Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Occupational exposure to per- and polyfluoroalkyl substances: a scope review of the literature from 1980–2021

Abstract

Background

Per- and polyfluoroalkyl substances (PFAS) comprise a large group of chemicals that have been integrated into a wide variety of industrial processes and consumer products since the 1950s. Due to their profuse usage and high persistence in human serum, understanding workplace exposures to PFAS is critical.

Objective

We aimed to characterize the PFAS exposure profiles of relevant occupational populations, elucidate trends in the PFAS exposure characterization process, and identify major research gaps that remain within the occupational PFAS exposure literature.

Methods

A systematic search of four literature databases for peer-reviewed articles published between 1980 and 2021 on PFAS exposure in occupational settings was conducted.

Results

Of the 2574 articles identified, 92 met the inclusion criteria. Fluorochemical workers were the target population in most early exposure assessment research; however, studies conducted within the last 10 years have evaluated a wider range of occupational populations and settings. The highest exposures were reported in fluorochemical workers, but, in comparison to reference populations, one or more PFAS were elevated in most workers and in most workplaces that were assessed. PFAS was most frequently assessed in worker serum using a discrete analytical panel of PFAS, with earlier studies restricted to a few long-alkyl chain PFAS while more recent studies have included more expansive panels due to more robust methods.

Significance

Characterization of occupational exposure to PFAS is limited but expanding. Current analytical methods are not robust enough to fully capture the potential range of PFAS present across different workers and workplaces. While exposures to PFAS for certain occupational groups have been studied in detail, exposure information for other occupational groups with high potential for exposure are limited. This review highlights substantial findings and major research gaps within the occupational literature.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2: Bubble plot of PFAS chemistries analyzed in worker blood across individual studies that sampled whole blood, plasma, or serum.
Fig. 3: PFOA in serum, plasma, or whole blood* by population, geographic region, and year of most recent sample collection.
Fig. 4: PFOS in serum, plasma, or whole blood* by population, geographic region, and year of most recent test.

Similar content being viewed by others

Data availability

See the Supplementary Information section for information on where the selected articles for this review were extracted from.

References

  1. EPA. Comptox chemicals dashboard: master list of PFAS substances. United States Environmental Protection Agency; 2021.

  2. Buck RC, Franklin J, Berger U, Conder JM, Cousins IT, de Voogt P, et al. Perfluoroalkyl and polyfluoroalkyl substances in the environment: terminology, classification, and origins. Integr Environ Assess Manag. 2011;7:513–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Calafat AM, Kato K, Hubbard K, Jia T, Botelho JC, Wong LY. Legacy and alternative per- and polyfluoroalkyl substances in the U.S. general population: paired serum-urine data from the 2013–2014 National Health and Nutrition Examination Survey. Environ Int. 2019;131:105048.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Fenton SE, Ducatman A, Boobis A, DeWitt JC, Lau C, Ng C, et al. Per- and polyfluoroalkyl substance toxicity and human health review: current state of knowledge and strategies for informing future research. Environ Toxicol Chem. 2021;40:606–30.

    Article  CAS  PubMed  Google Scholar 

  5. OSHA. General Duty Clause. United States Occupational Safety and Health Administration; 1970.

  6. OSHA. Standard interpretations: elements necessary for a violation of the General Duty Clause. United States Occupational Safety and Health Administration; 2003.

  7. National Academies of Sciences Engineering and Medicine. Guidance on PFAS exposure, testing, and clinical follow-up. Washington DC: The National Academies Press; 2022.

  8. Interstate Technology Regulatory Council (ITRC). Naming conventions and physical and chemical properties. Washington, D.C.: Interstate Technology Regulatory Council (ITRC); 2018.

  9. Gomis MI, Vestergren R, Borg D, Cousins IT. Comparing the toxic potency in vivo of long-chain perfluoroalkyl acids and fluorinated alternatives. Environ Int. 2018;113:1–9.

    Article  CAS  PubMed  Google Scholar 

  10. Bjorklund JA, Thuresson K, De Wit CA. Perfluoroalkyl compounds (PFCs) in indoor dust: concentrations, human exposure estimates, and sources. Environ Sci Technol. 2009;43:2276–81.

    Article  PubMed  Google Scholar 

  11. Su H, Lu Y, Wang P, Shi Y, Li Q, Zhou Y, et al. Perfluoroalkyl acids (PFAAs) in indoor and outdoor dusts around a mega fluorochemical industrial park in China: implications for human exposure. Environ Int. 2016;94:667–73.

    Article  CAS  PubMed  Google Scholar 

  12. Poothong S, Padilla-Sanchez JA, Papadopoulou E, Giovanoulis G, Thomsen C, Haug LS, et al. Wipes: a useful tool for assessing human exposure to poly- and perfluoroalkyl substances (PFASs) through hand-to-mouth and dermal contacts. Environ Sci Technol. 2019;53:1985–93.

    Article  CAS  PubMed  Google Scholar 

  13. Machado-Neto JG, Queiroz ME, Carvalho D, Bassini AJ. Risk of intoxication with sulfluramid in a packing plant of Mirex-S. Bull Environ Contam Toxicol. 1999;62:515–9.

    Article  CAS  PubMed  Google Scholar 

  14. Franko J, Meade BJ, Frasch HF, Barbero AM, Anderson SE. Dermal penetration potential of perfluorooctanoic acid (PFOA) in human and mouse skin. J Toxicol Environ Health A 2012;75:50–62.

    Article  CAS  PubMed  Google Scholar 

  15. Interstate Technology Regulatory Council (ITRC). History and use of per- and polyfluoroalkyl substances (PFAS). Washington, D.C.: Interstate Technology Regulatory Council (ITRC); 2017.

  16. EPA. 2010/2015 PFOA Stewardship Program—2014 annual progress reports. United States Environmental Protection Agency; 2016.

  17. CDC. Fourth national report on human exposure to environmental chemicals: updated tables. United States Centers for Disease Control and Prevention; 2019.

  18. Interstate Technology Regulatory Council (ITRC). Chemistry, terminology, and acronyms. Washington, D.C.: Interstate Technology Regulatory Council (ITRC); 2021.

  19. Silver MJ, Young DK. Acute noncardiogenic pulmonary edema due to polymer fume fever. Clevel Clin J Med. 1993;60:479–82.

    Article  CAS  Google Scholar 

  20. Mundt DJ, Mundt KA, Luippold RS, Schmidt MD, Farr CH. Clinical epidemiological study of employees exposed to surfactant blend containing perfluorononanoic acid. Occup Environ Med. 2007;64:589–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sleeuwenhoek A, Cherrie JW. Exposure assessment of tetrafluoroethylene and ammonium perfluorooctanoate 1951–2002. J Environ Monit. 2012;14:775–81.

    Article  CAS  PubMed  Google Scholar 

  22. Heydebreck F, Tang J, Xie Z, Ebinghaus R. Emissions of per- and polyfluoroalkyl substances in a textile manufacturing plant in China and their relevance for workers’ exposure. Environ Sci Technol. 2016;50:10386–96.

    Article  CAS  PubMed  Google Scholar 

  23. Peaslee GF, Wilkinson JT, McGuinness SR, Tighe M, Caterisano N, Lee S, et al. Another pathway for firefighter exposure to per- and polyfluoroalkyl substances: firefighter textiles. Environ Sci Technol Lett. 2020;7:594–9.

    Article  CAS  Google Scholar 

  24. Jahnke A, Huber S, Temme C, Kylin H, Berger U. Development and application of a simplified sampling method for volatile polyfluorinated alkyl substances in indoor and environmental air. J Chromatogr A. 2007;1164:1–9.

    Article  CAS  PubMed  Google Scholar 

  25. Besis A, Botsaropoulou E, Samara C, Katsoyiannis A, Hanssen L, Huber S. Perfluoroalkyl substances (PFASs) in air-conditioner filter dust of indoor microenvironments in Greece: implications for exposure. Ecotoxicol Environ Saf. 2019;183:109559.

    Article  CAS  PubMed  Google Scholar 

  26. Gao Y, Fu J, Cao H, Wang Y, Zhang A, Liang Y, et al. Differential accumulation and elimination behavior of perfluoroalkyl acid isomers in occupational workers in a manufactory in China. Environ Sci Technol. 2015;49:6953–62.

    Article  CAS  PubMed  Google Scholar 

  27. Fu J, Gao Y, Cui L, Wang T, Liang Y, Qu G, et al. Occurrence, temporal trends, and half-lives of perfluoroalkyl acids (PFAAs) in occupational workers in China. Sci Rep. 2016;6:38039.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wu N, Cai D, Guo M, Li M, Li X. Per- and polyfluorinated compounds in saleswomen’s urine linked to indoor dust in clothing shops. Sci Total Environ. 2019;667:594–600.

    Article  CAS  PubMed  Google Scholar 

  29. Woskie SR, Gore R, Steenland K. Retrospective exposure assessment of perfluorooctanoic acid serum concentrations at a fluoropolymer manufacturing plant. Ann Occup Hyg. 2012;56:1025–37.

    Article  CAS  PubMed  Google Scholar 

  30. Shi Y, Vestergren R, Xu L, Zhou Z, Li C, Liang Y, et al. Human exposure and elimination kinetics of chlorinated polyfluoroalkyl ether sulfonic acids (Cl-PFESAs). Environ Sci Technol. 2016;50:2396–404.

    Article  CAS  PubMed  Google Scholar 

  31. Guruge KS, Taniyasu S, Yamashita N, Wijeratna S, Mohotti KM, Seneviratne HR, et al. Perfluorinated organic compounds in human blood serum and seminal plasma: a study of urban and rural tea worker populations in Sri Lanka. J Environ Monit. 2005;7:371–7.

    Article  CAS  PubMed  Google Scholar 

  32. Tao L, Kannan K, Aldous KM, Mauer MP, Eadon GA. Biomonitoring of perfluorochemicals in plasma of New York State personnel responding to the World Trade Center disaster. Environ Sci Technol. 2008;42:3472–8.

    Article  CAS  PubMed  Google Scholar 

  33. Shoeib M, Harner T, Ikonomou M, Kannan K. Indoor and outdoor air concentrations and phase partitioning of perfluoroalkyl sulfonamides and polybrominated diphenyl ethers. Environ Sci Technol. 2004;38:1313–20.

    Article  CAS  PubMed  Google Scholar 

  34. Shoeib M, Harner T, Lee SC, Lane D, Zhu J. Sorbent-impregnated polyurethane foam disk for passive air sampling of volatile fluorinated chemicals. Anal Chem. 2008;80:675–82.

    Article  CAS  PubMed  Google Scholar 

  35. Nilsson H, Karrman A, Rotander A, van Bavel B, Lindstrom G, Westberg H. Professional ski waxers’ exposure to PFAS and aerosol concentrations in gas phase and different particle size fractions. Environ Sci Process Impacts. 2013;15:814–22.

    Article  CAS  PubMed  Google Scholar 

  36. Fraser AJ, Webster TF, Watkins DJ, Strynar MJ, Kato K, Calafat AM, et al. Polyfluorinated compounds in dust from homes, offices, and vehicles as predictors of concentrations in office workers’ serum. Environ Int. 2013;60:128–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Langer V, Dreyer A, Ebinghaus R. Polyfluorinated compounds in residential and nonresidential indoor air. Environ Sci Technol. 2010;44:8075–81.

    Article  CAS  PubMed  Google Scholar 

  38. Fraser AJ, Webster TF, Watkins DJ, Nelson JW, Stapleton HM, Calafat AM, et al. Polyfluorinated compounds in serum linked to indoor air in office environments. Environ Sci Technol. 2012;46:1209–15.

    Article  CAS  PubMed  Google Scholar 

  39. Kaiser MA, Dawson BJ, Barton CA, Botelho MA. Understanding potential exposure sources of perfluorinated carboxylic acids in the workplace. Ann Occup Hyg. 2010;54:915–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Liesivuori J, Kiviranta H, Laitinen J, Hesso A, Haemeilae M, Tornaeus J, et al. Airborne aerosols in application of polyfluoro polymer-based ski waxes. Ann Occup Hyg. 1994;38:931–7.

    CAS  Google Scholar 

  41. Freberg BI, Olsen R, Thorud S, Ellingsen DG, Daae HL, Hersson M, et al. Chemical exposure among professional ski waxers-characterization of individual work operations. Ann Occup Hyg. 2013;57:286–95.

    CAS  PubMed  Google Scholar 

  42. Nilsson H, Karrman A, Rotander A, van Bavel B, Lindstrom G, Westberg H. Biotransformation of fluorotelomer compound to perfluorocarboxylates in humans. Environ Int. 2013;51:8–12.

    Article  CAS  PubMed  Google Scholar 

  43. Freberg BI, Olsen R, Daae HL, Hersson M, Thorud S, Ellingsen DG, et al. Occupational exposure assessment of airborne chemical contaminants among professional ski waxers. Ann Occup Hyg. 2014;58:601–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Freberg BI, Haug LS, Olsen R, Daae HL, Hersson M, Thomsen C, et al. Occupational exposure to airborne perfluorinated compounds during professional ski waxing. Environ Sci Technol. 2010;44:7723–8.

    Article  CAS  PubMed  Google Scholar 

  45. Ubel FA, Sorenson SD, Roach DE. Health status of plant workers exposed to fluorochemicals—a preliminary report. Am Ind Hyg Assoc J. 1980;41:584–9.

    Article  CAS  PubMed  Google Scholar 

  46. Schlummer M, Gruber L, Fiedler D, Kizlauskas M, Muller J. Detection of fluorotelomer alcohols in indoor environments and their relevance for human exposure. Environ Int. 2013;57-58:42–49.

    Article  CAS  PubMed  Google Scholar 

  47. Sha B, Dahlberg AK, Wiberg K, Ahrens L. Fluorotelomer alcohols (FTOHs), brominated flame retardants (BFRs), organophosphorus flame retardants (OPFRs) and cyclic volatile methylsiloxanes (cVMSs) in indoor air from occupational and home environments. Environ Pollut. 2018;241:319–30.

    Article  CAS  PubMed  Google Scholar 

  48. Fromme H, Dreyer A, Dietrich S, Fembacher L, Lahrz T, Volkel W. Neutral polyfluorinated compounds in indoor air in Germany—the LUPE 4 study. Chemosphere. 2015;139:572–8.

    Article  CAS  PubMed  Google Scholar 

  49. Yao Y, Zhao Y, Sun H, Chang S, Zhu L, Alder AC, et al. Per- and polyfluoroalkyl substances (pFASs) in indoor air and dust from homes and various microenvironments in China: implications for human exposure. Environ Sci Technol. 2018;52:3156–66.

    Article  CAS  PubMed  Google Scholar 

  50. Nilsson H, Karrman A, Rotander A, van Bavel B, Lindstrom G, Westberg H. Inhalation exposure to fluorotelomer alcohols yield perfluorocarboxylates in human blood? Environ Sci Technol. 2010;44:7717–22.

    Article  CAS  PubMed  Google Scholar 

  51. Simonetti G, Di Filippo P, Riccardi C, Pomata D, Sonego E, Buiarelli F. Occurrence of halogenated pollutants in domestic and occupational indoor dust. Int J Environ Res Public Health. 2020;17:3813–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Young AS, Sparer-Fine EH, Pickard HM, Sunderland EM, Peaslee GF, Allen JG. Per- and polyfluoroalkyl substances (PFAS) and total fluorine in fire station dust. J Expo Sci Environ Epidemiol. 2021;31:930–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Gilliland FD, Mandel JS. Mortality among employees of a perfluorooctanoic acid production plant. J Occup Med. 1993;35:950–4.

    Article  CAS  PubMed  Google Scholar 

  54. Gilliland FD, Mandel JS. Serum perfluorooctanoic acid and hepatic enzymes, lipoproteins, and cholesterol: a study of occupationally exposed men. Am J Ind Med. 1996;29:560–8.

    Article  CAS  PubMed  Google Scholar 

  55. Olsen GW, Burris JM, Mandel JH, Zobel LR. Serum perfluorooctane sulfonate and hepatic and lipid clinical chemistry tests in fluorochemical production employees. J Occup Environ Med. 1999;41:799–806.

    Article  CAS  PubMed  Google Scholar 

  56. Olsen GW, Burris JM, Burlew MM, Mandel JH. Plasma cholecystokinin and hepatic enzymes, cholesterol and lipoproteins in ammonium perfluorooctanoate production workers. Drug Chem Toxicol. 2000;23:603–20.

    Article  CAS  PubMed  Google Scholar 

  57. Girardi P, Merler E. A mortality study on male subjects exposed to polyfluoroalkyl acids with high internal dose of perfluorooctanoic acid. Environ Res. 2019;179:108743.

    Article  CAS  PubMed  Google Scholar 

  58. Olsen GW, Burris JM, Burlew MM, Mandel JH. Epidemiologic assessment of worker serum perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA) concentrations and medical surveillance examinations. J Occup Environ Med. 2003;45:260–70.

    Article  CAS  PubMed  Google Scholar 

  59. Olsen GW, Zobel LR. Assessment of lipid, hepatic, and thyroid parameters with serum perfluorooctanoate (PFOA) concentrations in fluorochemical production workers. Int Arch Occup Environ Health. 2007;81:231–46.

    Article  CAS  PubMed  Google Scholar 

  60. Sakr CJ, Leonard RC, Kreckmann KH, Slade MD, Cullen MR. Longitudinal study of serum lipids and liver enzymes in workers with occupational exposure to ammonium perfluorooctanoate. J Occup Environ Med. 2007;49:872–9.

    Article  CAS  PubMed  Google Scholar 

  61. Olsen GW, Logan PW, Hansen KJ, Simpson CA, Burris JM, Burlew MM, et al. An occupational exposure assessment of a perfluorooctanesulfonyl fluoride production site: biomonitoring. AIHA J. 2003;64:651–9.

    Article  CAS  Google Scholar 

  62. Costa G, Sartori S, Consonni D. Thirty years of medical surveillance in perfluooctanoic acid production workers. J Occup Environ Med. 2009;51:364–72.

    Article  CAS  PubMed  Google Scholar 

  63. Olsen GW, Burris JM, Ehresman DJ, Froehlich JW, Seacat AM, Butenhoff JL, et al. Half-life of serum elimination of perfluorooctanesulfonate,perfluorohexanesulfonate, and perfluorooctanoate in retired fluorochemical production workers. Environ Health Perspect. 2007;115:1298–305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Winquist A, Steenland K. Modeled PFOA exposure and coronary artery disease, hypertension, and high cholesterol in community and worker cohorts. Environ Health Perspect. 2014;122:1299–305.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Olsen GW, Ehresman DJ, Buehrer BD, Gibson BA, Butenhoff JL, Zobel LR. Longitudinal assessment of lipid and hepatic clinical parameters in workers involved with the demolition of perfluoroalkyl manufacturing facilities. J Occup Environ Med. 2012;54:974–83.

    Article  CAS  PubMed  Google Scholar 

  66. Wang J, Zhang Y, Zhang W, Jin Y, Dai J. Association of perfluorooctanoic acid with HDL cholesterol and circulating miR-26b and miR-199-3p in workers of a fluorochemical plant and nearby residents. Environ Sci Technol. 2012;46:9274–81.

    Article  CAS  PubMed  Google Scholar 

  67. Alexander BH, Olsen GW, Burris JM, Mandel JH, Mandel JS. Mortality of employees of a perfluorooctanesulphonyl fluoride manufacturing facility. Occup Environ Med. 2003;60:722–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Lu Y, Gao K, Li X, Tang Z, Xiang L, Zhao H, et al. Mass spectrometry-based metabolomics reveals occupational exposure to per- and polyfluoroalkyl substances relates to oxidative stress, fatty acid beta-oxidation disorder, and kidney injury in a manufactory in China. Environ Sci Technol. 2019;53:9800–9.

    Article  CAS  PubMed  Google Scholar 

  69. Sakr CJ, Kreckmann KH, Green JW, Gillies PJ, Reynolds JL, Leonard RC. Cross-sectional study of lipids and liver enzymes related to a serum biomarker of exposure (ammonium perfluorooctanoate or APFO) as part of a general health survey in a cohort of occupationally exposed workers. J Occup Environ Med. 2007;49:1086–96.

    Article  CAS  PubMed  Google Scholar 

  70. Leary DB, Takazawa M, Kannan K, Khalil N. Perfluoroalkyl substances and metabolic syndrome in firefighters: a pilot study. J Occup Environ Med. 2020;62:52–7.

    Article  CAS  PubMed  Google Scholar 

  71. Shaw SD, Berger ML, Harris JH, Yun SH, Wu Q, Liao C, et al. Persistent organic pollutants including polychlorinated and polybrominated dibenzo-p-dioxins and dibenzofurans in firefighters from Northern California. Chemosphere. 2013;91:1386–94.

    Article  CAS  PubMed  Google Scholar 

  72. Dobraca D, Israel L, McNeel S, Voss R, Wang M, Gajek R, et al. Biomonitoring in California firefighters: metals and perfluorinated chemicals. J Occup Environ Med. 2015;57:88–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Trowbridge J, Gerona RR, Lin T, Rudel RA, Bessonneau V, Buren H, et al. Exposure to perfluoroalkyl substances in a cohort of women firefighters and office workers in San Francisco. Environ Sci Technol. 2020;54:3363–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Clarity C, Trowbridge J, Gerona R, Ona K, McMaster M, Bessonneau V, et al. Associations between polyfluoroalkyl substance and organophosphate flame retardant exposures and telomere length in a cohort of women firefighters and office workers in San Francisco. Environ Health. 2021;20:97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Khalil N, Ducatman AM, Sinari S, Billheimer D, Hu C, Littau S, et al. Per- and polyfluoroalkyl substance and cardio metabolic markers in firefighters. J Occup Environ Med. 2020;62:1076–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Graber JM, Black TM, Shah NN, Caban-Martinez AJ, Lu SE, Brancard T, et al. Prevalence and predictors of per- and polyfluoroalkyl substances (PFAS) serum levels among members of a suburban US Volunteer Fire Department. Int J Environ Res Public Health. 2021;18:3730.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Rotander A, Toms LM, Aylward L, Kay M, Mueller JF. Elevated levels of PFOS and PFHxS in firefighters exposed to aqueous film forming foam (AFFF). Environ Int. 2015;82:28–34.

    Article  CAS  PubMed  Google Scholar 

  78. Jin C, Sun Y, Islam A, Qian Y, Ducatman A. Perfluoroalkyl acids including perfluorooctane sulfonate and perfluorohexane sulfonate in firefighters. J Occup Environ Med. 2011;53:324–8.

    Article  CAS  PubMed  Google Scholar 

  79. Laitinen JA, Koponen J, Koikkalainen J, Kiviranta H. Firefighters’ exposure to perfluoroalkyl acids and 2-butoxyethanol present in firefighting foams. Toxicol Lett. 2014;231:227–32.

    Article  CAS  PubMed  Google Scholar 

  80. Rotander A, Karrman A, Toms LM, Kay M, Mueller JF, Gomez Ramos MJ. Novel fluorinated surfactants tentatively identified in firefighters using liquid chromatography quadrupole time-of-flight tandem mass spectrometry and a case-control approach. Environ Sci Technol. 2015;49:2434–42.

    Article  CAS  PubMed  Google Scholar 

  81. Nilsson H, Karrman A, Westberg H, Rotander A, van Bavel B, Lindstrom G. A time trend study of significantly elevated perfluorocarboxylate levels in humans after using fluorinated ski wax. Environ Sci Technol. 2010;44:2150–5.

    Article  CAS  PubMed  Google Scholar 

  82. Gomis MI, Vestergren R, Nilsson H, Cousins IT. Contribution of direct and indirect exposure to human serum concentrations of perfluorooctanoic acid in an occupationally exposed group of ski waxers. Environ Sci Technol. 2016;50:7037–46.

    Article  CAS  PubMed  Google Scholar 

  83. Zhou Z, Shi Y, Vestergren R, Wang T, Liang Y, Cai Y. Highly elevated serum concentrations of perfluoroalkyl substances in fishery employees from Tangxun Lake, China. Environ Sci Technol. 2014;48:3864–74.

    Article  CAS  PubMed  Google Scholar 

  84. Bloom MS, Kannan K, Spliethoff HM, Tao L, Aldous KM, Vena JE. A preliminary study of temporal differences in serum concentrations of perfluoroalkyl acids, among New York anglers, in the absence of known changes in manufacturing practices. Toxicol Environ Chem. 2009;91:1387–97.

  85. Lu C, Shi YL, Zhou Z, Liu NN, Meng ZF, Cai YQ. Perfluorinated compounds in blood of textile workers and barbers. Chin Chem Lett. 2014;25:1145–8.

    Article  CAS  Google Scholar 

  86. Olsen GW, Chang SC, Noker PE, Gorman GS, Ehresman DJ, Lieder PH, et al. A comparison of the pharmacokinetics of perfluorobutanesulfonate (PFBS) in rats, monkeys, and humans. Toxicology. 2009;256:65–74.

    Article  CAS  PubMed  Google Scholar 

  87. Hall SM, Patton S, Petreas M, Zhang S, Phillips AL, Hoffman K, et al. Per- and polyfluoroalkyl substances in dust collected from residential homes and fire stations in North America. Environ Sci Technol. 2020;54:14558–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Goosey E, Harrad S. Perfluoroalkyl compounds in dust from Asian, Australian, European, and North American homes and UK cars, classrooms, and offices. Environ Int. 2011;37:86–92.

    Article  CAS  PubMed  Google Scholar 

  89. D’Hollander W, Roosens L, Covaci A, Cornelis C, Reynders H, Campenhout KV, et al. Brominated flame retardants and perfluorinated compounds in indoor dust from homes and offices in Flanders, Belgium. Chemosphere. 2010;81:478–87.

    Article  PubMed  Google Scholar 

  90. Leonard RC, Kreckmann KH, Sakr CJ, Symons JM. Retrospective cohort mortality study of workers in a polymer production plant including a reference population of regional workers. Ann Epidemiol. 2008;18:15–22.

    Article  PubMed  Google Scholar 

  91. Grice MM, Alexander BH, Hoffbeck R, Kampa DM. Self-reported medical conditions in perfluorooctanesulfonyl fluoride manufacturing workers. J Occup Environ Med. 2007;49:722–9.

    Article  CAS  PubMed  Google Scholar 

  92. Lundin JI, Alexander BH, Olsen GW, Church TR. Ammonium perfluorooctanoate production and occupational mortality. Epidemiology. 2009;20:921–8.

    Article  PubMed  Google Scholar 

  93. Steenland K, Zhao L, Winquist A. A cohort incidence study of workers exposed to perfluorooctanoic acid (PFOA). Occup Environ Med. 2015;72:373–80.

    Article  PubMed  Google Scholar 

  94. Karnes C, Winquist A, Steenland K. Incidence of type II diabetes in a cohort with substantial exposure to perfluorooctanoic acid. Environ Res. 2014;128:78–83.

    Article  CAS  PubMed  Google Scholar 

  95. Raleigh KK, Alexander BH, Olsen GW, Ramachandran G, Morey SZ, Church TR, et al. Mortality and cancer incidence in ammonium perfluorooctanoate production workers. Occup Environ Med. 2014;71:500–6.

    Article  PubMed  Google Scholar 

  96. Kreckmann KH, Sakr CJ, Leonard RC, Dawson BJ. Estimation and validation of biomarker-based exposures for historical ammonium perfluorooctanoate. J Occup Environ Hyg. 2009;6:511–6.

    Article  CAS  PubMed  Google Scholar 

  97. Steenland K, Woskie S. Cohort mortality study of workers exposed to perfluorooctanoic acid. Am J Epidemiol. 2012;176:909–17.

    Article  PubMed  Google Scholar 

  98. Zeng XW, Lodge CJ, Dharmage SC, Bloom MS, Yu Y, Yang M, et al. Isomers of per- and polyfluoroalkyl substances and uric acid in adults: isomers of C8 Health Project in China. Environ Int. 2019;133(Pt A):105160.

    Article  CAS  PubMed  Google Scholar 

  99. Glüge J, Scheringer M, Cousins IT, DeWitt JC, Goldenman G, Herzke D, et al. An overview of the uses of per- and polyfluoroalkyl substances (PFAS). Environ Sci Process Impacts. 2020;22:2345–73.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Cousins IT, Goldenman G, Herzke D, Lohmann R, Miller M, Ng CA, et al. The concept of essential use for determining when uses of PFASs can be phased out. Environ Sci Process Impacts. 2019;21:1803–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Steenland K, Tinker S, Frisbee S, Ducatman A, Vaccarino V. Association of perfluorooctanoic acid and perfluorooctane sulfonate with serum lipids among adults living near a chemical plant. Am J Epidemiol. 2009;170:1268–78.

    Article  PubMed  Google Scholar 

  102. Kato K, Kalathil AA, Patel AM, Ye X, Calafat AM. Per- and polyfluoroalkyl substances and fluorinated alternatives in urine and serum by on-line solid phase extraction-liquid chromatography-tandem mass spectrometry. Chemosphere. 2018;209:338–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Ericson I, Gómez M, Nadal M, van Bavel B, Lindström G, Domingo JL. Perfluorinated chemicals in blood of residents in Catalonia (Spain) in relation to age and gender: a pilot study. Environ Int. 2007;33:616–23.

    Article  PubMed  Google Scholar 

  104. Karrman A, Mueller JF, van Bavel B, Harden F, Toms LM, Lindstrom G. Levels of 12 perfluorinated chemicals in pooled australian serum, collected 2002–2003, in relation to age, gender, and region. Environ Sci Technol. 2006;40:3742–8.

    Article  PubMed  Google Scholar 

  105. Karrman A, van Bavel B, Jarnberg U, Hardell L, Lindstrom G. Perfluorinated chemicals in relation to other persistent organic pollutants in human blood. Chemosphere. 2006;64:1582–91.

    Article  PubMed  Google Scholar 

  106. Tanner EM, Bloom MS, Wu Q, Kannan K, Yucel RM, Shrestha S, et al. Occupational exposure to perfluoroalkyl substances and serum levels of perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) in an aging population from upstate New York: a retrospective cohort study. Int Arch Occup Environ Health. 2018;91:145–54.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by an interagency agreement between the National Institute for Occupational Safety and Health (NIOSH) and the National Institute of Environmental Health Sciences (AES22002-001-0000) as a collaborative National Toxicology Program research activity.

Author information

Authors and Affiliations

Authors

Contributions

BTC was responsible for designing the search strategy, screening for eligible studies, extracting relevant data, interpreting study results, producing tables and figures, producing the initial draft of the manuscript, and revising the manuscript. MMC was responsible for designing the search strategy, screening for eligible studies, producing tables and figures, interpreting results, and revising the manuscript. The CDC Thacker Library provided technical assistance in designing the search strategy and ran the search strategy through multiple databases. Other Contributions: The CDC Thacker Library provided technical assistance in designing the search strategy and ran the search strategy through multiple databases. Additionally, Jessica Rinsky, Susan Moore, Susan Fenton, Kristen Ryan, Pei Li Yao, and Kristin Eccles reviewed the paper and provided helpful feedback.

Corresponding author

Correspondence to Brian T. Christensen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Christensen, B.T., Calkins, M.M. Occupational exposure to per- and polyfluoroalkyl substances: a scope review of the literature from 1980–2021. J Expo Sci Environ Epidemiol 33, 673–686 (2023). https://doi.org/10.1038/s41370-023-00536-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41370-023-00536-y

Keywords

Search

Quick links