
solving therapy, CBT plus positive parenting, Enhanced Triple P for
Baby and Mellow Bumps, Motherly app plus brief online CBT, all
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showed less prenatal and postpartum anxiety than those in the
routine care-review paper [179]. Psychotherapy has also been
suggested as an effective way of reducing postpartum depression
symptoms and improving coping with stress and negative
emotions in depressed mothers [180-182], as well as improving
the patterns of interactions between mothers and their children
[157, 182]. Importantly, these studies find that psychotherapy in
distressed parents has a positive impact on the mental health of
their children [182-184]. Results show children of families
receiving cognitive and behavioral-based interventions demon-
strate fewer severe anxiety symptoms overall and have a
significantly lower onset rate for anxiety disorders compared to
those assigned to the control group over a 1-year follow-up period
[183, 184]. Other medication-free options that may help improve
maternal psychological distress symptoms include music therapy
[185], journal therapy [186], light therapy [187], hypnosis [188],
yoga exercise [189], omega-3 fatty acid supplementation [187],
and getting enough quality sleep [190].

To compare the effectiveness of psychological and pharmaco-
logical treatments, a review paper that covers 30 randomized
controlled trials of 3178 participants from North America, Mexico,
and the United Kingdom suggests that treatment for depression
with SSRIs is more effective than psychological therapy and the
effect of treatment with other antidepressants is similar to that of
psychological therapy. In the short-term treatment of depression,
psychological and pharmacological therapies have similar efficacy
[171]. Another meta-analysis study also concludes that the efficacy
of psychotherapy for mild to moderate depression is about the
same as the efficacy of pharmacotherapy, and that combined
treatment is more effective than psychotherapy alone or
pharmacotherapy alone [191]. Drop-out rates are suggested to
be lower in psychological therapy as compared to pharmacolo-
gical therapy [171].

Future directions

Even though maternal psychological distress is the most common
complication during pregnancy and the postpartum period, up to
70% of women impacted remain undiagnosed and thus
untreated. Among the women who receive screening, only one-
third with depression receive formal mental health care [192].
These findings highlight the need for routine mental health
surveillance for all women during pregnancy and postpartum. In
addition to universal screening, targeted psychological interven-
tions are recommended as the most effective approach to prevent
prenatal and postnatal depression, especially among those with
risk factors, such as a history of mental disorders, financial
concerns, unwanted pregnancies, and a lack of support [193, 194].
Studies suggest that universal prevention (e.g., CBT, IPT, mind-
fulness, and psychoeducation) during pregnancy is effective in
decreasing symptoms of maternal distress compared to routine
care and recommends psychotherapy as a part of standard
prenatal self-care [178, 194, 195]. Preventive mental health care
during pregnancy should complement usual prenatal care to
improve symptoms of maternal depression and anxiety
[178, 194, 195]. There is also a desire to personalize interventions
and treatments to fit each patient’s needs. Social support, which
includes support in developing and maintaining personal, family,
and social relationships, may also be a vital protective factor for
mental health across demographics [196-199].

Advances in quantitative MRI have provided a unique window to
study the fetal brain and greatly improved our understanding of the
role of maternal psychological distress on fetal neurodevelopment.
Imaging has provided previously unavailable clues on possible
neurobiological substrates for behavioral phenotypes later seen in
children exposed to symptoms of stress, anxiety, and depression in
utero. The convergence of brain imaging findings on susceptible
brain structures such as the amygdala, hippocampus, and medial
frontal cortical areas, regions previously implicated in the stress
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response, suggests potential mechanisms by which maternal stress
is relayed to the developing fetuses. Further progress in the field
will require large-scale, longitudinal studies that leverage structural
and functional MRI modalities to advance our understanding of
how maternal mood impacts the developing brain. By collabora-
tively building large databases that capture serial measures of brain
development at key developmental intervals (prenatal, neonatal,
infant, toddler, school-age, adolescents), researchers and clinicians
can formulate more robust and generalizable brain-behavior
models, but also probe individual variations in the maternal-fetal
stress response. Identifying in utero brain biomarkers that reliably
predict long-term outcomes will rely heavily on the development of
precision fetal imaging to support more timely and accurate
neurologic surveillance and targeted early interventions to measure
treatment response [200]. To complement precision fetal brain
imaging, a multidimensional framework that incorporates genetics,
epigenetics, computational neuroscience, neuropsychology, and
medicine is urgently needed to characterize the complex interplay
between the developing fetus and the external environment,
particularly for interrogating the mechanisms underlying interge-
nerational transmission of stress.
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