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THIS MONTH

POINTS OF SIGNIFICANCE

Machine learning:  
a primer
Machine learning extracts patterns from data 
without explicit instructions.

Previously, we have discussed unsupervised learning methods, such 
as clustering1 and principal component analysis2, as well as super-
vised learning methods, such as random forests3, for classification 
and for predicting continuous outcomes. This month, we begin a 
series that looks more deeply into machine learning (ML) algorithms 
that extract patterns from data to generate insight4,5. In this primer, 
we will focus on essential ML principles. Future columns will explore 
the details of ML as well as its relationship to classical statistics.

ML is a modeling strategy to let the data speak for themselves, to 
the extent possible, which makes it an attractive option for charac-
terizing and predicting complex biological phenomena that do not 
have a priori models. The benefits of ML arise from its use of a large 
number of tuning parameters or weights, which control the algo-
rithm’s complexity and are estimated from the data using numeri-
cal optimization. ML algorithms are often motivated by heuristics 
such as models of interacting neurons or natural evolution—even 
if the underlying mechanism of the biological system being studied 
is substantially different from the heuristic model. The utility of ML 
algorithms is typically assessed empirically by determining how accu-
rately and reliably extracted patterns generalize to new observations. 

To show how ML can identify patterns, we will simulate a super-
vised learning scenario in which we want to predict the level of a 
hormone based on the concentration of a metabolite in the blood. 
Because the ground-truth relationship between the hormone and 
metabolite concentration is unknown, we will use ML to attempt to 
learn a close approximation from the data by simpler functions.

Suppose that the true relationship (target function) between 
the metabolite concentration (x) and the hormone level (y) is the 
5th degree (d = 5) polynomial, y = x(x – 0.4)(x – 0.5)(x – 0.7)(x – 
1), scaled appropriately so that both metabolite concentration and 
hormone level are in the range [0,1] (Fig. 1a). We use a polynomial 

because it is a familiar class of functions whose complexity (degree) is 
readily understood, not because it is a realistic target for a particular 
process.

We can reasonably approximate the polynomial target function 
with lower degree polynomials, which mimic the pattern in the stud-
ied relationship (Fig. 1a). Here, we have used a linear least-squares 
regression fit whose regression coefficients are the tuning param-
eters. The complexity of the fit is measured by the number of tun-
ing parameters and is controlled by the degree of the polynomial. 
However, low-degree polynomials cannot approximate every pattern 
in data. If the target function were actually sinusoidal, approximating 
it with low-degree (e.g., d < 6) polynomials would be less successful 
and have larger  error (Fig. 1b). 

We can assess the quality of the approximation (ŷ) using the mean 
squared error (MSE = ∑(ŷi – yi)

2/n). We obtain a low MSE when 
approximating the polynomial target with lower degree polynomi-
als but a relatively large MSE when the target is a sinusoid (Fig. 1c). 
The success of any learning algorithm depends on whether there is 
a good match between the fitting functions and the target function. 
Since the target function is unknown, there is always a possibility that 
the data may exhibit relevant patterns beyond our model’s learning 
capabilities.

The fitting functions in our example had only a modest number 
of tuning parameters—the d = 5 polynomial had only six. To dem-
onstrate learning with a large number of parameters and the impact 
of sample size and noise on the process, let’s increase the number of 
metabolites from one to five, (x1, x2, …, x5). We will use the same 
d = 5 degree polynomial as our target function; but instead of the 
concentration of a single metabolite, its output will be a function of 
the sum of the metabolites’ concentration, x =∑xi.

In this simple scenario, each of the five metabolites contributes 
equally. But, practically, we would not know that this is the case, nor 
would we know that the target function is a d = 5 degree polynomial. 
Thus, we would fit a function of all five metabolites, which would 
allow each to have its own weight in the fit. For example, if we fit the 
target with a d = 2 polynomial, we would be fitting to a constant term, 
linear terms (xi), pure quadratic terms (xi

2) and the cross-product 
terms (xixj). A d = 3 polynomial fit would add pure cubic terms (xi

3) 
and mixed terms (xi

2xj, xixjxk). The d = 5 fit to all five metabolites has 
over 250 tuning parameters.

Figure 1 | A function can be approximated well by simpler functions, but 
only when they can capture its shape. (a) A d = 5 degree polynomial (black) 
can be well approximated by fitting with polynomials of a lower degree d 
(colored lines). Dashed line indicates average of the target. (b) A sinusoidal 
function (black) cannot be approximated well by the same polynomials as in 
a because it has frequent oscillations, and d = 9 (blue) is required to yield a 
reasonable fit. (c) The mean squared error (MSE) of fits in a and b steadily 
decreases as we increase the degree of the fitting polynomial. This decrease 
is much slower when fitting the sinusoidal target; d = 9 is required to obtain 
an MSE (0.004) that is lower than the d = 4 fit in a.
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Figure 2 | Using lower degree polynomials to approximate the d = 5 
polynomial target function from Figure 1a under noise. (a) The predicted 
(ŷ  ) and true (y) value of the target function for fits using polynomials of 
different degrees and a training set size of 1,000. To simulate noise, both 
metabolite concentrations and target included normal noise with s.d. = 0.01. 
(b) The estimate of the target function for fits in a as a function of the sum 
of metabolite concentration x. In the absence of noise, we would recover 
the traces in Figure 1a. (c) The mean squared error (MSE) of the fits in a 
for varying training set size n. The MSE was calculated using a statistically 
independent test set of 500 samples. The traces are averaged over a training 
set size window of 10.
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Let’s simulate a training set of 1,000 observations, from which we 
will attempt to learn the target function. Each observation will be a 
set of five metabolite concentrations sampled uniformly from the 
range [0,0.2] and the ground-truth value of the target, which is given 
by our d = 5 polynomial. To realistically reflect the presence of mea-
surement error, we have added normal noise with mean zero and 
s.d. = 0.01 to metabolite and target in each observation. We will fit 
the observations, as we did for the noiseless case in Figure 1a, using 
polynomials of degree d = 1–5.

Figure 2a shows the profile of fitted versus target values (ŷ versus 
y) for each value of the fitting polynomial degree d using our simulat-
ed training set size of 1,000 observations. We come reasonably close 
to predicting the target function value around its average (0.43), but 
elsewhere our prediction is far off, in particular for low d. We can see 
the reason for this in Figure 2b, where we show our fitted approxi-
mation of the target function as a function of the sum of metabolite 
concentrations (like in Fig. 1a): low d polynomials are too simple to 
capture the bends in the target function.

We expect that as the training set size increases, noise will be miti-
gated, and our approximation will improve. However, for fits with d 
< 5, we expect the fit error to plateau—not only because of noise, but 
also because models with d < 5 are too simple to capture the complex-
ity in the d = 5 target function.

Indeed, this is what we see when we plot the fit MSE as a func-
tion of training set size n (Fig. 2c). The MSE of the simplest d = 1 
model plateaus quickly but is largest (0.0049) at n = 1,000. The MSE 
for the d = 3 fit is lower (0.0012), and the MSE for d = 5 is lower 
still (0.00096), but only marginally. We can also see that the learning 
process requires more samples to achieve the same MSE for models 
with higher complexity, because more tuning parameters must be 
estimated. For example, the d = 3, 4 and 5 fits reach MSE < 0.005 
(dashed line, Fig. 2c) at n = 70, 220 and 410. The models with d = 
1 and 2 take as long or longer to reach MSE = 0.005 because they 
plateau very close to this value.

In theory, if we knew all the inputs exactly, we could exactly pre-
dict the target function—identical metabolite profiles would have 

the same value of hormone level. In practice, there are always 
unknown inputs and imprecise measurements, so target function 
approximation has a random component, which varies from indi-
vidual to individual. When there are many tuning parameters, it 
is easy to overfit by tuning to the noise in the training set6. This 
creates extra variability in the predictions on the test set and future 
observations.

For example, if we were to continue sampling in Figure 2c, the 
MSE of the d = 5 fit would continue to drop, but it too would pla-
teau eventually—in this case, not because the model wasn’t complex 
enough, but because of the noise in the system. Figure 3 demon-
strates the effects of additional s.d. of the noise in the system on the 
quality of the fit. When we double the s.d of the noise from 0.01 to 
0.02 (Fig. 3a), the MSE plateaus at a higher value. For example, the 
MSE for the d = 5 fit nearly quadruples from 0.0007 at n = 2,000 to 
0.0027 (black arrow, Fig. 3a).

Let’s see what happens in the usual case that we do not know 
which of the metabolites are predictive of the target function. For 
example, if we do not include all of the actual metabolite con-
centrations used to calculate the target function, the effect of the 
unobserved metabolites appears as additional noise. We show this 
in Figure 3b, where the fit is performed with only four metabo-
lites instead of five. The behavior of the MSE profiles is similar to 
Figure 3a: the MSE plateau is higher. In fact, failing to account for 
one of the predictor metabolites raises the d = 5 fit MSE plateau to 
0.0039 (black arrow, Fig. 3b), which is even higher than when the 
s.d. of the noise was doubled as shown in Figure 3a.

Just as we may miss a predictor, we may overestimate the num-
ber of metabolites that impact the target function. In this case, 
however, we can reach the same MSE as with the right number 
of predictors but require a larger sample to do so. We show this in 
Figure 3c, where the fits are now performed with six metabolites 
instead of five. The d = 5 MSE eventually plateaus at 0.0007, just as 
in Figure 2b, but it does so more slowly. For example, the number 
of samples required for the d = 5 fit to reach MSE = 0.01 increases 
from n = 380 to 650 when an extraneous metabolite is included 
(black arrow, Fig. 3c).

ML is flexible in discovering patterns in data and, with sufficient 
observations, complex relationships can be approximated reasonably 
well. However, we must exercise judgment when selecting our model 
and predictors, otherwise our approximation may never be accurate.
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Figure 3 | Impact of additional noise, missing and extraneous metabolite 
predictors on the fit error. Color coding for fit degree d is the same for all 
panels. Dashed lines show the MSE fit using five metabolites and noise with 
s.d. = 0.01 from Figure 2c; n indicates the training set size. (a) Doubling the 
s.d. of the measurement noise to 0.02 (solid line) increases the MSE (black 
arrow), which plateaus at roughly the same n as for s.d. = 0.01. (b) Failing to 
include one of the metabolites (solid line) and fitting with only four predictors 
increases MSE (black arrow) and has the same effect as increasing noise in the 
system. (c) When an additional metabolite that does not impact the value of 
the target function is included in the fit (solid line), MSE is initially increased 
but eventually reaches the same plateau as for the fit with five metabolites 
(dashed line), although more samples are needed (black arrow).
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