Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Commentary
  • Published:

Frontiers in terahertz sources and plasmonics

The development of innovative tools and techniques is vital for improving research capabilities and opening up new research directions in the terahertz regime. Terahertz sources and plasmonics are just two examples of current exciting advances.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Two methods for generating high-intensity THz pulses.
Figure 2: Illustrations of THz plasmonic effects.

References

  1. International Society of Infrared, Millimeter and Terahertz Waves; available at http://www.irmmw-thz.org/.

  2. Mittleman, D. (ed.) Sensing with THz Radiation (Springer Series in Optical Sciences 85, Springer, 2003).

    Book  Google Scholar 

  3. Booske, J. H. et al. IEEE Trans. THz Sci. Tech. 1, 54–75 (2011).

    Article  Google Scholar 

  4. Williams, B. S., Kumar, S., Hu, Q. & Reno, J. L. Electron. Lett. 42, 89–91 (2006).

    Article  Google Scholar 

  5. Carr, G. L. et al. Nature 420, 153–156 (2002).

    Article  ADS  Google Scholar 

  6. Junginger, F. et al. Opt. Lett. 35, 2645–2647 (2010).

    Article  ADS  Google Scholar 

  7. Hebling, J., Yeh, K.-L., Hoffmann, M. C., Bartal, B. & Nelson, K. A. J. Opt. Soc. Am. B 25, B6–B19 (2008).

    Article  Google Scholar 

  8. Dai, J., Liu, J. & Zhang, X.-C. IEEE J. Sel. Top. Quant. Electron. 17, 183–190 (2011).

    Article  ADS  Google Scholar 

  9. Hirori, H. et al. Nat. Commun. 2, 594 (2011).

    Article  ADS  Google Scholar 

  10. Junginger, F. et al. Phys. Rev. Lett. 109, 147403 (2012).

    Article  ADS  Google Scholar 

  11. Liu, M. et al. Nature 487, 345–348 (2012).

    Article  ADS  Google Scholar 

  12. Markelz, A. G. IEEE J. Sel. Top. Quant. Electron. 14, 180–190 (2008).

    Article  ADS  Google Scholar 

  13. Wilmink, G. J. & Grundt, J. E. J. Infrared Millimeter THz Waves 32, 1074–1122 (2011).

    Article  Google Scholar 

  14. Siegel, P. H. & Pikov, V. Electron. Lett. 46, S70–S72 (2010).

    Article  Google Scholar 

  15. Yu, N. et al. Electron. Lett. 46, S52–S57 (2010).

    Article  Google Scholar 

  16. O'Hara, J. F., Averitt, R. D. & Taylor, A. J. Opt. Express 13, 6117–6126 (2005).

    Article  ADS  Google Scholar 

  17. Jeon, T.-I. & Grischkowsky, D. Appl. Phys. Lett. 88, 061113 (2006).

    Article  ADS  Google Scholar 

  18. Astley, V., Scheiman, J., Mendis, R. & Mittleman, D. M. Opt. Lett. 35, 553–555 (2010).

    Article  ADS  Google Scholar 

  19. Liu, J., Mendis, R. & Mittleman, D. M. Appl. Phys. Lett. 98, 231113 (2011).

    Article  ADS  Google Scholar 

  20. Wang, K. & Mittleman, D. M. Nature 432, 376–379 (2004).

    Article  ADS  Google Scholar 

  21. Astley, V., Mendis, R. & Mittleman, D. M. Appl. Phys. Lett. 95, 031104 (2009).

    Article  ADS  Google Scholar 

  22. Zhan, H., Mendis, R. & Mittleman, D. M. Opt. Express 18, 9643–9650 (2010).

    Article  ADS  Google Scholar 

  23. Pendry, J. B., Martín-Moreno, L. & García-Vidal, F. J. Science 305, 847–848 (2004).

    Article  ADS  Google Scholar 

  24. Maier, S. A., Andrews, S. R., Martín-Moreno, L. & García-Vidal, F. J. Phys. Rev. Lett. 97, 176805 (2006).

    Article  ADS  Google Scholar 

  25. Agrawal, A., Cao, H. & Nahata, A. Opt. Express 13, 3535–3542 (2005).

    Article  ADS  Google Scholar 

  26. Liu, J., Mendis, R. & Mittleman, D. M. Phys. Rev. B 86, 241405(R) (2012).

    Article  ADS  Google Scholar 

  27. Yu, N. et al. Nature Mater. 9, 730–735 (2010).

    Article  ADS  Google Scholar 

  28. Tao, H. et al. Phys. Rev. Lett. 103, 147401 (2009).

    Article  ADS  Google Scholar 

  29. Chen, H.-T. et al. Nature 444, 597–600 (2006).

    Article  ADS  Google Scholar 

  30. Zhang, S. et al. Nat. Commun. 3, 942 (2012).

    Article  ADS  Google Scholar 

  31. Iwaszczuk, K. et al. Opt. Express 20, 635–643 (2012).

    Article  ADS  Google Scholar 

  32. Seo, M. A. et al. Nature Photon. 3, 152–156 (2009).

    Article  ADS  Google Scholar 

  33. Park, H.-R. et al. Nano Lett. 13, 1782–1786 (2013).

    Article  ADS  Google Scholar 

  34. Senitzky, B. & Oliner, A. A. in Proc. Sym. Submillimeter Waves (ed. Fox, J.) (Polytechnic Inst. of Brooklyn, 1970).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel M. Mittleman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mittleman, D. Frontiers in terahertz sources and plasmonics. Nature Photon 7, 666–669 (2013). https://doi.org/10.1038/nphoton.2013.235

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2013.235

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing