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Abstract
Temporal solitons have been the focus of much research due to their fascinating physical properties. These solitons
can form bound states, which are fundamentally crucial modes in fiber laser and present striking analogies with their
matter molecules counterparts, which means they have potential applications in large-capacity transmission and all-
optical information storage. Although traditionally, second-order dispersion has been the dominant dispersion for
conventional solitons, recent experimental and theoretical research has shown that pure-high-even-order dispersion
(PHEOD) solitons with energy-width scaling can arise from the interaction of arbitrary negative-even-order dispersion
and Kerr nonlinearity. Despite these advancements, research on the bound states of PHEOD solitons is currently non-
existent. In this study, we obtained PHEOD bound solitons in a fiber laser using an intra-cavity spectral pulse shaper for
high-order dispersion management. Specifically, we experimentally demonstrate the existence of PHEOD solitons and
PHEOD bound solitons with pure-quartic, -sextic, -octic, and -decic dispersion. Numerical simulations corroborate
these experimental observations. Furthermore, vibrating phase PHEOD bound soliton pairs, sliding phase PHEOD
bound soliton pairs, and hybrid phase PHEOD bound tri-soliton are discovered and characterized. These results
broaden the fundamental understanding of solitons and show the universality of multi-soliton patterns.

Introduction
The interplay between dispersion and nonlinearity plays

a crucial role in the dynamics in passively mode-locked
fiber lasers, and the research on dispersion management
has a long history1. Considering that conventional solitons
arise from the balance between negative second-order
dispersion (β2) and self-phase modulation (SPM), the
management of β2 has been the primary focus of previous
research2. Various solitons can be achieved through β2
management using dispersion-compensated fibers,
chirped mirrors, G-T mirrors, chirped fiber Bragg grat-
ings, prism pairs, or grating3. Historically, high-order
dispersion was considered detrimental, leading to soliton

instabilities or energy loss4–6. However, this perspective
shifted in 2016 when Redondo et al. discovered “pure-
quartic solitons (PQSs)” in photonic crystal waveguides,
which emerged from the balance of SPM and negative
fourth-order dispersion (β4)

7. The pulse energy of PQSs is
proportional to the third power of inverse pulse duration
(the energy-width scaling), implying that the energy of
PQSs can be significantly higher than conventional soli-
tons for the same pulse duration. For the fiber laser sys-
tems, research on PQSs began in 2018, Redondo et al.
designed a micro-structured fiber to obtain PQSs, laying
the groundwork for PQS fiber laser research8. The non-
linear Schrödinger equation (NLSE) and the cubic-quintic
Ginzburg-landau equation with β2 and β4 have the ana-
lytical solution, and such combinations can enhance the
performance of fiber lasers9,10. NLSE and its extended
form are fundamental equations for describing pulse
transmission in fibers and are ideal for modeling fiber
lasers11. These numerical results provide theoretical
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support for constructing PQS fiber lasers. Redondo et al.
constructed the PQSs passively mode-locked fiber laser in
2020 and analyzed the oscillation characteristics of PQSs
through simulation12,13. In subsequent research, they
confirmed that conventional solitons and PQSs are just
two lowest-order members of an infinite hierarchy of
solitons arising from the interaction of nonlinearity and
negative pure-high-even-order dispersion (PHEOD).
Controlling high-order dispersion provides a new method
to access an infinite family of nonlinear pulses14. In
contrast, the effect of odd-order-dispersion (e.g. third-
order dispersion15) differs significantly from that of even-
order-dispersion, as the group velocity dependence asso-
ciated with odd-order-dispersion is not monotonic16,
making it challenging to form pure-odd-order-dispersion
solitons. Moreover, considering the energy-width scaling
of PHEOD solitons14, it is necessary to investigate the
impact of high-even-order dispersion on PHEOD solitons.
The existence and stability of bound states, comprising

two or more solitons, are dictated by the separations and
phase differences among the constituent solitons17. Pas-
sively mode-locked fiber lasers offer a highly efficient
platform for bound solitons generation. Numerous
experiments conducted in such systems have yielded
stationary bound solitons with fixed phase differences17.
However, the variation of the phase difference enables the
observation of complex bound soliton dynamics18, such as
the vibrating phase, stepwise phase, and sliding
phase19–21. In recent years, the investigation of these
transient dynamics has been facilitated by the application
of the dispersive Fourier transform (DFT) technique22,23.
Various bound solitons introduced above were pre-
dominantly classified based on their evolution traces of
phase difference and separation. On this basis, energy
evolution is introduced to establish the relationship
between phase evolution and energy change of solitons24.
In particular, the ability to produce on-demand bound
solitons is crucial for optical data-processing schemes25,
optical switching26, storage27, and soliton trapping28. For
example, the generation of four distinct types of bound
solitons, each with different phase differences, can be
regulated by manipulating the energy exchange between
the solitons29. Researchers have divided the dispersion
into a real part and an imaginary part to control the
separation by encoding the phase and amplitude in the
hologram of the liquid crystal spatial light modulator30,
thereby realizing quaternary coding by the above-
mentioned bound solitons29,30.
These extensive explorations have demonstrated the

universality of bound soliton dynamics in passively mode-
locked fiber lasers. The intriguing questions that arise are
whether PHEOD bound solitons can exist and what
properties they would have. The unique oscillatory tails of
PQSs could lead to novel dynamics in terms of relative

motion and energy exchange12,31–34. We have demon-
strated the effect of gain on creeping bound PQSs in
NLSE-based fiber laser cavities35, providing a new per-
spective for the study of bound PQSs. Subsequently, Song
et al. confirmed that bound PQSs exhibit periodic pul-
sating similar to that of pulsating conventional bound
solitons with the increase of β4

36. However, there is cur-
rently no experimental research on PHEOD bound soli-
ton fiber laser, making it desirable to discover the
nonlinear dynamics of PHEOD solitons and their bound
states.
In this paper, we incorporate a pulse shaping structure

into a semiconductor saturable absorber mirror (SESAM)
passively mode-locked fiber ring cavity to realize the
compensation of β2 and third-order dispersion (β3). On
this basis, we introduced large negative fourth-order (β4),
sixth-order (β6), eighth-order (β8), and tenth-order (β10)
dispersion to achieve pure-quartic, -sextic, -octic, and
-decic solitons, respectively. By adjusting the intra-cavity
polarization controller, we can generate pure-octic bound
solitons with varying soliton numbers. These results were
subsequently verified through simulation, and the char-
acteristics of sliding phase PHEOD bound soliton pairs,
vibrating phase PHEOD bound soliton pairs, and hybrid
phase PHEOD bound tri-solitons were analyzed, proving
that PHEOD bound solitons exhibit similar dynamics to
conventional bound solitons. All the results provide new
insights into the dynamics of PHEOD bound solitons and
enrich the framework towards multi-soliton complexes.

Results
Experimental results
The configuration of the PHEOD soliton passively

mode-locked fiber laser is depicted in Fig. 1a. It comprises
four components: gain, saturable absorber, polarization/
loss control, and spectral pulse shaping. A commercial
SESAM is used to achieve passive mode-locking, and a
three-ring polarization controller (PC) is employed to
adjust intra-cavity loss (Fig. 1c). The pigtail of the wave-
length division multiplexer is HI1060, while the pigtails of
other intra-cavity devices are SMF28e. The total fiber
length of the fiber ring cavity is 26.6 m, corresponding to a
repetition rate of 7.9475MHz. Spectral pulse shaping can
be straightforwardly implemented in a fiber laser cavity.
By implementing the phase profile depicted in Fig. 1b, the
inherent β2 and β3 of the fiber cavity can be compensated,
and the management of large negative high-even-order
dispersion can be achieved. Further details about the fiber
cavity and the measurement systems are described in the
“Materials and methods” section.

Pure-high-even-order dispersion single solitons
When propagation within the cavity, solitons experience

periodic perturbations and undergo reshaping to preserve
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their shape. During the reshaping process, solitons emit
energy via dispersive wave radiation, generating analogous
linear dispersion waves with each round-trip (RT). How-
ever, phase interference only transpires at specific fre-
quencies, leading to the resonance enhancement of
dispersion waves. This results in the formation of peaks in
the soliton spectra, known as Kelly sidebands. The posi-
tions of these peaks offer insights into intra-cavity dis-
persion. Therefore, we can estimate the dispersion of a
fiber cavity by analyzing the sideband positions in the
soliton spectra. Constructive interference occurs as
βsoliton � βdispersive ¼ 2πm=L (m is a positive integer). kth
linear dispersion waves satisfied the condition of
βdispersive ¼ �jβk jðω� ω0Þk=k!, while pure-high-even-
order dispersion solitons have constant dispersion
βsoliton ¼ Ck jβk j=τk over the entire bandwidth. Ck repre-
sents the unit constant related to the dispersion order9.
Thus, the position of the m-th spectrum sideband can be
expressed as:

ωm ¼ ±
1
τ

k!
2mπτk

jβk jL
� Ck

� �� �1=k
ð1Þ

Equation (1) demonstrates that the k-power associated
with two adjacent sidebands within the pure-high-k-order
soliton spectrum is constant2πk!=ðjβk jLÞ, regardless of
the value of Ck

9. To corroborate this prediction, we exe-
cuted a series of measurements on soliton spectra,

systematically varying the dispersion coefficients β4, β6, β8,
and β10. Subsequently, we scrutinized the positions of
high-frequency sidebands within these spectra. The cor-
responding experimental (solid lines) and simulation
(dashed lines) results are present in Fig. 2a–d. Figure 2a
portrays the spectra of pure-quartic soliton under three
different β4 values. Figure 2b–d delineate the corre-
sponding spectra of pure-sextic, pure-octic, and pure-
decic solitons under varying β6, β8, and β10 values,
respectively. The circles, crosses, and asterisks denote the
positions of high-frequency sidebands at different dis-
persion coefficients. Figure 2e–h depict the kth power of
the measured sideband position as a function of sideband
order for the corresponding PHEOD soliton spectra in
Fig. 2a–d. The sideband spacing follows the expected
linear relationship in all cases. It is important to note that
the agreement between the calculated values according to
Eq. (1) based on experiment results, the simulation
results, and the high-order dispersion values applied to
the spectral pulse shaping structure (further details are
described in the “Materials and methods” section) is so
high that it is difficult to distinguish them. Therefore, the
corresponding simulation results are not present in Fig.
2e–h, but give the corresponding calculated values from
experiment results. Results for low-frequency sidebands
(not shown in the figure) also closely align with theoretical
values. Due to the use of a high-power data set amplifying
the noise, the agreement between the measured results
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Fig. 1 a Schematic diagram of the PHEOD soliton passively mode-locked fiber laser. b Phase profile induced by spectral pulse shaping. c Transmission
of nonlinear polarization rotation
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and the expected results is remarkable, thus confirming
the type and magnitude of intra-cavity dispersion9,13,16.

Pure-high-even-order dispersion bound multi-solitons
In the presence of high pump power, solitons will split

due to the peak power clamping effect, transitioning the
laser from a single soliton state to a multi-soliton state.
Bound solitons, a captivating aspect of soliton dynamics,
are energy-quantized and bounded together due to the
balance of repulsive and attractive forces between soli-
tons37. Researchers globally have extensively studied
bound solitons and reported their generation in normal
dispersion, near-zero dispersion, and anomalous disper-
sion fiber lasers17. However, there are no experimental
reports about PHEOD bound solitons in passively mode-

locked fiber lasers to date. In our study, we experimentally
obtained modulated soliton spectra (bound solitons) by
high-order dispersion management through the spectral
pulse shaping structure, while keeping the pump power
and the blade direction of the PC unchanged. Corre-
sponding experimental results are presented in Fig. 3.
Figure 3a, b indicates that the changes of intra-cavity |β4|
and |β6| are not easy to form modulated spectra (bound
solitons). Soliton spectra in Fig. 3d exhibit modulation
characteristics as the increase of intra-cavity |β10 | , but
the change is not significant. However, in Fig. 3c, the
increase of |β8| causes a significant variation in soliton
spectra (from non-modulation to modulation). That is,
compared to other-order-dispersions, β8 is more likely to
cause alteration in soliton spectra and is more conducive
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to exploring bound solitons. This may be due to the
formation of bound solitons related to the interaction
between solitons38, the time-domain tails33,39–42, and the
spectral sidebands43,44. PHEOD soliton spectra have a
series of sidebands and the time-domain tailing induced
by high-even-order dispersion makes PHEOD soliton
easier to have short-range interactions to form bound
states. Our analysis is focused on the impact of intra-
cavity net β8 on the output characteristics of solitons.
Bound soliton pairs are the most prevalent form of

bound solitons. In general, bound soliton pairs can be
categorized into four types based on the phase difference
between the two solitons: 0 (in-phase), π (out-of-phase),
and ±π∕245,46. Both the 0-phase and π-phase bound soliton
pairs exhibit a shared characteristic of an axisymmetric
spectrum. However, the spectrum center of a 0-phase
bound soliton pair is the smallest, while conversely, that of
a π-phase bound soliton pair is the largest. The −π∕2-
phase and π∕2-phase bound soliton pairs both exhibit a
minimum spectrum center. A distinguishing feature of
the −π∕2-phase bound soliton pairs is that the right peak is
larger than the left peak in their spectrum, while the π∕2-
phase bound soliton pairs display the opposite char-
acteristic. Recognizing the crucial role of phase relation-
ships in forming bound states, we meticulously adjusted
the paddle direction of the three-ring PC and the value of
intra-cavity net β8 with fixed pump power. This led to the
single PHEOD soliton eventually splitting into two
PHEOD solitons, which then evolved into the PHEOD
bound soliton pair. From traces in Fig. 4a, b, the spectra
exhibit regular and pronounced modulation, a typical
feature of phase-locked bound solitons. The modulation

periods of the spectra (Δλ) are related to the pulse
separations (Δτ), and this specific relationship can be
expressed by Eq. (2)47:

Δτ ¼ λ0
2=ðc � ΔλÞ ð2Þ

where c and λ0 are the speed of light in vacuum
(3 × 108m s-1) and the center wavelength, respectively.
Table 1 summarizes the parameters of PHEOD bound
solitons in Figs. 4, 5. It can be observed that the pulse
separation is in inverse proportion to the modulation
period, which satisfies Eq. (2).

Traces (a1) and (a2) exhibit the smallest spectrum
centers at 1531.952 nm and 1530.976 nm, respectively,
with corresponding modulation periods of ~1.64 nm and
~0.952 nm. Trace (b1) displays a symmetrical structure
centered at 1531.132 nm with a modulation period of
~0.51 nm. The corresponding autocorrelation traces (c1),
(c2), and (d1) in Fig. 4c, d indicate the pulse separation
aligns with the modulation period, with values of ~4.9 ps,
~6.59 ps, and ~13.41 ps, respectively. The pulse separation
between two PHEOD solitons is ~1.8, ~1.3, and ~2.8
times the pulse duration, indicating strong interaction
between two PHEOD solitons in these three instances.
The combination of spectra (a1), (a2), and (b1) with
autocorrelation traces (c1), (c2), and (d1) confirms that
the phase difference between two PHEOD solitons is
approximately -π/2, π/2, and π, indicative of tightly bound
states. Due to the bandwidth limitations of oscilloscopes
and photodetectors, our oscilloscopes are unable to dis-
play such tightly bound solitons. The intensity ratio of the
three peaks in autocorrelation traces (c1), (c2), and (d1)
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are 1:3:1, 1:1.8:1, and 1:1.9:1, respectively, indicating the
intensity differences of two PHEOD solitons within bound
states. The π-phase emerges from the balanced interac-
tion between repulsions, induced by cross-phase mod-
ulation (XPM), and attractions, brought about by
spectrum filtering. Specifically, the gain-filtering effect
imposed by the gain fiber can cooperate with the XPM
effect to culminate in the π-phase bound soliton48. Bound
solitons are sensitive to changes in laser cavity parameters

such as dispersion, nonlinearity, gain, and loss. The
adjustment of intra-cavity loss and birefringence can be
accomplished by suitably manipulating the PC, thereby
facilitating the easy generation of different bound solitons.
For instance, in our experiments, PHEOD bound soliton
pairs transition from tightly to loosely bound when
adjusting the PC with fixed pump power. Trace (b2)
presents a symmetric smallest spectrum center at
1530.908 nm with a modulation period of 0.172 nm. The
separation between two PHEOD solitons of trace (d2) is
6.3 times the pulse duration, verifying the state as the
0-phase PHEOD loosely bound soliton pair. In addition,
the intensity ratio of the autocorrelation trace of this
PHEOD loosely bound soliton is 1:1.6:1. It should also be
noted that as the pulse separation decreases, the mod-
ulation depth of the spectra increases. This suggests that
tightly bound soliton pairs exhibit a larger modulation
depth on spectra, potentially due to the enhanced inter-
action between the solitons. Furthermore, spectra in Fig.
4a, b have multi-sidebands (indicated by arrows) induced
by large intra-cavity β8, and PHEOD tightly bound soliton
pairs with different phases are obtained by changing the
intra-cavity net β8, which proves that the phase difference
between PHEOD solitons is not only related to the pump
power and cavity length49 but also the intra-cavity high-
even-order dispersion. In this work, self-start mode-
locking is mainly operated by SESAM and can maintain
stationary mode-locked, while nonlinear polarization
rotation (NPR) dominates pulse shaping50–52. It enables
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Table 1 Characteristics of PHEOD bound multi-solitons
corresponding to Fig. 4 and 5a

F. N. M. P. C. W. P. S. I. R.

4a1c1 1.64 nm 1531.952 nm 4.9016 ps 1:3:1

4a2c2 0.952 nm 1530.976 nm 6.5857 ps 1:1.8:1

4b1d1 0.51 nm 1531.132 nm 13.04738 ps 1:1.9:1

4b2d2 0.172 nm 1530.908 nm 45.948529 ps 1:1.6:1

5a1b1 0.392 nm 1531.168 nm 18.4336 ps 1:1.4:2.5:1.4:1

0.2 nm 38.95 ps

5a2b2 0.464 nm 1530.932 nm 15.8498 ps 1:1:1:2.5:1:1:1

0.46 nm 16.25781 ps

0.156 nm 49.9978 ps

5a3b3 0.152 nm 1530.94 nm 56.1 ps 1:1:1:1:1:3.87:1:1:1:1:1

a’F. N.: figure number; M. P.: modulation period; C. W.: central wavelength; P. S.:
pulse separation; I. R.: intensity ratio of autocorrelation traces.’
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us to control the interaction between solitons indepen-
dently by adjusting the direction of the PC to achieve
different phases or pulse separation.
The formation of bound solitons can be attributed to

the balance of attraction and repulsion between solitons
introduced by the soliton-continuum interaction, which is
a periodical function with a series of equilibrium points53.
Previous studies have demonstrated that the number of
solitons within the bound state increases with the pump
power54. However, our experimental results show that the
identical phenomenon can be realized through the intra-
cavity high-order dispersion management and the
adjustment of the PC while maintaining a constant pump
power. Figure 5a, b depict the spectra of PHEOD bound
tri-soliton, four-soliton, and six-soliton, along with their
corresponding autocorrelation traces under different β8.
Unlike PHEOD bound soliton pairs, the spectral mod-
ulation of PHEOD bound multi-soliton is no longer sin-
gular. A distinct secondary modulation (light blue
rectangle) can be observed in Fig. 5a1, with modulation
periods of 0.392 nm (light blue rectangle) and 0.2 nm
(dark blue rectangle). The corresponding pulse separa-
tions in trace (b1) of Fig. 5b are 18.433 ps and 38.95 ps.

Furthermore, the enlarged spectra in Fig. 5a2 exhibit a
distinct cubic modulation (skin rectangle), with modula-
tion periods of 0.46 nm (yellow rectangle), 0.464 nm (gray
rectangle), and 0.156 nm (orange rectangle). These cor-
respond to pulse separations of 15.85 ps, 17.89 ps, and
49.998 ps in trace (b2) of Fig. 5b. It is noteworthy that the
intensity difference of PHEOD solitons within PHEOD
bound multi-solitons results in an intensity ratio of
autocorrelation traces close to 1:1.4:2.5:1.4:1 and
1:1:1:2.5:1:1:1. As indicated by the various colored arrows
in Fig. 5a, the presence of high-order dispersion causes
the PHEOD bound multi-solitons to have multiple side-
bands, which also exhibit modulation characteristics
(insets in Fig. 5a). These unusual structural bound multi-
solitons can be achieved by tuning the PC and intra-cavity
high-order dispersion without increasing the pump
power55. As shown in Fig. 5a3, a sequence of modulated
peaks between adjacent maximum peaks indicates the
complex interactions among the inner solitons. Its auto-
correlation trace comprises two PHEOD bound state
units: one unit is a PHEOD bound tri-soliton, and the
other unit is a PHEOD bound soliton pair. The intensity
ratio of different peaks is close to 1:1:1:1:1:3.87:1:1:1:1:1,
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suggesting that the unusual structural PHEOD bound
multi-soliton may be unstable, with variable pulse inten-
sity and separation56. Such unusual structural PHEOD
bound multi-solitons further substantiate the possibility
of changing the number of PHEOD solitons through
high-order dispersion management without adjusting the
pump power. We qualitatively validated the experimental
results through modeling PHEOD fiber laser and analyzed
simulation results in detail in the “Supplementary
Information”.

Simulation results
Numerical modeling of the laser dynamics is a crucial

instrument that serves two objectives. First, it facilitates a
profound understanding of the physics and operational
dynamics inherent to lasers. Second, it offers a straight-
forward and expedient method for investigating various
operational regimes. Given the multitude of variable
parameters and the intricacy of laser systems, it is virtually
impossible to experimentally explore the entire parameter
space, necessitating the usage of simulation. To deepen
our comprehension of the experimental observations, we
executed numerical simulations of the fiber laser
employed in our experiments. This approach allowed us
to provide a qualitative explanation for the observed
PHEOD bound multi-solitons. Further details regarding
the simulation model are elaborated in the “Materials and
methods” section.

Build-up of stationary pure-high-even-order dispersion
bound solitons
Bound soliton can be characterized and analyzed at

qualitatively various levels of detail. The characteristics of
each soliton are described by its modulation period, phase
difference, and pulse separation, while the dynamics are
characterized by the evolution of separations and relative
phases57. In general, bound soliton dynamics are char-
acterized based on the shot-to-shot spectrum, that is, the
evolution of intensity profiles of intra-cavity fields as a
function of RTs, as well as the separations and the relative
phases evolution between solitons, which provides a
general overview of the way solitons move with each
other57. Both separations (τ) and relative phases (Δφ) can
be obtained from the interferogram by considering a
bound state as a superstition of temporally separated
individual solitons. For instance, the field of a bound
soliton pair, characterized by the envelopes E1(t) and E2(t)
at frequency ω0, can be expressed as EðtÞ ¼ Ref½E1ðtÞ þ
E2ðtÞ� expðiω0tÞg. If they have identical envelopes, E2(t)
can be replaced byE1ðt þ τÞ expðiΔφÞg. The separation τ
translates to a frequency-domain phase factor exp(iωτ),
which modulates the spectrum E(ω) with a fringe 1/τ.
Therefore, τ is mapped into a modulation observed as an
interferogramSðωÞ ¼ jEðωÞj2, and the phase of the fringe

pattern at ω0 encodes the Δφ between the two solitons as
SðωÞ / jE1ðω� ω0Þj2½1þ cosðωτ � ω0τ þ ΔφÞ�20. As the
bound state contains more than two solitons, the infor-
mation concerning the Δφ and τ between solitons can be
retrieved through the methods of spectrum inter-
ferometry under certain conditions24,58.
In other words, various relative phases and separations

can be retrieved from the shot-to-shot spectrum, depicting
the energy flow between each constituent facilitated by
gain dynamics and soliton interactions59. Figure 6 provides
the build-up of stationary PHEOD bound soliton pair and
stationary PHEOD bound tri-soliton. Under the synergis-
tic influence of gain, dispersion, and nonlinear effects, the
PHEOD soliton undergoes rapid growth and splits into a
transient PHEOD bound soliton before transitioning into a
stable PHEOD bound soliton, as indicated by the red
dashed rectangles in Fig. 6. The distinct spectral inter-
ference patterns in Fig. 6b, f and the near-constant
separations and relative phases in Fig. 6ijk suggests their
stability. The soliton interactions present within these RTs
can be revealed by the first-order (field) autocorrelation
trace. According to the Wiener-Khinchin theorem, the
Fourier transform of the shot-to-shot spectrum yields the
field autocorrelation trace. It should be noted that if the
number of solitons is N then the corresponding field
autocorrelation trace has 2N-1 peaks44. The Fourier
transforms of the shot-to-shot spectrum in Fig. 6b, f
provide field autocorrelation traces in Fig. 6dh. The pre-
sence of equally spaced and invariant three peaks (Fig. 6c)
or five peaks (Fig. 6g) further substantiates the stability of
PHEOD bound multi-solitons. Energy evolution provides
an effective approach to comprehending the stationary and
non-stationary dynamics of nonlinear systems. We com-
puted the energy evolution by integrating the spectrum
across the entire spectral band19, as represented by the
white curve. The nearly constant energy suggests no
energy transfer between PHEOD solitons. In addition, the
single-shot spectrum in Fig. 6, e exhibit a series of addi-
tional sidebands, beyond Kelly sidebands, induced by β8, as
indicated by the purple arrows.

Dynamics of pure-high-even-order dispersion bound
soliton pairs
The experimental results suggest that by adjusting β8

and the direction of PC, PHEOD bound solitons with
diverse characteristics can be generated. We investigate
PHEOD bound solitons within a two-dimensional para-
meter space (Esat, β8), where Esat signifies the intra-cavity
loss (power) variation induced by PC, and β8 represents
the intra-cavity net eighth-order dispersion. In addition to
the stationary PHEOD bound soliton pair with fixed
separation and relative phase, we observe vibrating phase
PHEOD bound soliton pairs and sliding phase PHEOD
bound soliton pairs under different (Esat, β8) conditions.
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Figure 7 shows the simulation results of vibrating phase
PHEOD bound soliton pairs. The periodic evolution of
the shot-to-shot spectrum in Fig. 7a–d signifies the pre-
sence of periodic interactions between two PHEOD soli-
tons. The zoom-in plot of dashed rectangles further
reveals that these four types of PHEOD bound soliton
pairs possess distinct oscillation amplitudes and periods.
By integrating spectra across the entire spectrum band, we
obtained periodic energy evolution curves (white line)
with oscillation periods of 13 RTs, 8 RTs, 11 RTs, and 27
RTs. To delve deeper into their characteristics, we cal-
culated the evolution of separations and relative phases
based on the shot-to-shot spectrum. The results in Fig.
7e–h demonstrate that separations remain nearly con-
stant during the spectrum variation, while relative phases
exhibit periodic oscillations with periods of 25 RTs, 16
RTs, 22 RTs, and 58 RTs, respectively. Phase oscillation
implies a weak bond between PHEOD solitons, and the
relative intensity between PHEOD solitons undergoes an
oscillation process concurrent with the phase
oscillation59,60.
It is noteworthy that the oscillation period of the relative

phase is precisely an integral multiple of the energy

evolution period60. For instance, as seen in Fig. 7f, the
oscillation period of the relative phase is 16 RTs, which is
twice the evolution period of energy, which suggests that
all parameters of the bound state become self-consistent
after 16 RTs, rather than evolving into chaos60. Under the
condition of (117 pJ, -3.5 ps8), we obtained a vibrating
PHEOD bound soliton pair21. Apart from periodic oscil-
lations of the shot-to-shot spectrum (Fig. 7i), its relative
phase and separation also exhibit periodic changes (Fig.
7j). The relative phase oscillation period (33 RTs) is also
twice the energy evolution period (17 RTs). Simulta-
neously, the field autocorrelation trace corresponding to
the enlarged part (Fig. 7k) displays the time evolution of
the PHEOD bound soliton pair. The minor periodic
oscillation indicates the separation vibration, further
substantiating the existence of a vibrating PHEOD bound
soliton pair. A vibrating bound soliton pair primarily
involves several rapid phase oscillations superimposed on
a slowly vibrating motion19.
The results in Fig. 7 confirm that β8 significantly

influences the spectral and phase evolution characteristics
of PHEOD bound soliton pairs. Furthermore, the increase
of Esat leads to more complex energy changes in PHEOD
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bound soliton pairs. This complexity may be attributed to
the intriguing yet intricate nonlinear evolutions of bound
soliton pairs, which are primarily governed by gain
dynamics, resulting in a rich variation of separation and
relative phase between the constituents19,24. To investi-
gate whether large Esat is the sole factor inducing complex
energy changes, we reduced Esat to a low value of 100 pJ.
We observed complex energy evolution in sliding phase
PHEOD bound soliton pairs by adjusting β8. The shot-to-
shot spectrum (Fig. 8a, b) under conditions of (100 pJ, –5
ps8) and (100 pJ, –7.2 ps8) display rapid and complex
changes, with spectral fringes shifting towards longer
wavelengths. This shift signifies a large intensity differ-
ence between the two PHEOD solitons61. The relative
phase evolution (Fig. 8e, f), derived from Fig. 8a, b, exhi-
bits sliding characteristics, while the separation evolution

demonstrates distinct characteristics. Figure 8e depicts
quasi-periodic minor oscillations of separation, whereas
Fig. 8f presents a more pronounced periodic oscillation
with a period of 76 RTs. Field autocorrelation traces in
Fig. 8c, c1 reveal the temporal evolution of the former
PHEOD bound soliton pair, and the minor periodic
oscillation structure (13 RTs) indicates a minor interac-
tion. In contrast, the detailed field autocorrelation trace of
the latter PHEOD bound soliton pair (Fig. 8dd1) exhibits
a significant periodic variation (76 RTs), corresponding to
periodic attractive and repulsive interactions. The oscil-
lation period of the separation (13 RTs, 76 RTs) closely
matches the energy evolution period (12 RTs, 78 RTs).
Therefore, these multifaceted internal motions can be
attributed to the intricate energy oscillation of each con-
stituent within PHEOD bound soliton pairs62,63. The
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corresponding energy evolution also exhibits a relatively
complex periodicity, including four peaks (white curve in
Fig. 8b1). These findings suggest that the energy evolution
of PHEOD bound soliton pairs can undergo complex
periodic changes even at low Esat, and the presence of β8
may induce more complex interactions between PHEOD
solitons14. Perturbations in fibers, PC, or optical platforms
can force stationary bound soliton pairs to transition to
such dynamic states in experiments44.

Dynamics of pure-high-even-order dispersion bound tri-
soliton
Experimental results in this work demonstrate that the

number of PHEOD solitons within bound states can be
increased and the PHEOD bound multi-soliton with

different combinations can be achieved by fine-tuning PC
or adjusting high-order dispersion at fixed pump power.
Simulation results in Figs. 6, 7, 8, 9, and Table 2 validate
the above conclusion: PHEOD bound solitons pairs and
PHEOD bound tri-solitons with different characteristics
can be realized by only adjusting β8. The spectrum
interferograms can reveal the relative phases of bound tri-
solitons24,58. In the presence of mutual interactions with
different solitons, the internal dynamics of bound tri-
soliton should be much more diverse and involve recur-
rent motions of different solitons. Guided by PHEOD
solitons marked as soliton 1, soliton 2, and soliton 3 of
bound tri-solitons, we characterize various PHEOD
bound tri-solitons by analyzing the consecutive shot-to-
shot spectrum interferograms and their corresponding
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calculation results, represented by the variables (Δτ12,
Δφ12) and (Δτ13, Δφ13). The shot-to-shot spectrum of the
PHEOD bound tri-soliton in Fig. 9a exhibits periodic
oscillation characteristics similar to vibrating phase
PHEOD bound soliton pairs in Fig. 7. The complex energy
changes (white curve) suggest the existence of complex
energy flow between three PHEOD solitons, which may
lead to their complex interactions. We obtained corre-
sponding field autocorrelation traces through the Fourier
transform as presented in Fig. 9a2 and a3. Five bright
fringes are symmetrically distributed with tiny periodic
attraction and repulsion between three PHEOD solitons.
Fig. 9a2 and a3 display the separations and relative phases
retrieved from Fig. 9a1. Figure 9a2 shows that soliton 1
and soliton 2 form a PHEOD bound soliton pair with
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Table 2 Detailed characteristics of PHEOD bound multi-
solitons corresponding to Figs. 6–9

F. N. Parameters Soliton
number

Separation
evolution

Phase evolution

6b (117 pJ, –6.1 ps8) 2 Stationary Stationary

6 f (117 pJ, –9.8 ps8) 3 Stationary Stationary

7a (117 pJ, –4.2 ps8) 2 Stationary Vibrating

7b (117 pJ, –7 ps8) 2 Stationary Vibrating

7c (121 pJ, –7 ps8) 2 Stationary Vibrating

7d (148 pJ, –0.2 ps8) 2 Stationary Vibrating

7i (117 pJ, –3.5 ps8) 2 Stationary Vibrating

8a (100 pJ, –5 ps8) 2 Stationary Sliding

8b (100 pJ, –7.2 ps8) 2 Vibrating Sliding

9a (117 pJ, –9.2 ps8) 3 Vibrating Sliding and vibrating

9b (117 pJ, –8.8 ps8) 3 Stationary Sliding and vibrating
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sliding phase and oscillating separation, while Fig. 9a3
shows that soliton 1 and soliton 3 form a vibrating
PHEOD bound soliton pair where the relative phase and
separation oscillate simultaneously. Particularly, for con-
ventional bound solitons, it has been reported that oscil-
lating phases and oscillating separations result from the
periodic variation of pulse intensities within bound soliton
pairs, while the sliding phase is governed by the persistent
intensity difference between each constituent, further
regulating the oscillatory motions19. By adjusting the
parameter β8, we observed another type of PHEOD bound
tri-soliton. This variant exhibited virtually invariant
separations and demonstrated both sliding and oscillating
phase characteristics. The shot-to-shot spectrum, relative
phase evolution, and separation evolution in Fig.
9bb1b2b3 demonstrates the existence of such PHEOD
bound tri-soliton. Its field autocorrelation trace is present
in Fig. 9d, and Fig. 9d1 is the zoom-in plot of the red
rectangle, which proves that there is a significant intensity
difference between the three PHEOD solitons, but there is
almost no interaction between them, resulting in the
separation between the PHEOD solitons being unchan-
ged, as verified by the equally-spaced straight five peaks.
However, the energy evolution curve in Fig. 9b indicates
the existence of complex energy exchange between three
PHEOD solitons. Therefore, for PHEOD bound solitons,
the phase evolution is not only related to the intensity
difference between PHEOD solitons but also closely
related to the energy exchange between PHEOD solitons.

Discussion
Based on our experimental and simulation results, we

found that fiber lasers with high-order dispersion man-
agement and varying cavity parameters can converge to
different attractors. These attractors correspond to var-
ious emission states, ranging from PHEOD single soliton
to diverse PHEOD bound multi-solitons. The high-even-
order dispersion, akin to the second-order dispersion for
conventional solitons, plays a significant role in the study
of PHEOD solitons and their bound states. Compared
with conventional solitons, PHEOD solitons present
similar but unique characteristics when considering the
linear and nonlinear interplay in fiber lasers. Upon gen-
eration, multi-solitons evolve into various states, influ-
enced by the interactions between the solitons and intra-
cavity dispersive waves. Typically, multi-solitons are dis-
tributed randomly within the cavity. However, by tuning
the pump power and adjusting the paddle direction of the
PC, they can self-organize and position themselves within
the cavity at different separations. The coherent solitons
will bind together to form various bound states as the
phase difference of these solitons remains constant.
Similarly, PHEOD solitons will split once the high-even-
order dispersion fails to balance the nonlinear, and by

tuning the direction of PC and changing high-even-order
dispersion, they can form various PHEOD bound states.
Increasing the pump power is an effective method to
augment the number of intra-cavity conventional solitons.
Nevertheless, experiment and simulation results in this
paper suggest that the number of PHEOD solitons can be
increased by adjusting the intra-cavity high-even-order
dispersion, even while maintaining a constant pump
power.
The formation of bound solitons is primarily due to

soliton interactions, which can be categorized into three
types: short-range, long-range, and global interactions41.
When the separation between solitons is close, the direct
overlap of pulse tails causes short-range interactions that
can be attractive or repulsive, depending on the relative
phase difference between solitons. The strength of these
interactions decreases exponentially with increasing
separation. The long-range interaction is induced by the
acoustic response dominated by the electrostrictive effects
in fibers. It is known that dispersive waves can cause long-
range repulsive interactions in mode-locked fiber lasers.
The global interactions originate from the intra-cavity
unstable continuous wave. These three types of soliton
interactions have distinct interaction conditions and can
coexist or exist independently. By manipulating various
parameters within fiber lasers, a balance among the three
types of interactions can be achieved, thereby facilitating
the formation of different types of bound solitons. In ref. 40,
it was predicted that the overlapping of oscillatory tails
gives rise to potential minima which account for the gen-
eration of bound solitons. This prediction was experi-
mentally confirmed in micro-resonator Kerr cavities, where
intra-cavity leading solitons with tails appear, and newly
generated solitons evolve from such oscillatory tails39.
Since the group velocity of the oscillatory tails and solitons
differs, the position of the newly generated solitons auto-
matically adjusts under the effect of nonlinearity and intra-
cavity dispersion, eventually forming bound solitons39. The
temporal oscillatory tail is a characteristic feature of
PHEOD solitons14,16. In ref. 36, it was found that the
enhanced interaction caused by large intra-cavity β4 can
promote the transformation of quasi-periodical pulsating
pure-quartic bound solitons into periodical pulsating. This
implies that a periodic energy exchange between two
solitons can be facilitated by the overlap of their oscillatory
tails33,41,42. Furthermore, there may be more possibilities
for energy exchange within the PHEOD bound multi-
soliton, leading to their distinct characteristics.
In the context of mode-locked fiber lasers, Kelly side-

bands are produced as a result of the interaction between
solitons and dispersive waves. This interaction occurs
when the wavelength of the dispersive waves aligns with
the phase-matching condition. Consequently, these dis-
persive waves present themselves as Kelly sidebands,
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which invariably share intra-cavity energy with solitons53.
Studies have confirmed that these Kelly sidebands, which
correspond to temporal oscillatory tails, play a crucial role
in the generation of bound solitons within mode-locked
fiber lasers43,44 and oscillate in sync with pulsating bound
soliton pairs, suggesting that the energy transfer between
sidebands and solitons could result in various bound
states59. The spectrum of PHEOD solitons exhibits a
series of sidebands induced by high-even-order disper-
sion. Our simulation findings suggest that by manipulat-
ing the high-even-order dispersion, we can generate
PHEOD bound solitons exhibiting different character-
istics. The shot-to-shot spectrum of these PHEOD bound
solitons undergoes alterations in sidebands, as indicated
by the purple dashed rectangles in Figs. 7–9. Con-
currently, the corresponding field autocorrelation traces
display oscillatory behavior. Therefore, we hypothesize
that the temporal oscillatory tails and multi-sidebands
induced by high-even-order dispersion could be the
underlying mechanism for obtaining PHEOD bound
solitons with different soliton numbers and character-
istics, even when the pump power remains constant.
In conclusion, we realize the intra-cavity high-order

dispersion management based on the spatial light mod-
ulator in experiments and obtain pure-quartic, -sextic,
-octic, and -decic solitons. Under the condition of fixed
pump power, by adjusting high-even-order dispersion and
the paddle direction of the polarization controller, we
obtained the PHEOD bound solitons with varying num-
bers of solitons, separations, and combinations. Sub-
sequent simulations were conducted to validate our
experimental results. Further analysis was carried out on
the formation of stationary PHEOD bound multi-solitons,
the characteristics of vibrating phase PHEOD bound
soliton pairs, sliding phase PHEOD bound soliton pairs,
and hybrid phase PHEOD bound tri-solitons. This work
contributes additional insights into the complex dynamics
of PHEOD bound solitons, enhancing our understanding
of this phenomenon.

Materials and methods
Experimental setup and measurement system
The PHEOD soliton passively mode-locked fiber laser,

as depicted schematically in Fig. 1a, comprises four key
components: gain, saturable absorber, polarization/loss
control, and spectral pulse shaping. A 1.2 m segment of
erbium-doped fiber (EDF, SM-ESF-7/125) is pumped by a
976 nm laser source via a 980/1550 nm wavelength divi-
sion multiplexer (WDM) to provide the required gain and
the output coupler (OC) extracting 50% of the power
from the fiber cavity. Soliton spectrums were recorded by
the spectral analyzer (OSA, YOKOGAWA, AQ6370D),
and the corresponding autocorrelation traces were mea-
sured by a commercial autocorrelator (APE, PulseCheck).

SESAM is used to achieve passive mode-locking and
employ a three-ring polarization controller (PC) to adjust
the intra-cavity loss. The pigtail of the WDM is HI1060,
while the pigtails of other intra-cavity devices are SMF28e.
The total fiber length of the ring cavity is 26.6 m, corre-
sponding to a repetition rate of 7.9475MHz. In the
absence of a nonlinear effect, the impact of dispersion is
equivalent to applying a phase transformation to the
intra-cavity field in the spectral domain16:

~AðL;ωÞ ¼ ~Að0;ωÞeiϕðωÞ ð3Þ
where ~A is the Fourier transform of the envelope A, ϕ(ω)
represents the dispersion-induced phase and L is the
propagation length.

In conventional optical waveguides, the intrinsic dis-
persion is primarily governed by β2, while the effects of
high-order dispersion are typically minimal. To achieve
high-order dispersion management, a more flexible
technique is required. This technique involves the use of a
spectral pulse shaping structure based on the advanced
Liquid Crystal on Silicon (LCoS). The spectral pulse
shaping structure operates by splitting the constituent
wavelengths of pulses into distinct spatial channels, each
of which undergoes phase and/or amplitude modulation
before being recombined. For instance, the process of
wavelength splitting can be executed using a diffraction
grating. Following this, a spatial light modulator (SLM) is
employed to apply distinct phases and amplitudes to each
wavelength. Finally, the pulses are recombined using the
same diffraction grating. Specifically, the SLM is placed on
the Fourier plane of a 4 f system. According to the Fourier
transform of the lens, the time domain information is
transformed to the spatial frequency domain, and then
restored to the time domain after spatial filtering or
spectral modulation, thereby achieving pulse phase
adjustment, that is, high-order dispersion management
which enables the adjustment of all-order-dispersion.
Spectral pulse shaping can be straightforwardly imple-
mented in a fiber laser cavity. By applying the spectrum
phase profile ϕ(ω), as depicted in Fig. 1b, we can com-
pensate for the inherent β2 and β3 of the fiber cavity and,
at the same time, manage the large negative high-even-
order dispersion. The applied phase profile can be
expressed as14:

ϕðωÞ ¼
X3
n¼2

βnðω� ω0Þn
n!

þ βkðω� ω0Þk
k!

ð4Þ

where βn is the n-th order dispersion for n= 2, 3. For the
results presented in this work, the dispersion parameter of
EDF, HI1060, and SMF28e is -46.25 ps (nm•km)-1,
0.059 ps (nm•km)-1, and 17 ps (nm•km)-1, respectively.
The intra-cavity net β2 was calculated to be −0.48 ps2.
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The intra-cavity net β2 was calculated to be −0.48 ps2.
Therefore, the β2 and β3 loaded in the SLM are set to 0.48
ps2 and -0.00012 ps3 respectively to compensate for the
intra-cavity β2 and β3, where β3 is based on the value
reported in refs. 13,16. The second term on the right-hand
side of Eq. (4) corresponds to the negative high-even-
order dispersion required for the generation of pure-
quartic (k= 4), -sextic (k= 6), -octic (k= 8), or -decic
(k= 10) solitons. We analyzed PHEOD solitons and their
bound states in the experiment by altering the intra-cavity
net high-even-order dispersion (using the above method)
and fine-tuning the PC.

Simulation setup
Numerical modeling of laser dynamics serves two primary

objectives. First, it provides valuable insights into the physics
and operational dynamics of the lasers. Second, it offers a
straightforward and rapid tool for investigating various
operating regimes. Due to the large number of variable
parameters and the complexity of laser systems, it is virtually
impossible to experimentally explore the full parameter
space. Therefore, simulations are indispensable. Successful
computations necessitate a model that accurately captures
the complex dynamics of realistic experiments with minimal
approximations. In this paper, we employed the nonlinear
Schrödinger equation to describe pulse propagation through
each fiber segment:

∂A
∂z

¼ i
X
l

βl
l!

i
∂

T

� �l

Aþ g � a
2

þ g

2Ω2

∂2A

∂T2 þ iγjAj2A

ð5Þ
here, z and T are the propagation distance and local time;
γ is the Kerr nonlinear parameter; α represents the linear
loss. Ω is the 3 dB bandwidth of the gain fiber (doped-
fiber), g ¼ g0 expð�

R
ðjAj2Þdt
Esat

Þ is the gain of fibers, where g0
is the small-signal gain, which is taken to be non-zero
only in the intra-cavity gain fiber (doped-fiber), and the
saturation energy Esat can be adjusted to simulate changes
in the pump power and the intra-cavity loss. Considering
the finite gain bandwidth of EDF, we added a Lorentzian
profile filter with a bandwidth of 25 nm to the gain model.
The saturable absorber is represented by the transmission
function of the intensity T ¼ α0 � α=ð1þ jAj2

Psat
Þ, where α0

is saturation absorption, α presents the modulation depth
of a saturable absorber, and Psat is saturable power. The
simulation parameters are consistent with their experi-
mental values, that is, 0.45, 0.17, and 25W. In the
simulation, the laser initially propagates through the
pigtail fiber (HI1060) of WDM. Subsequently, the intra-
cavity solitons are amplified by the 1.2 m EDF due to its
saturable amplification property and exhibit an almost
linear increase in the initial part, while the enlargement
rate slows down in the latter part. Following the EDF, the

solitons traverse through the SMF28e and are outputted
by a 50% output coupler. Then, the solitons propagate
further through the circulator and the SESAM, where the
duration and intensity decrease due to the saturable
absorption effect. In the final section, spectral pulse
shaping is modeled by multiplying the electric field by a
phase following the expression in Eq. (4) in the spectrum
domain to realize high-order dispersion management.
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