Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Using protein-DNA chimeras to detect and count small numbers of molecules

Abstract

We describe general methods to detect and quantify small numbers of specific molecules. We redirected self-splicing protein inteins to create 'tadpoles', chimeric molecules comprised of a protein head covalently coupled to an oligonucleotide tail. We made different classes of tadpoles that bind specific targets, including Bacillus anthracis protective antigen and the enzyme cofactor biotin. We measured the amount of bound target by quantifying DNA tails by T7 RNA polymerase runoff transcription and real-time polymerase chain reaction (PCR) evaluated by rigorous statistical methods. These assays had a dynamic range of detection of more than 11 orders of magnitude and distinguished numbers of molecules that differed by as little as 10%. At their low limit, these assays were used to detect as few as 6,400 protective antigen molecules, 600 biotin molecules and 150 biotinylated protein molecules. In crudely fractionated human serum, the assays were used to detect as few as 32,000 protective antigen molecules. Tadpoles thus enable sensitive detection and precise quantification of molecules other than DNA and RNA.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Design and synthesis of chimeric detector molecules.
Figure 2: Characterization of anti-biotin tadpole.
Figure 3: Quantification of biotinylated BSA diluted in an excess of nonspecific organic molecules.
Figure 4: Statistical analysis of biotin quantification.
Figure 5: Quantification of recombinant PA diluted in BSA or human serum.
Figure 6: Statistical analysis of PA quantification.

Similar content being viewed by others

References

  1. Engvall, E. & Perlman, P. Enzyme-linked immunosorbent assay (ELISA). Quantitative assay of immunoglobulin G. Immunochemistry 8, 871–874 (1971).

    Article  CAS  Google Scholar 

  2. Yalow, R.S. & Berson, S.A. Assay of plasma insulin in human subjects by immunological methods. Nature 184 Suppl. 21, 1648–1649 (1959).

    Article  CAS  Google Scholar 

  3. Brenner, S. & Lerner, R.A. Encoded combinatorial chemistry. Proc. Natl. Acad. Sci. USA 89, 5381–5383 (1992).

    Article  CAS  Google Scholar 

  4. Sano, T., Smith, C.L. & Cantor, C.R. Immuno-PCR: very sensitive antigen detection by means of specific antibody-DNA conjugates. Science 258, 120–122 (1992).

    Article  CAS  Google Scholar 

  5. Fredriksson, S. et al. Protein detection using proximity-dependent DNA ligation assays. Nat. Biotechnol. 20, 473–477 (2002).

    Article  CAS  Google Scholar 

  6. Hendrickson, E.R., Truby, T.M., Joerger, R.D., Majarian, W.R. & Ebersole, R.C. High sensitivity multianalyte immunoassay using covalent DNA-labeled antibodies and polymerase chain reaction. Nucleic Acids Res. 23, 522–529 (1995).

    Article  CAS  Google Scholar 

  7. McKie, A., Samuel, D., Cohen, B. & Saunders, N.A. A quantitative immuno-PCR assay for the detection of mumps-specific IgG. J. Immunol. Methods 270, 135–141 (2002).

    Article  CAS  Google Scholar 

  8. Niemeyer, C.M. et al. Self-assembly of DNA-streptavidin nanostructures and their use as reagents in immuno-PCR. Nucleic Acids Res. 27, 4553–4561 (1999).

    Article  CAS  Google Scholar 

  9. Zhang, H.T., Kacharmina, J.E., Miyashiro, K., Greene, M.I. & Eberwine, J. Protein quantification from complex protein mixtures using a proteomics methodology with single-cell resolution. Proc. Natl. Acad. Sci. USA 98, 5497–5502 (2001).

    Article  CAS  Google Scholar 

  10. Nam, J.M., Thaxton, C.S. & Mirkin, C.A. Nanoparticle-based bio-bar codes for the ultrasensitive detection of proteins. Science 301, 1884–1886 (2003).

    Article  CAS  Google Scholar 

  11. Perler, F.B. et al. Intervening sequences in an Archaea DNA polymerase gene. Proc. Natl. Acad. Sci. USA 89, 5577–5581 (1992).

    Article  CAS  Google Scholar 

  12. Muir, T., Sondhi, D. & Cole, P. Expressed protein ligation: A general method for protein engineering. Proc. Natl. Acad. Sci. USA 95, 6705–6710 (1998).

    Article  CAS  Google Scholar 

  13. Sydor, J.R., Mariano, M., Sideris, S. & Nock, S. Establishment of intein-mediated protein ligation under denaturing conditions: C-terminal labeling of a single-chain antibody for biochip screening. Bioconjug. Chem. 13, 707–712 (2002).

    Article  CAS  Google Scholar 

  14. Lovrinovic, M. et al. Synthesis of protein-nucleic acid conjugates by expressed protein ligation. Chem. Commun. (Camb.) 7, 822–823 (2003).

    Article  Google Scholar 

  15. Green, N.M. & Melamed, M.D. Optical rotatory dispersion, circular dichroism and far-ultraviolet spectra of avidin and streptavidin. Biochem. J. 100, 614–621 (1966).

    Article  CAS  Google Scholar 

  16. Huston, J.S. et al. Protein engineering of antibody binding sites: recovery of specific activity in an anti-digoxin single-chain Fv analogue produced in Escherichia coli. Proc. Natl. Acad. Sci. USA 85, 5879–5883 (1988).

    Article  CAS  Google Scholar 

  17. Colas, P. et al. Genetic selection of peptide aptamers that recognize and inhibit cyclin-dependent kinase 2. Nature 380, 548–550 (1996).

    Article  CAS  Google Scholar 

  18. Watanabe, T. et al. The roles of the C-terminal domain and type III domains of chitinase A1 from Bacillus circulans WL-12 in chitin degradation. J. Bacteriol. 176, 4465–4472 (1994).

    Article  CAS  Google Scholar 

  19. Stetsenko, D.A. & Gait, M.J. New phosphoramidite reagents for the synthesis of oligonucleotides containing a cysteine residue useful in peptide conjugation. Nucleosides Nucleotides Nucleic Acids 19, 1751–1764 (2000).

    Article  CAS  Google Scholar 

  20. Chong, S. et al. Single-column purification of free recombinant proteins using a self-cleavable affinity tag derived from a protein splicing element. Gene 192, 271–281 (1997).

    Article  CAS  Google Scholar 

  21. Sano, T., Pandori, M.W., Chen, X., Smith, C.L. & Cantor, C.R. Recombinant core streptavidins. A minimum-sized core streptavidin has enhanced structural stability and higher accessibility to biotinylated macromolecules. J. Biol. Chem. 270, 28204–28209 (1995).

    Article  CAS  Google Scholar 

  22. Green, N.M. A Spectrophotometric Assay for Avidin and Biotin Based on Binding of Dyes by Avidin. Biochem. J. 94, 23C–24C (1965).

    Article  CAS  Google Scholar 

  23. Van Gelder, R.N. et al. Amplified RNA synthesized from limited quantities of heterogeneous cDNA. Proc. Natl. Acad. Sci. USA 87, 1663–1667 (1990).

    Article  CAS  Google Scholar 

  24. Higuchi, R., Fockler, C., Dollinger, G. & Watson, R. Kinetic PCR analysis: real-time monitoring of DNA amplification reactions. Biotechnology 11, 1026–1030 (1993).

    CAS  Google Scholar 

  25. Timkovich, R. Detection of the stable addition of carbodiimide to proteins. Anal. Biochem. 79, 135–143 (1977).

    Article  CAS  Google Scholar 

  26. Staros, J.V., Wright, R.W. & Swingle, D.M. Enhancement by N-hydroxysulfosuccinimide of water-soluble carbodiimide- mediated coupling reactions. Anal. Biochem. 156, 220–222 (1986).

    Article  CAS  Google Scholar 

  27. Neyman, J. Outline of a theory of statistical estimation based on the classical theory of probability. Philos. Trans. R. Soc. London A236, 333–380 (1937).

    Article  Google Scholar 

  28. Feldman, G.J. & Cousins, R.D. Unified approach to the classical statistical analysis of small signals. Phys. Rev. 57, 3873–3889 (1998).

    Article  CAS  Google Scholar 

  29. Fabbrizio, E. et al. Inhibition of mammalian cell proliferation by genetically selected peptide aptamers that functionally antagonize E2F activity. Oncogene 18, 4357–4363 (1999).

    Article  CAS  Google Scholar 

  30. Leppla, S.H. Anthrax toxin edema factor: a bacterial adenylate cyclase that increases cyclic AMP concentrations of eukaryotic cells. Proc. Natl. Acad. Sci. USA 79, 3162–3166 (1982).

    Article  CAS  Google Scholar 

  31. Maynard, J.A. et al. Protection against anthrax toxin by recombinant antibody fragments correlates with antigen affinity. Nat. Biotechnol. 20, 597–601 (2002).

    Article  CAS  Google Scholar 

  32. Prinz, W.A., Aslund, F., Holmgren, A. & Beckwith, J. The role of the thioredoxin and glutaredoxin pathways in reducing protein disulfide bonds in the Escherichia coli cytoplasm. J. Biol. Chem. 272, 15661–15667 (1997).

    Article  CAS  Google Scholar 

  33. Salmon, S.E., Mackey, G. & Fudenberg, H.H. Sandwich” solid phase radioimmunoassay for the quantitative deterimination of human immunoglobulins. J. Immunol. 103, 129–137 (1969).

    CAS  PubMed  Google Scholar 

  34. Chen, L., Benner, J. & Perler, F.B. Protein splicing in the absence of an intein penultimate histidine. J. Biol. Chem. 275, 20431–20435 (2000).

    Article  CAS  Google Scholar 

  35. Schafer, U., Beck, K. & Muller, M. Skp, a molecular chaperone of gram-negative bacteria, is required for the formation of soluble periplasmic intermediates of outer membrane proteins. J. Biol. Chem. 274, 24567–24574 (1999).

    Article  CAS  Google Scholar 

  36. Hayhurst, A. & Harris, W.J. Escherichia coli skp chaperone coexpression improves solubility and phage display of single-chain antibody fragments. Protein Expr. Purif. 15, 336–343 (1999).

    Article  CAS  Google Scholar 

  37. Bothmann, H. & Pluckthun, A. Selection for a periplasmic factor improving phage display and functional periplasmic expression. Nat. Biotechnol. 16, 376–380 (1998).

    Article  CAS  Google Scholar 

  38. Caruthers, M.H. et al. New chemical methods for synthesizing polynucleotides. Nucleic Acids Symp. Ser. 7, 215–223 (1980).

    CAS  Google Scholar 

  39. Caruthers, M.H. et al. Deoxyoligonucleotide synthesis via the phosphoramidite method. Gene Amplif. Anal. 3, 1–26 (1983).

    CAS  PubMed  Google Scholar 

  40. Tuma, R.S. et al. Characterization of SYBR Gold nucleic acid gel stain: a dye optimized for use with 300-nm ultraviolet transilluminators. Anal. Biochem. 268, 278–288 (1999).

    Article  CAS  Google Scholar 

  41. Zacharieva, E.I., Georgieva, M.P., Kabaivanov, V.S. & Popov, D.V. Preparation and investigation of cross-linked copolymers containing antitumour agents. Biomaterials 4, 197–200 (1983).

    Article  CAS  Google Scholar 

  42. Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254 (1976).

    Article  CAS  Google Scholar 

  43. Garner, D.L., Johnson, L.A., Yue, S.T., Roth, B.L. & Haugland, R.P. Dual DNA staining assessment of bovine sperm viability using SYBR-14 and propidium iodide. J. Androl. 15, 620–629 (1994).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank R. Fu for technical assistance with early real-time PCR experiments, L. Lok for invaluable advice on statistical analysis, O. Resnekov for suggesting T-gel for fractionating serum, C. Cantor for the gene encoding the streptavidin core subunit, J. Maynard for plasmids encoding anti-PA scFvs, purified scFvs and antibodies, and A. Coleman-Lerner, K. Benjamin, A. Gordon, L. Lok, A. Mendelsohn, O. Resnekov, E. Serra and R. Yu for useful discussions and comments on the manuscript. Some support for this work came from grants from the National Science Foundation and Defense Advanced Research Projects Agency, but main support came from the Center for Genomic Experimentation and Computation, a National Institutes of Health Center of Excellence in Genomic Science (P50 HG02370).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian Burbulis.

Ethics declarations

Competing interests

The technology described in this manuscript has pending patents and may be licensed for use.

Supplementary information

Supplementary Fig. 1

Verification of gaussian distribution. (PDF 176 kb)

Supplementary Fig. 2

Biotin enyzyme linked immuno-adsorption assay. (PDF 57 kb)

Supplementary Fig. 3

PA enyzyme linked immuno-adsorption assay. (PDF 61 kb)

Supplementary Table 1

Affinity protein heads. (PDF 66 kb)

Supplementary Table 2

DNA tails used to construct tadpoles. (PDF 51 kb)

Supplementary Table 3

Forward and reverse PCR primer sequences used to amplify specific tadpole tail DNAs. (PDF 50 kb)

Supplementary Table 4

Evanescent wave measurements of tadpole binding. (PDF 136 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burbulis, I., Yamaguchi, K., Gordon, A. et al. Using protein-DNA chimeras to detect and count small numbers of molecules. Nat Methods 2, 31–37 (2005). https://doi.org/10.1038/nmeth729

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth729

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing