Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Commentary
  • Published:

The fate of cell reprogramming

Subjects

The ability to convert somatic cells to induced pluripotent stem cells has immense potential to further our understanding of development and disease mechanisms, and for cellular therapy. Before researchers can achieve these goals, they must expand current methodology to incorporate animal models and quantitative descriptions of the essential phenomena driving reprogramming.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A cell in the pluripotent state can be thought to sit at the top of a hill from which signals pull it down into its differentiated state.

Katie Vicari/Nature Publishing Group

References

  1. Yamanaka, S. Nature 460, 49–52 (2009).

    Article  CAS  PubMed  Google Scholar 

  2. Gurdon, J.B. J. Embryol. Exp. Morphol. 10, 622–640 (1962).

    CAS  PubMed  Google Scholar 

  3. Wilmut, I., Schnieke, A.E., McWhir, J., Kind, A.J. & Campbell, K.H. Nature 385, 810–813 (1997).

    Article  CAS  PubMed  Google Scholar 

  4. Davis, R.L., Weintraub, H. & Lassar, A.B. Cell 51, 987–1000 (1987).

    Article  CAS  PubMed  Google Scholar 

  5. Schneuwly, S., Klemenz, R. & Gehring, W.J. Nature 325, 816–818 (1987).

    Article  CAS  PubMed  Google Scholar 

  6. Smith, A.G. et al. Nature 336, 688–690 (1988).

    Article  CAS  PubMed  Google Scholar 

  7. Takahashi, K. et al. Cell 131, 861–872 (2007).

    Article  CAS  PubMed  Google Scholar 

  8. Takahashi, K. & Yamanaka, S. Cell 126, 663–676 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Okita, K., Nakagawa, M., Hyenjong, H., Ichisaka, T. & Yamanaka, S. Science 322, 949–953 (2008).

    Article  CAS  PubMed  Google Scholar 

  10. Fusaki, N., Ban, H., Nishiyama, A., Saeki, K. & Hasegawa, M. Proc. Jpn. Acad., Ser. B, Phys. Biol. Sci. 85, 348–362 (2009).

    Article  CAS  Google Scholar 

  11. Kim, D. et al. Cell Stem Cell 4, 472–476 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Stadtfeld, M. et al. Nature 465, 175–181 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Warren, L. et al. Cell Stem Cell 7, 618–630 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Hou, P. et al. Science 341, 651–654 (2013).

    Article  CAS  PubMed  Google Scholar 

  15. Huangfu, D. et al. Nat. Biotechnol. 26, 795–797 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mikkelsen, T.S. et al. Nature 454, 49–55 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ring, K.L. et al. Cell Stem Cell 11, 100–109 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Abad, M. et al. Nature 502, 340–345 (2013).

    Article  CAS  PubMed  Google Scholar 

  19. Yamanaka, S. Cell Stem Cell 10, 678–684 (2012).

    Article  CAS  PubMed  Google Scholar 

  20. Taniguchi, Y. et al. Science 329, 533–538 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Buganim, Y., Faddah, D.A. & Jaenisch, R. Nat. Rev. Genet. 14, 427–439 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hanna, J. et al. Nature 462, 595–601 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Rais, Y. et al. Nature 502, 65–70 (2013).

    Article  CAS  PubMed  Google Scholar 

  24. Ichimura, T. et al. PLoS ONE 9, e84478 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Kalmar, T. et al. PLoS Biol. 7, e1000149 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Cherry, A.B. & Daley, G.Q. Annu. Rev. Med. 64, 277–290 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kondo, T. et al. Cell Stem Cell 12, 487–496 (2013).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Y. Miyake for all her administrative support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shinya Yamanaka.

Ethics declarations

Competing interests

S.Y. is a member without salary of the scientific advisory board of iPS Academia Japan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karagiannis, P., Yamanaka, S. The fate of cell reprogramming. Nat Methods 11, 1006–1008 (2014). https://doi.org/10.1038/nmeth.3109

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.3109

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing