Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Strategies for the reconstitution of chromatin

Abstract

In eukaryotes, chromatin is the natural form of DNA in the nucleus. For hundreds of millions of years, DNA-binding factors have evolved with chromatin. It is therefore more desirable to study the molecular mechanisms of DNA-directed processes with chromatin than with naked DNA templates. To this end, it is necessary to reconstitute DNA and histones into chromatin. Fortunately, there are a variety of methods by which a nonspecialist can prepare chromatin of high quality. Here, we describe strategies and techniques for the reconstitution of chromatin in vitro.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic representation of chromatin.
Figure 2: Different types of chromatin that can be reconstituted in vitro with purified components.
Figure 3: Assays for chromatin reconstitution.

Similar content being viewed by others

References

  1. van Holde, K.E. Chromatin (Springer Verlag, New York, 1989).

    Google Scholar 

  2. Wolffe, A. Chromatin: Structure and Function (Academic, San Diego, 1998).

    Google Scholar 

  3. Kornberg, R.D. & Lorch, Y. Twenty-five years of the nucleosome, fundamental particle of the eukaryote chromosome. Cell 98, 285–294 (1999).

    Article  CAS  PubMed  Google Scholar 

  4. Davey, C.A., Sargent, D.F., Luger, K., Maeder, A.W. & Richmond, T.J. Solvent mediated interactions in the structure of the nucleosome core particle at 1.9 Å resolution. J. Mol. Biol. 319, 1097–1113 (2002).

    CAS  PubMed  Google Scholar 

  5. Bates, D.L. & Thomas, J.O. Histones H1 and H5: one or two molecules per nucleosome? Nucleic Acids Res. 9, 5883–5894 (1981).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Vignali, M., Hassan, A.H., Neely, K.E. & Workman, J.L. ATP-dependent chromatin-remodeling complexes. Mol. Cell. Biol. 20, 1899–1910 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Flaus, A. & Owen-Hughes, T. Mechanisms for ATP-dependent chromatin remodelling. Curr. Opin. Genet. Dev. 11, 148–154 (2001).

    CAS  PubMed  Google Scholar 

  8. Fyodorov, D.V. & Kadonaga, J.T. The many faces of chromatin remodeling: SWItching beyond transcription. Cell 106, 523–525 (2001).

    CAS  PubMed  Google Scholar 

  9. Narlikar, G.J., Fan, H.Y. & Kingston, R.E. Cooperation between complexes that regulate chromatin structure and transcription. Cell 108, 475–487 (2002).

    CAS  PubMed  Google Scholar 

  10. Becker, P.B. & Horz, W. ATP-dependent nucleosome remodeling. Annu. Rev. Biochem. 71, 247–273 (2002).

    CAS  PubMed  Google Scholar 

  11. Lusser, A. & Kadonaga, J.T. Chromatin remodeling by ATP-dependent molecular machines. Bioessays 25, 1192–1200 (2003).

    CAS  PubMed  Google Scholar 

  12. Peterson, C.L. & Cote, J. Cellular machineries for chromosomal DNA repair. Genes Dev. 18, 602–616 (2004).

    CAS  PubMed  Google Scholar 

  13. Strahl, B.D. & Allis, C.D. The language of covalent histone modifications. Nature 403, 41–45 (2000).

    CAS  PubMed  Google Scholar 

  14. Zhang, Y. & Reinberg, D. Transcription regulation by histone methylation: interplay between different covalent modifications of the core histone tails. Genes Dev. 15, 2343–2360. (2001).

    CAS  PubMed  Google Scholar 

  15. Berger, S.L. Histone modifications in transcriptional regulation. Curr. Opin. Genet. Dev. 12, 142–148 (2002).

    CAS  PubMed  Google Scholar 

  16. Bannister, A.J., Schneider, R. & Kouzarides, T. Histone methylation: dynamic or static? Cell 109, 801–806 (2002).

    CAS  PubMed  Google Scholar 

  17. Ito, T., Tyler, J.K. & Kadonaga, J.T. Chromatin assembly factors: a dual function in nucleosome formation and mobilization? Genes Cells 2, 593–600 (1997).

    CAS  PubMed  Google Scholar 

  18. Adams, C.R. & Kamakaka, R.T. Chromatin assembly: biochemical identities and genetic redundancy. Curr. Opin. Genet. Dev. 9, 185–190 (1999).

    CAS  PubMed  Google Scholar 

  19. Verreault, A. De novo nucleosome assembly: new pieces in an old puzzle. Genes Dev. 14, 1430–1438 (2000).

    CAS  PubMed  Google Scholar 

  20. Mello, J.A. & Almouzni, G. The ins and outs of nucleosome assembly. Curr. Opin. Genet. Dev. 11, 136–141 (2001).

    CAS  PubMed  Google Scholar 

  21. Tyler, J.K. Chromatin assembly. Cooperation between histone chaperones and ATP-dependent nucleosome remodeling machines. Eur. J. Biochem. 269, 2268–2274 (2002).

    CAS  PubMed  Google Scholar 

  22. Ito, T. Nucleosome assembly and remodeling. Curr. Top. Microbiol. Immunol. 274, 1–22 (2003).

    CAS  PubMed  Google Scholar 

  23. Haushalter, K.A. & Kadonaga, J.T. Chromatin assembly by DNA-translocating motors. Nat. Rev. Mol. Cell. Biol. 4, 613–620 (2003).

    CAS  PubMed  Google Scholar 

  24. Stein, A., Whitlock, J.P., Jr. & Bina, M. Acidic polypeptides can assemble both histones and chromatin in vitro at physiological ionic strength. Proc. Natl. Acad. Sci. USA 76, 5000–5004 (1979).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Stein, A. Reconstitution of chromatin from purified components. Methods Enzymol. 170, 585–603 (1989).

    CAS  PubMed  Google Scholar 

  26. Nelson, T., Wiegand, R. & Brutlag, D. Ribonucleic acid and other polyanions facilitate chromatin assembly in vitro. Biochemistry 20, 2594–2601 (1981).

    CAS  PubMed  Google Scholar 

  27. Axel, R., Melchior, W., Sollner-Webb, B. & Felsenfeld, G. Specific sites of interaction between histones and DNA in chromatin. Proc. Natl. Acad. Sci. USA 71, 4101–4105 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Oudet, P., Gross-Bellard, M. & Chambon, P. Electron microscopic and biochemical evidence that chromatin structure is a repeating unit. Cell 4, 281–300 (1975).

    CAS  PubMed  Google Scholar 

  29. Thomas, J.O. & Butler, P.J. The nucleosome core protein. Cold Spring Harb. Symp. Quant. Biol. 42 Pt 1, 119–125 (1978).

    CAS  PubMed  Google Scholar 

  30. Simpson, R.T., Thoma, F. & Brubaker, J.M. Chromatin reconstituted from tandemly repeated cloned DNA fragments and core histones: a model system for study of higher order structure. Cell 42, 799–808 (1985).

    CAS  PubMed  Google Scholar 

  31. Luger, K., Rechsteiner, T.J., Flaus, A.J., Waye, M.M. & Richmond, T.J. Characterization of nucleosome core particles containing histone proteins made in bacteria. J. Mol. Biol. 272, 301–311 (1997).

    CAS  PubMed  Google Scholar 

  32. Glikin, G.C., Ruberti, I. & Worcel, A. Chromatin assembly in Xenopus oocytes: in vitro studies. Cell 37, 33–41 (1984).

    CAS  PubMed  Google Scholar 

  33. Ito, T., Bulger, M., Pazin, M.J., Kobayashi, R. & Kadonaga, J.T. ACF, an ISWI-containing and ATP-utilizing chromatin assembly and remodeling factor. Cell 90, 145–155 (1997).

    CAS  PubMed  Google Scholar 

  34. Ito, T. et al. ACF consists of two subunits, Acf1 and ISWI, that function cooperatively in the ATP-dependent catalysis of chromatin assembly. Genes Dev. 13, 1529–1539 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Levenstein, M.E. & Kadonaga, J.T. Biochemical analysis of chromatin containing recombinant Drosophila core histones. J. Biol. Chem. 277, 8749–8754 (2002).

    CAS  PubMed  Google Scholar 

  36. Fyodorov, D.V. & Kadonaga, J.T. Dynamics of ATP-dependent chromatin assembly by ACF. Nature 418, 897–900 (2002).

    CAS  PubMed  Google Scholar 

  37. Fyodorov, D.V. & Kadonaga, J.T. Chromatin assembly in vitro with purified recombinant ACF and NAP-1. Methods Enzymol. 371, 499–515 (2003).

    CAS  PubMed  Google Scholar 

  38. Loyola, A., LeRoy, G., Wang, Y.H. & Reinberg, D. Reconstitution of recombinant chromatin establishes a requirement for histone-tail modifications during chromatin assembly and transcription. Genes Dev. 15, 2837–2851 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Loyola, A. et al. Functional analysis of the subunits of the chromatin assembly factor RSF. Mol. Cell. Biol. 23, 6759–6768 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Loyola, A. & Reinberg, D. Histone deposition and chromatin assembly by RSF. Methods 31, 96–103 (2003).

    CAS  PubMed  Google Scholar 

  41. Bulger, M. & Kadonaga, J.T. Biochemical reconstitution of chromatin with physiological nucleosome spacing. Methods Mol. Genet. 5, 241–262 (1994).

    CAS  Google Scholar 

  42. Becker, P.B., Tsukiyama, T. & Wu, C. Chromatin assembly extracts from Drosophila embryos. Methods Cell Biol. 44, 207–223 (1994).

    CAS  PubMed  Google Scholar 

  43. Noll, M. & Kornberg, R.D. Action of micrococcal nuclease on chromatin and the location of histone H1. J. Mol. Biol. 109, 393–404 (1977).

    CAS  PubMed  Google Scholar 

  44. Finch, J.T. et al. Structure of nucleosome core particles of chromatin. Nature 269, 29–36 (1977).

    CAS  PubMed  Google Scholar 

  45. Richmond, T.J., Finch, J.T., Rushton, B., Rhodes, D. & Klug, A. Structure of the nucleosome core particle at 7 Å resolution. Nature 311, 532–537 (1984).

    CAS  PubMed  Google Scholar 

  46. Perlmann, T. & Wrange, O. Specific glucocorticoid receptor binding to DNA reconstituted in a nucleosome. EMBO J. 7, 3073–3079 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Cirillo, L.A. & Zaret, K.S. An early developmental transcription factor complex that is more stable on nucleosome core particles than on free DNA. Mol. Cell 4, 961–969 (1999).

    CAS  PubMed  Google Scholar 

  48. Mardian, J.K., Paton, A.E., Bunick, G.J. & Olins, D.E. Nucleosome cores have two specific binding sites for nonhistone chromosomal proteins HMG 14 and HMG 17. Science 209, 1534–1536 (1980).

    CAS  PubMed  Google Scholar 

  49. Sandeen, G., Wood, W.I. & Felsenfeld, G. The interaction of high mobility proteins HMG14 and 17 with nucleosomes. Nucleic Acids Res. 8, 3757–3778 (1980).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Cote, J., Quinn, J., Workman, J.L. & Peterson, C.L. Stimulation of GAL4 derivative binding to nucleosomal DNA by the yeast SWI/SNF complex. Science 265, 53–60 (1994).

    CAS  PubMed  Google Scholar 

  51. Kwon, H., Imbalzano, A.N., Khavari, P.A., Kingston, R.E. & Green, M.R. Nucleosome disruption and enhancement of activator binding by a human SW1/SNF complex. Nature 370, 477–481 (1994).

    CAS  PubMed  Google Scholar 

  52. Hamiche, A., Sandaltzopoulos, R., Gdula, D.A. & Wu, C. ATP-dependent histone octamer sliding mediated by the chromatin remodeling complex NURF. Cell 97, 833–842 (1999).

    CAS  PubMed  Google Scholar 

  53. Langst, G., Bonte, E.J., Corona, D.F. & Becker, P.B. Nucleosome movement by CHRAC and ISWI without disruption or trans-displacement of the histone octamer. Cell 97, 843–852 (1999).

    CAS  PubMed  Google Scholar 

  54. Luger, K., Mader, A.W., Richmond, R.K., Sargent, D.F. & Richmond, T.J. Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature 389, 251–260 (1997).

    CAS  PubMed  Google Scholar 

  55. Chao, M.V., Gralla, J. & Martinson, H.G. DNA sequence directs placement of histone cores on restriction fragments during nucleosome formation. Biochemistry 18, 1068–1074 (1979).

    CAS  PubMed  Google Scholar 

  56. Simpson, R.T. & Stafford, D.W. Structural features of a phased nucleosome core particle. Proc. Natl. Acad. Sci. USA 80, 51–55 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Shrader, T.E. & Crothers, D.M. Artificial nucleosome positioning sequences. Proc. Natl. Acad. Sci. USA 86, 7418–7422 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Lowary, P.T. & Widom, J. New DNA sequence rules for high affinity binding to histone octamer and sequence-directed nucleosome positioning. J. Mol. Biol. 276, 19–42 (1998).

    CAS  PubMed  Google Scholar 

  59. Linxweiler, W. & Horz, W. Reconstitution of mononucleosomes: characterization of distinct particles that differ in the position of the histone core. Nucleic Acids Res. 12, 9395–9413 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Meersseman, G., Pennings, S. & Bradbury, E.M. Mobile nucleosomes—a general behavior. EMBO J. 11, 2951–2959 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Usachenko, S.I., Bavykin, S.G., Gavin, I.M. & Bradbury, E.M. Rearrangement of the histone H2A C-terminal domain in the nucleosome. Proc. Natl. Acad. Sci. USA 91, 6845–6849 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Ramsay, N., Felsenfeld, G., Rushton, B.M. & McGhee, J.D. A 145-base pair DNA sequence that positions itself precisely and asymmetrically on the nucleosome core. EMBO J. 3, 2605–2611 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Alexiadis, V. & Kadonaga, J.T. Strand pairing by Rad54 and Rad51 is enhanced by chromatin. Genes Dev. 16, 2767–2771 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Tsukiyama, T., Becker, P.B. & Wu, C. ATP-dependent nucleosome disruption at a heat-shock promoter mediated by binding of GAGA transcription factor. Nature 367, 525–532 (1994).

    CAS  PubMed  Google Scholar 

  65. Pazin, M.J. et al. NF-κB-mediated chromatin reconfiguration and transcriptional activation of the HIV-1 enhancer in vitro. Genes Dev. 10, 37–49 (1996).

    CAS  PubMed  Google Scholar 

  66. Armstrong, J.A. & Emerson, B.M. NF-E2 disrupts chromatin structure at human β-globin locus control region hypersensitive site 2 in vitro. Mol. Cell. Biol. 16, 5634–5644 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Pazin, M.J., Kamakaka, R.T. & Kadonaga, J.T. ATP-dependent nucleosome reconfiguration and transcriptional activation from preassembled chromatin templates. Science 266, 2007–2011 (1994).

    CAS  PubMed  Google Scholar 

  68. Sheridan, P.L. et al. Activation of the HIV-1 enhancer by the LEF-1 HMG protein on nucleosome-assembled DNA in vitro. Genes Dev. 9, 2090–2104 (1995).

    CAS  PubMed  Google Scholar 

  69. Mizuguchi, G., Tsukiyama, T., Wisniewski, J. & Wu, C. Role of nucleosome remodeling factor NURF in transcriptional activation of chromatin. Mol. Cell 1, 141–150 (1997).

    CAS  PubMed  Google Scholar 

  70. Mayall, T.P., Sheridan, P.L., Montminy, M.R. & Jones, K.A. Distinct roles for P-CREB and LEF-1 in TCRα enhancer assembly and activation on chromatin templates in vitro. Genes Dev. 11, 887–899 (1997).

    CAS  PubMed  Google Scholar 

  71. Orphanides, G., LeRoy, G., Chang, C.H., Luse, D.S. & Reinberg, D. FACT, a factor that facilitates transcript elongation through nucleosomes. Cell 92, 105–116 (1998).

    CAS  PubMed  Google Scholar 

  72. Armstrong, J.A., Bieker, J.J. & Emerson, B.M. A SWI/SNF-related chromatin remodeling complex, E-RC1, is required for tissue-specific transcriptional regulation by EKLF in vitro. Cell 95, 93–104 (1998).

    CAS  PubMed  Google Scholar 

  73. Kraus, W.L. & Kadonaga, J.T. p300 and estrogen receptor cooperatively activate transcription via differential enhancement of initiation and reinitiation. Genes Dev. 12, 331–342 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Naar, A.M. et al. Composite co-activator ARC mediates chromatin-directed transcriptional activation. Nature 398, 828–832 (1999).

    CAS  PubMed  Google Scholar 

  75. Jiang, W., Nordeen, S.K. & Kadonaga, J.T. Transcriptional analysis of chromatin assembled with purified ACF and dNAP1 reveals that acetyl-CoA is required for preinitiation complex assembly. J. Biol. Chem. 275, 39819–39822 (2000).

    CAS  PubMed  Google Scholar 

  76. An, W., Palhan, V.B., Karymov, M.A., Leuba, S.H. & Roeder, R.G. Selective requirements for histone H3 and H4 N termini in p300-dependent transcriptional activation from chromatin. Mol. Cell 9, 811–821 (2002).

    CAS  PubMed  Google Scholar 

  77. Tsukiyama, T. & Wu, C. Purification and properties of an ATP-dependent nucleosome remodeling factor. Cell 83, 1011–1020 (1995).

    CAS  PubMed  Google Scholar 

  78. Varga-Weisz, P.D. et al. Chromatin-remodelling factor CHRAC contains the ATPases ISWI and topoisomerase II. Nature 388, 598–602 (1997).

    CAS  PubMed  Google Scholar 

  79. Pazin, M.J., Bhargava, P., Geiduschek, E.P. & Kadonaga, J.T. Nucleosome mobility and the maintenance of nucleosome positioning. Science 276, 809–812 (1997).

    CAS  PubMed  Google Scholar 

  80. O'Neill, T.E., Smith, J.G. & Bradbury, E.M. Histone octamer dissociation is not required for transcript elongation through arrays of nucleosome cores by phage T7 RNA polymerase in vitro. Proc. Natl. Acad. Sci. USA 90, 6203–6207 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Garcia-Ramirez, M., Rocchini, C. & Ausio, J. Modulation of chromatin folding by histone acetylation. J. Biol. Chem. 270, 17923–17928 (1995).

    CAS  PubMed  Google Scholar 

  82. Logie, C. & Peterson, C.L. Catalytic activity of the yeast SWI/SNF complex on reconstituted nucleosome arrays. EMBO J. 16, 6772–6782 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Kornberg, R.D. & Thomas, J.O. Chromatin structure; oligomers of the histones. Science 184, 865–868 (1974).

    CAS  PubMed  Google Scholar 

  84. Ruiz-Carrillo, A. & Jorcano, J.L. An octamer of core histones in solution: central role of the H3-H4 tetramer in the self-assembly. Biochemistry 18, 760–768 (1979).

    CAS  PubMed  Google Scholar 

  85. von Holt, C. et al. Isolation and characterization of histones. Methods Enzymol. 170, 431–523 (1989).

    CAS  PubMed  Google Scholar 

  86. Simon, R.H. & Felsenfeld, G. A new procedure for purifying histone pairs H2A + H2B and H3 + H4 from chromatin using hydroxylapatite. Nucleic Acids Res. 6, 689–696 (1979).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Croston, G.E., Lira, L.M. & Kadonaga, J.T. A general method for purification of H1 histones that are active for repression of basal RNA polymerase II transcription. Protein Expr. Purif. 2, 162–169 (1991).

    CAS  PubMed  Google Scholar 

  88. Germond, J.E., Hirt, B., Oudet, P., Gross-Bellark, M. & Chambon, P. Folding of the DNA double helix in chromatin-like structures from simian virus 40. Proc. Natl. Acad. Sci. USA 72, 1843–1847 (1975).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Pfaffle, P. & Jackson, V. Studies on rates of nucleosome formation with DNA under stress. J. Biol. Chem. 265, 16821–16829 (1990).

    CAS  PubMed  Google Scholar 

  90. Rhodes, D. & Laskey, R.A. Assembly of nucleosomes and chromatin in vitro. Methods Enzymol. 170, 575–585 (1989).

    CAS  PubMed  Google Scholar 

  91. Nakagawa, T., Bulger, M., Muramatsu, M. & Ito, T. Multistep chromatin assembly on supercoiled plasmid DNA by nucleosome assembly protein-1 and ATP-utilizing chromatin assembly and remodeling factor. J. Biol. Chem. 276, 27384–27391 (2001).

    CAS  PubMed  Google Scholar 

  92. Blank, T.A. & Becker, P.B. Electrostatic mechanism of nucleosome spacing. J. Mol. Biol. 252, 305–313 (1995).

    CAS  PubMed  Google Scholar 

  93. Bulger, M., Ito, T., Kamakaka, R.T. & Kadonaga, J.T. Assembly of regularly spaced nucleosome arrays by Drosophila chromatin assembly factor 1 and a 56-kDa histone-binding protein. Proc. Natl. Acad. Sci. USA 92, 11726–11730 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Peck, L.J. & Wang, J.C. Energetics of B-to-Z transition in DNA. Proc. Natl. Acad. Sci. USA 80, 6206–6210 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Camerini-Otero, R.D. & Felsenfeld, G. Supercoiling energy and nucleosome formation: the role of the arginine-rich histone kernel. Nucleic Acids Res. 4, 1159–1181 (1977).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Thoma, F., Koller, T. & Klug, A. Involvement of histone H1 in the organization of the nucleosome and of the salt-dependent superstructures of chromatin. J. Cell Biol. 83, 403–427 (1979).

    CAS  PubMed  Google Scholar 

  97. An, W., Kim, J. & Roeder, R.G. Ordered cooperative functions of PRMT1, p300, and CARM1 in transcriptional activation by p53. Cell 117, 735–748 (2004).

    CAS  PubMed  Google Scholar 

  98. LeRoy, G., Orphanides, G., Lane, W.S. & Reinberg, D. Requirement of RSF and FACT for transcription of chromatin templates in vitro. Science 282, 1900–1904 (1998).

    CAS  PubMed  Google Scholar 

  99. Corona, D.F. et al. Two histone fold proteins, CHRAC-14 and CHRAC-16, are developmentally regulated subunits of chromatin accessibility complex (CHRAC). EMBO J. 19, 3049–3059 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank T. Yusufzai, T. Juven-Gershon, J.-Y. Hsu, C. Y. Lim, B. Rattner and T. Boulay for critical reading of the manuscript. Our research on chromatin assembly and function was supported by grants from the US National Institutes of Health (GM 46995 and GM58272) and the Volkswagen Stiftung (I/77 995) to J.T.K. A.L. is the recipient of a fellowship from the Austrian Programme for Advanced Research and Technology (APART) of the Austrian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James T Kadonaga.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lusser, A., Kadonaga, J. Strategies for the reconstitution of chromatin. Nat Methods 1, 19–26 (2004). https://doi.org/10.1038/nmeth709

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth709

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing