Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Delineation of a 50 kilobase DNA segment containing the recombination site in a sporadic case of Huntington's disease

Abstract

No detectable rearrangements involving chromosome 4p16.3 have been observed in patients with Huntington's disease (HD). New mutations for HD could involve structural alterations which might aid the localization of the defective gene. We have reinvestigated a well documented sporadic case of HD. DNA haplotyping with markers between D4S10 and the telomeric locus D4S141 reveals a recombination event in one chromosome of the sporadic HD patient. The site of recombination maps within a 50 kilobase (kb) region, about 700 kb from the 4p telomere. Based on the extremely low HD mutation rate and significantly decreased recombination in the distal region of 4p, we hypothesize a direct link between the site of the recombination and HD in this patient.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Hayden, M.R. Huntington's Chorea (Springer, New York, 1981).

    Chapter  Google Scholar 

  2. Gusella, J.F. et al. A polymorphic DNA marker genetically linked to Huntington's Disease. Nature 306, 234–238 (1983).

    Article  CAS  PubMed  Google Scholar 

  3. Magenis, R.E. et al. Huntington's Disease-linked restriction fragment length polymorphism localized with band p16.1 of chromosome 4 by in situ hybridization. Am. J. hum. Genet. 39, 383–391 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Wasmuth, J.J. et al. A highly polymorphic,locus very tightly linked to the Huntingon's disease gene. Nature 332, 734–736 (1988).

    Article  CAS  PubMed  Google Scholar 

  5. MacDonald, M.E. et al. Clustering of multiallele DNA markers near the Huntington's Disease gene. J. clin. Invest. 84, 1013–1015 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Theilmann, J. et al. Non-random association between alleles detected at D4S95 and D4S98 and the Huntington's disease gene. J. med. Genet. 26, 676–681 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Snell, R.G. et al. Linkage disequilibrium in Huntington's disease: an improved localisation for the gene. J. med. Genet. 26, 673–675 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Adam, S.A. et al. Linkage disequilibrium and modification of risk for Huntington disease. Am. J. hum. Genet. 48, 595–603 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. MacDonald, M.E. et al. Complex patterns of linkage disequilibrium in the Huntington disease region. Am. J. hum. Genet. 49, 723–734 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Andrew, S., Theilmann, J., Hedrick, A., Mah, D., Weber, B. and Hayden, M.R. Nonrandom association between Huntington disease and two loci separated by about 3 Mb on 4p16.3. Genomics 13, 301–311 (1992).

    Article  CAS  PubMed  Google Scholar 

  11. MacDonald, M.E. et al. Recombination events suggest potential sites for the Huntington's disease gene. Neuron 3, 183–190 (1989).

    Article  CAS  PubMed  Google Scholar 

  12. Robbins, C. et al. Evidence from family studies that the gene causing Huntington disease is telomeric to D4S95 and D4S90. Am. J. hum. Genet. 44, 422–425 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Bates, G.P. et al. Defined physical limits of the Huntington disease gene candidate region. Am. J. hum. Genet. 49, 7–16 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Whaley, W.L. et al. Mapping of cosmid clones in Huntington's disease region of chromosome 4. Somatic Cell molec. Genet. 17, 83–91 (1991).

    Article  CAS  Google Scholar 

  15. Monaco, A.P., Neve, R., Colletti-Feener, C., Bertelson, C.J., Kurnit, D.M. and Kunkel, L.M. Isolation of cDNAs for portions of the Duchenne muscular dystrophy gene. Nature 323, 646–650 (1986).

    Article  CAS  PubMed  Google Scholar 

  16. Cawthon, R. et al. A major segment of the neurofibromatosis type 1 gene: cDNA sequence, genomic structure, and point mutations. Cell 62, 193–201 (1990).

    Article  CAS  PubMed  Google Scholar 

  17. Wallace, M.R. et al. Type 1 neurofibromatosis gene: identification of a large transcript disrupted in three NFI patients. Science 249, 181–186 (1990).

    Article  CAS  PubMed  Google Scholar 

  18. Stevens, D. & Parsonage, M.J. Mutations in Huntington's Chorea. Neurol. Neurosurg. Psychiatry 32, 140–143 (1969).

    Article  CAS  Google Scholar 

  19. Wolff, G. et al. New mutation to Huntington's disease. J. med. Genet. 26, 18–27 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Weber, B., Collins, C., Kowbel, D., Riess, O. & Hayden, M.R. dentification of multiple CpG islands and associated conserved sequences in a candidate region for the Huntington disease gene. Genomics 11, 1113–1124 (1991).

    Article  CAS  PubMed  Google Scholar 

  21. Weber, B. et al. Isolation and characterization of new highly polymorphic DNA markers from the Huntington disease region. Am. J. hum. Genet. 50, 382–393 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Buetow, K.H. et al. A detailed multipoint map of human chromosome 4 provides evidence for linkage heterogeneity and position-specific recombination rates. Am. J. hum. Genet. 48, 911–925 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Orita, M., Suzuki, Y., Sekiya, T. & Hayashi, K. Rapid and sensitive detection of point mutations and DNA polymorphisms using the polmerase chain reaction. Genomics 5, 874–879 (1989).

    Article  CAS  PubMed  Google Scholar 

  24. Magni, G.E. The origin of spontaneous mutations during meiosis. Proc. natn. Acad. Sci. U.S.A. 50, 975–980 (1963).

    Article  CAS  Google Scholar 

  25. Magni, G.E. & Von Borstel, R.C. Different rates of spontaneous mutation during mitosis and meiosis in yeast. Genetics 47, 1097–1108 (1962).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Ruley, H.E. and Fried, M. Clustered illegitimate recombination events in mammalian cells involving very short sequence homologies. Nature 304, 181–184 (1983).

    Article  CAS  PubMed  Google Scholar 

  27. Lehrman, M.A., Goldstein, J.L., Russell, D.W. and Brown, M.S. Duplication of seven exons in LDL receptor gene caused by Alu-Alu recombination in a subject with familial hypercholesterolemia. Cell 48, 827–835 (1987).

    Article  CAS  PubMed  Google Scholar 

  28. Rouyer, F., Simmler, M-C., Page, D.C. & Weissenbach, J. A sex chromosome rearrangement in a human XX male caused by Alu-Alu recombination. Cell 51, 417–425 (1987).

    Article  CAS  PubMed  Google Scholar 

  29. Devlin, R.H., Deeb, S., Brunzell, J. & Hayden, M.R. Partial gene duplication involving exon-alu interchange results in lipoprotein lipase deficiency. Am. J. hum. Genet. 46, 112–119 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Marvo, S.L., King, S.R. and Jaskunas, S.R. Role of short regions of homology in intermolecular illegitimate recombination events. Proc. natn. Acad. Sci. U.S.A. 80, 2452–2456 (1983).

    Article  CAS  Google Scholar 

  31. Chandley, A.C. Asymmetry in chromosome pairing: a major factor in de novo mutation and the production of genetic disease in man. J. med. Genet. 26, 546–552 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Nicholls, R.D., Tischel-Ghodsian, N. & Higgs, D.R. Recombination of the human α-globin gene cluster: Sequence features and topological constraints. Cell 49, 369–378 (1987).

    Article  CAS  PubMed  Google Scholar 

  33. Weber, B. et al. Genomic organization and complete sequence of the human gene encoding the beta-subunit of the cGMP phosphodiesterase and its location to 4p 16.3. Nucl. Acids Res. 19, 6263–6268 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Collins, C. et al. The human β-subunit of rod photoreceptor cGMP phosphodiesterase: Complete retinal cDNA sequence and evidence for expression in brain. Genomics 13, 698–704 (1992).

    Article  CAS  PubMed  Google Scholar 

  35. Tremblay, J., Gerzer, R. & Hamet, P. Cyclic GMP in cell function. Adv. Sec. Mess, and Phosphoprotein Res. 22, 319–383 (1988).

    CAS  Google Scholar 

  36. Riess, O. et al. Exclusion of DNA changes in the beta subunit of the cGMP phosphodiesterase (PDEB) gene as the cause for Huntington disease. Nature Genet. 1, 104–108 (1992).

    Article  CAS  PubMed  Google Scholar 

  37. Pollard, T.D. Cytoplasmic contractile proteins. J. Cell Biol. 91, 156S–165S (1981).

    Article  CAS  PubMed  Google Scholar 

  38. Emerson, C.P. and Bernstein, S.I. Molecular genetics of myosin. Ann. Rev. Biochem. 56, 695–726 (1987).

    Article  CAS  PubMed  Google Scholar 

  39. Barron, L. et al. Linkage disequilibrium and recombination make a telomeric site for the Huntington's disease gene candidate region. J. med. Genet. 28, 520–522 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Conneally, P.M. et al. Huntington disease: no evidence for locus heterogeneity. Genomics 5, 304–308 (1989).

    Article  CAS  PubMed  Google Scholar 

  41. MacDonald, M.E. et al. The Huntington's disease candidate region exhibits many different haplotypes. Nature Genet. 1, 99–103 (1992).

    Article  CAS  PubMed  Google Scholar 

  42. Glade, P.R. & Beratis, N.G. Long-term lymphoid cell lines in the study of human genetics. Prog. med. Genet. 1, 1–48 (1976).

    CAS  PubMed  Google Scholar 

  43. Kunkel, L.M. et al. Analysis of human Y chromosome specific reiterated DNA in chromosome variants. Proc. natn. Acad. Sci. U.S.A. 74, 1245–1249 (1977).

    Article  CAS  Google Scholar 

  44. Southern, E.M. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J. molec. Biol. 98, 503–517 (1975).

    Article  CAS  PubMed  Google Scholar 

  45. Church, G.M. & Gilbert, W. Genomic sequencing. Proc. natn. Acad. Sci. U.S.A. 81, 1991–1995 (1984).

    Article  CAS  Google Scholar 

  46. Feinberg, A.P. & Vogelstein, B. Addendum: A technique for radiolabelling DNA restriction endonuclease fragments to high specific activity. Anal. Biochem. 137, 266–267 (1984).

    Article  CAS  PubMed  Google Scholar 

  47. Bucan, M. et al. Physical maps of 4p16.3, the area expected to contain the Huntington Disease mutation. Genomics 6, 1–15 (1990).

    Article  CAS  PubMed  Google Scholar 

  48. Snell, R.G. et al. A new probe (2R3) in the region of Huntington's disease. Cytogenet. Cell Genet. 51, 1083 (1989).

    Google Scholar 

  49. Saiki, R.K. et al. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239, 487–491 (1988).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weber, B., Riess, O., Wolff, G. et al. Delineation of a 50 kilobase DNA segment containing the recombination site in a sporadic case of Huntington's disease. Nat Genet 2, 216–222 (1992). https://doi.org/10.1038/ng1192-216

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1192-216

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing