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Severe speech disorders lead to poor literacy, reduced academic attainment and negative psychosocial outcomes. As early as the
1950s, the familial nature of speech disorders was recognized, implying a genetic basis; but the molecular genetic basis remained
unknown. In 2001, investigation of a large three generational family with severe speech disorder, known as childhood apraxia of
speech (CAS), revealed the first causative gene; FOXP2. A long hiatus then followed for CAS candidate genes, but in the past three
years, genetic analysis of cohorts ascertained for CAS have revealed over 30 causative genes. A total of 36 pathogenic variants have
been identified from 122 cases across 3 cohorts in this nascent field. All genes identified have been in coding regions to date, with
no apparent benefit at this stage for WGS over WES in identifying monogenic conditions associated with CAS. Hence current
findings suggest a remarkable one in three children have a genetic variant that explains their CAS, with significant genetic
heterogeneity emerging. Around half of the candidate genes identified are currently supported by medium (6 genes) to strong
(9 genes) evidence supporting the association between the gene and CAS. Despite genetic heterogeneity; many implicated
proteins functionally converge on pathways involved in chromatin modification or transcriptional regulation, opening the door
to precision diagnosis and therapies. Most of the new candidate genes for CAS are associated with previously described
neurodevelopmental conditions that include intellectual disability, autism and epilepsy; broadening the phenotypic spectrum to a
distinctly milder presentation defined by primary speech disorder in the setting of normal intellect. Insights into the genetic bases
of CAS, a severe, rare speech disorder, are yet to translate to understanding the heritability of more common, typically milder forms
of speech or language impairment such as stuttering or phonological disorder. These disorders likely follow complex inheritance
with polygenic contributions in many cases, rather than the monogenic patterns that underly one-third of patients with CAS.
Clinical genetic testing for should now be implemented for individuals with CAS, given its high diagnostic rate, which parallels
many other neurodevelopmental disorders where this testing is already standard of care. The shared mechanisms implicated by
gene discovery for CAS highlight potential new targets for future precision therapies.
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INTRODUCTION
Speech acquisition is a biologically driven, inexorable develop-
mental process in most infants. Yet up to 5% of children develop
common speech disorders including stuttering, articulation and
phonological impairments [Table 1]. These common conditions
are highly tractable and tend to resolve, with or without
intervention, by 7 years of age [1, 2]. By contrast, 1 in 1000
children follow a severely disrupted developmental path to an
intractable speech disorder known as childhood apraxia of speech
(CAS) [3]. In these individuals, early development is often marked
by hypotonia, feeding difficulties, limited babbling, delayed onset
of first words, and marked difficulty in acquiring speech which is
unintelligible in the preschool years, when a diagnosis is usually
made [4]. The condition was first described by pioneering British
speech therapist Muriel Morley in 1957 who identified a childhood
speech presentation akin to the speech praxis seen in adults
following lesions to Broca’s area, with the crux of the diagnosis
being difficulty accurately producing sound sequences [5].

Since the original description of CAS, there has been ongoing
debate over the defining diagnostic features of the condition [6].

In 2007, the American Speech and Hearing Association supported
an expert-based consensus which defined the three diagnostic
features of CAS (Table 1) [7]. Whilst the condition is largely framed
as a ‘motor’ speech disorder resulting from movement planning or
programming deficits, language and literacy impairments also
occur in over 90% of individuals [8-10]. Furthermore, neuroima-
ging points to perturbation of linguistic as well as motor
pathways, in affected individuals [11].

Recently, the CAS phenotype has increasingly been associated
with commonly occurring neurodevelopmental comorbidities,
including motor and cognitive impairments, attention deficit
hyperactivity disorder, seizures and autism spectrum disorders
[8-10]. Similar to the presentation of these neurodevelopmental
disorders (NDDs), speech and language disorders rarely occur in
isolation, and rather are found in a broader context of perturbed
neurodevelopment.

Until recently, understanding of the aetiology of CAS was limited.
Parents of children with CAS would embark on a diagnostic odyssey
to investigate the chronic and striking nature of the condition. Early
studies have implicated copy number variants (CNVs), including
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Table 1. Speech disorder phenotypes.

Speech disorder Operational definition Prevalence Natural history & Aetiology
tractability

Articulation [39] Disorder of speech sound production. Consistently distorts one or more speech 5% Highly tractable, majority Complex

sounds (phones) in absence of known cause (e.g., hearing loss, cleft palate, missing

teeth). Prosody unaffected.
Phonological [39]

Disorder in understanding/use of speech sounds (phonemes) of language to convey 5%
meaning. Child makes atypical errors seen in <10% of peers, e.g. phonological process

preschoolers resolve by 7 yearsA multifactorial

Complex
multifactorial

Highly tractable, majority

preschoolersA resolve by 7 years

of “backing’; where a posteriorly produced sound is used in place of an anteriorly
produced sound, e.g., says key for tea, or gog for dog. Vowels, prosody unaffected.

Stuttering [40]

Dysarthria [13]

articulation, prosody, resonance.

Childhood apraxia
of speech (CAS) [7]

Disorder of speech fluency characterized by repetitions (of sounds, syllables, words 10%
and/or phrases), prolongation of sounds, and hesitations and/or blocks.

Disorder of central or peripheral nervous system affecting neuromuscular control and 0.1%
tone, e.g., spasticity, ataxia, fluctuating tone, involuntary movements. This results in
imprecision of speech due to impairments in one or more areas of phonation,

Disorder of motor programming/planning. Core features: 1. inconsistent production of 0.1%
consonants and vowels across repeated productions, 2. lengthened and impaired
coarticulatory transitions between sounds and syllables (e.g., omissions of sounds,

Tractable in some, 65%
developmental forms
resolve by 7 years

Monogenic,
complex
multifactorial

preschoolers

Less tractable, never
resolves but responsive to

Monogenic,

preschoolers complex

therapy multifactorial
Less tractable, rarely Monogenic,
preschoolers resolves but responsive to complex

therapy multifactorial

vowel errors, repetitions), 3. inappropriate prosody/disrupted intonation, e.g., placing
stress on a typically unstressed syllable or using equal stress across all syllables.

Table 1 key: focuses on neurodevelopmental forms of speech disorder, not structural (eg. cleft lip or palate, malocclusion of mandible and maxilla; or acquired
(eg. brain tumour, stroke, traumatic brain injury). *Some children have phonological delay as opposed to disorder. This is a delay, in understanding/use of
speech sounds of one’s language to convey meaning. A child persists in the use of developmental error patterns as seen in the phonology of younger children,
eg. a 6 year old using the phonological process of stopping fricatives, substituting a ‘b’ for ‘" (bish for fish), which should have resolved at age 4 years. Vowels

and prosody are unaffected.

chromosomal aneuplodies involving multiple genes, and single
nucleotide variants (SNVs) in individual genes, to CAS.

A specific neurogenetic basis for CAS was first identified in 2001,
with the seminal discovery that pathogenic missense SNVs in FOXP2
[12], a transcriptional repressor, were associated with CAS, initially
inherited in a large multiplex family, but subsequently also found to
arise de novo in sporadic cases. Functionally related transcription
factors and downstream targets of FOXP2 were subsequently
investigated, namely CNTNAP2 (MIM: 604569), FOXP1 (MIM: 605515)
and TBR1 (MIM:606053). Although these genes have been
associated with intellectual disability syndromes and ASD, they
have not explained cases ascertained for primary or isolated speech
or language disorder [13-15]. The next most promising candidate
gene for CAS was GRIN2A, which is also associated with the
epilepsy-aphasia syndromes, now termed developmental and/or
epileptic encephalopathy with spike-wave activation in sleep [16],
and including Llandau-Kleffner syndrome [17-19]. Yet again, as for
CNTNAP2, FOXP1 and TBR1, pathogenic variants in GRIN2A have not
been identified in cohorts ascertained for a primary diagnosis of
speech or language disorder in the absence of epilepsy.

Advances in microarray technology have also led to numerous
chromosomal deletions being associated with CAS, but typically in
the presence of cognitive impairment or ASD, such as 16p11.2
deletion [20, 21]. Some of these CNVs have drawn attention to
possible genes in the pathogenesis of CAS such as 18q12.3
microdeletions encompassing SETBP1 [22], 12p13.33 microdele-
tions including ELKS/ERC1 [23], 2p15-p16.1 microdeletions encom-
passing and proximal to BCL11A [24], 7q11.23 duplication
syndrome [25] implicating a number of genes and 17g21.31
deletion or Koolen-de Vries syndrome encompassing KANSL1 [26].

Most recently, advances in massively parallel sequencing tech-
nologies and bioinformatic algorithms have allowed rapid identifica-
tion of genes not previously implicated in speech dysfunction. Here
we review the rapidly unfolding Mendelian genetic bases for CAS.
Specifically, we have reviewed data on gene discovery cohorts
applying exome or genome sequencing to cohorts ascertained for
primary speech disorder CAS [Search strategy box below].

SEARCH STRATEGY AND SELECTION CRITERIA
We searched PubMed for articles published between Jan 1, 2001,
and March 15, 2023, using the search terms “childhood apraxia of
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speech”, “dyspraxia”, “speech”, “exome sequencing” and “genome
sequencing”. There were no language restrictions. We selected
articles that had ascertained cohorts with CAS and applied next
generation sequencing approaches and analysis to report novel
genes associated with CAS. We also searched for articles
describing the function and implications of pathogenic variants
in the genes identified, for literature on other neurodevelop-
mental disorders associated with these genes. The final reference
list was generated based on the relevance to the topics covered in
this review.

DISCUSSION/ANALYSIS OF RECENT LITERATURE

Three CAS gene discovery cohort studies were identified, each
relatively small given the rarity of the disorder, but growing in
cohort size over time: n =19 probands, Eising et al, 2019; n =33
probands, Hildebrand et al., 2020; n = 70 probands, and Kaspi et al.,
2023. In the first study, 8/19 (~42%) probands were found to have a
pathogenic or likely pathogenic gene variant via genome sequen-
cing [8]. In the second study, 11/34 (~32%) probands had highly
plausible pathogenic variants identified by a combination of exome
and genome sequencing, and chromosomal microarray analysis [9].
In the third study, 18/70 (~26%) probands had a high confidence
pathogenic variant detected via genome sequencing or chromo-
somal microarray analysis [10]. There was no apparent benefit
at this stage for WGS over WES in identifying monogenic conditions
associated with CAS. The overall clinical genetic diagnostic
yield across the three cohorts was 30% (36/122 probands) (see
Fig. 1a).

These studies provided the first neurobiological insights into
the mechanisms of speech disorders, including the key finding
that pathogenic variants are enriched in genes involved in
transcriptional regulation and chromatin remodelling in the
developing brain (Table 2). Importantly, these genes also showed
significant clustering within a module of genes highly co-
expressed in the human embryonic brain, in regions known to
subserve speech function [8]. Hence the speech disorders field
now has the first evidence that CAS is a neurodevelopmental
disorder due to dysregulation of genes expressed in white-matter
tracts critical for development of speech [8, 9, 271.

Unlike FOXP2, which had no disease association prior to being
linked to CAS, many newer genes associated with CAS were
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already implicated in other NDDs such as intellectual disability
(ID), ASD and epilepsy (see Table 2 for outline of known associated
conditions). These findings [8-10] align with the well-established
genetic overlap between other neurodevelopmental phenotypes
[28] and indicate that CAS can be added to these overlapping
profiles [see Fig. 1b].

In some ways, the association of CAS with genes known to
cause ID, ASD and epilepsy is not surprising given that these
neurodevelopmental phenotypes have long been associated with
speech and language pathology; however, a primary speech
phenotype of CAS had been considered separate from the larger
group of NDDs. Now genetic findings show this distinction may
not be valid. Furthermore, recent studies of individuals with FOXP2
variants show that they also experience broader, subtle, neuro-
developmental phenotypes beyond speech dysfunction [29]. Thus,
whilst FOXP2 remains the most ‘speech specific’ gene to be
identified [29], there may not exist a “pure” speech apraxia gene.
As such, speech and neurodevelopmental phenotypes should be
considered as existing across a phenotypic spectrum rather than
as categorical diagnoses, mirroring findings in genetic under-
standing of other diseases, such as epilepsy.

Finally, there is currently a strong bias in comparing next
generation sequencing findings for ID, ASD and epilepsy, with tens
of thousands of probands reported in the literature, compared to
just over 120 probands with CAS. Thus, surprisingly, the published
CAS cohort studies have shown a comparably high genetic
diagnostic yield for individuals with these speech phenotypes,
despite them arguably being milder relative to ID, ASD and epilepsy.
This suggests clinical genetic testing is also warranted for children
with CAS given that genome-wide testing is increasingly routine
and often funded for children with other NDDs. Routine clinical
genetic testing will be important as although many of the gene
variants reported to date are de novo and predicted pathogenic
according to ACMG guidelines, most have been found only in
individual probands and identification of the same gene in
unrelated patients with the same phenotype will confirm that
gene’s contribution. As outlined below, unrelated patients have
been identified for three of the candidate genes for CAS across the
small CAS-ascertained cohort studies alone.

Although genetic heterogeneity is a feature of gene discovery
findings in CAS cohorts, pathogenic variants in a handful of genes,
namely SETBP1, SETD1A and DDX3X, each account for multiple
cases across the cohorts studied to date [8-10]. SETBP1 stands out
as being particularly intriguing, with pathogenic loss-of-function
(LoF) variants detected in all three cohorts [8-10] With emerging
evidence for CAS in SETBP1 haploinsufficiency disorder, a speech
and language study of 28 individuals with SETBPT LoF variants
then confirmed the diagnosis of CAS, seen in 80% of individuals
studied, as a core part of the phenotype [30]. When comparing
children’s performance across developmental domains, it was also
clear that communication was most impaired relative to social
skills, daily living skills, motor abilities and adaptive functioning,
supporting SETBPT having a central role in speech and language
development [30]. Further, studies of common genetic variants
suggest SETBP1 may also be important for communication abilities
in the general population. Associations between single nucleotide
polymorphisms (SNPs) in SETBPT and scores on a test examining
syntactic complexity were reported in a genome wide association
study of language disorder in a geographically isolated Russian
cohort aged 3-18 years [31]. SNPs in SETBPI1 have also been
associated with phonological working memory in a reading-
impaired cohort [32].

In addition to evidence for the strength of association between
CAS and the candidate genes across the three CAS-ascertained
gene discovery cohorts discussed here, Table 2 further outlines
the strength of independent evidence currently found to support
the candidate genes. At this time, nine of the candidate genes
have a high level of independent supporting evidence (FOXP2,

Molecular Psychiatry

A.T. Morgan et al.

KAT6A, MKL2/MRTFB, SETBP1, CDK13, EBF3, MEIS2, RBFOX3,
SHANK3), six have medium (CHD3, SETDI1A, WDR5, DDX3X,
ZNF142, BRPF1) and the remainder have low levels of independent
evidence, but we expect expanded clinical genetic testing will
reveal additional cases for many of the other candidate genes
implicated [8-10].

Alternative genetic mechanisms for CAS

If high impact de novo sequence variants and CNVs account for
about one third of individuals with CAS, the question that follows
is what genes or mechanisms account for the remaining unsolved
cases. Whole genome sequencing has not been completed for all
cases studied, meaning non-coding variants have not been
routinely interrogated and may account for some undiagnosed
cases. Mosaicism, increasingly implicated in neurodevelopmental
diseases such as intellectual disability, epilepsy and autism [33],
may be low level and brain-limited and may underpin CAS in
some individuals where it may be limited to key networks;
however, detection would require sequencing of brain tissue,
which is generally inaccessible.

From existing data, there is evidence that the cohort of CAS
individuals with an identified pathogenic de novo gene variant is
enriched for individuals with cognitive impairment and co-morbid
language and motor diagnoses, compared to those without a
genetic diagnosis (Fig. 1c). These data suggest that different
genetic mechanisms may apply to those cases with CAS currently
without a specific single gene diagnosis.

It is likely that inherited variants will account for a sizeable
portion of CAS, but elucidation of these variants will require large
cohorts coupled with deep phenotyping of family members.
Interestingly, many families report a family history of speech
difficulties, which might be explained by inherited variants that
exhibit variable expressivity and phenotypic heterogeneity due to
variability in the genetic background, similar to multi-hit models in
other neurodevelopmental disorders [34].

The fact that many children with CAS exhibit comorbidities with
ASD and ADHD suggests an additional genetic overlap with these
conditions, which are mostly attributed to polygenic aetiology, as is
the case for ASD [35]. A limitation in this nascent field of speech
genetics is the lack of available population-based cohorts with both
high quality genetic and phenotyping data. There is a concerted
effort by the address this issue via the GenLang consortia (https://
www.genlang.org); yet, to date, the cohorts in GenLang typically
include language and literacy data, with recent fruitful GWAS
publications identifying loci associated with language and literacy
traits [36-38], but do not include speech-specific data.

One remaining challenge for the field is the lack of clinical
variables which robustly predict who will have a monogenic cause
or polygenic contributions (accepting that for monogenic diseases
there may be modifier genetic contributions). From existing data,
there is some evidence that individuals with any degree of
cognitive impairment, or those more likely to have co-morbid
language and motor diagnoses, have a greater likelihood of
monogenic disease (Fig. 1c). However, it is clear that larger cohorts
of individuals with CAS are required to provide adequate power to
generate accurate genetic diagnostic prediction models to con-
firm these findings.

CONCLUSIONS

After almost two decades with only one established gene for CAS,
over 30 new genes of relevance have been identified in the past
three years. Critically, about one third of children sequenced
have received a molecular genetic diagnosis for their CAS,
supporting implementation in clinical testing alongside other
neurodevelopmental disorders. Around half of the candidate
genes identified are currently supported by medium to strong
evidence supporting the association between the gene and CAS.
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Almost all genes identified were previously described to cause
neurodevelopmental conditions including ID, ASD and epilepsy.
Hence the phenotypic spectrum of these conditions has been
expanded to include individuals with a distinctly milder presenta-
tion of primary speech disorder. Whilst there is genetic hetero-
geneity, the genes coalesce on a small number of biological
pathways, largely involved in chromatin remodelling or transcrip-
tional regulation, providing new targets for precision medicines.
Although genetic diagnoses in CAS to date have largely been de
novo high impact variants in neurodevelopmental genes, the
genetic architecture of CAS is likely to also encompass polygenic
inheritance of common variants and rare inherited variants with
incomplete penetrance and variable expressivity.

DATA AVAILABILITY

Data for this review was collated from the three manuscripts meeting inclusion
criteria (Kaspi et al., 2023; Hildebrand et al, 2020; Eising et al, 2020), or from
additional manuscripts providing further supporting evidence of the association
between apraxia of speech (phenotype) and specific genotypes which are all cited in
the reference list. Hence all data is publicly available and replication possible using
methods from the review.
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