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Dissecting neural differentiation regulatory
networks through epigenetic footprinting
Michael J. Ziller1,2,3*, Reuven Edri4*, Yakey Yaffe4, Julie Donaghey1,2,3, Ramona Pop1,2,3, William Mallard1,3, Robbyn Issner1,
Casey A. Gifford1,2,3, Alon Goren1,5,6, Jeffrey Xing1, Hongcang Gu1, Davide Cacchiarelli1, Alexander M. Tsankov1,2,3,
Charles Epstein1, John L. Rinn1,2,3, Tarjei S. Mikkelsen1, Oliver Kohlbacher7, Andreas Gnirke1, Bradley E. Bernstein1,5,6,
Yechiel Elkabetz41 & Alexander Meissner1,2,31

Models derived from human pluripotent stem cells that accurately
recapitulate neural development in vitro and allow for the genera-
tion of specific neuronal subtypes are of major interest to the stem
cell andbiomedical community.Notch signalling,particularly through
the Notch effector HES5, is a major pathway critical for the onset
and maintenance of neural progenitor cells in the embryonic and
adult nervous system1–3. Here we report the transcriptional and
epigenomic analysis of six consecutive neural progenitor cell stages
derived fromaHES5::eGFPreporterhumanembryonic stemcell line4.
Using this system, we aimed to model cell-fate decisions including
specification, expansion andpatterningduring the ontogeny of cor-
tical neural stem and progenitor cells. In order to dissect regulatory
mechanisms that orchestrate the stage-specific differentiation pro-
cess,wedevelopeda computational framework to infer key regulators
of each cell-state transition based on the progressive remodelling of
the epigenetic landscape and then validated these through a pooled
short hairpin RNA screen.We were also able to refine our previous
observations on epigenetic priming at transcription factor binding
sites and suggest here that they are mediated by combinations of
core and stage-specific factors. Taken together, we demonstrate the
utility of our system and outline a general framework, not limited
to the context of the neural lineage, to dissect regulatory circuits of
differentiation.
Weused the human embryonic stem (ES) cell lineWA9 (also known

as H9) expressing GFP under the HES5 promoter4 to isolate defined
neural progenitor populations of neuroepithelial (NE), early radial glial
(ERG),mid radial glial (MRG) and late radial glial (LRG) cells based on
their cell morphology and Notch activation state5, as well as long-term
neural progenitors (LNP)basedon their epidermal growth factor recep-
tor (EGFR) expression5,6 (Fig. 1a and Extended Data Fig. 1a). We took
thesedefined stages to create strand-specificRNAsequencing (RNA-seq)
data, chromatin immunoprecipitation followedby sequencing (ChIP-seq)
maps for histoneH3 lysine 4monomethylation (H3K4me1), trimethy-
lation (H3K4me3), lysine 27 acetylation (H3K27ac) andH3K27me3 as
well as DNAmethylation (DNAme) data by whole-genome bisulphite
sequencing (WGBS) for the first four stages, and reduced representa-
tion bisulphite sequencing (RRBS) for the last two (LRGandLNP)stages
(Fig. 1a and Supplementary Table 1).
Global transcriptional analysis of the undifferentiated ES cells and

the first four neural progenitor cell (NPC) stages identified 3,396differ-
entially expressed genes (Extended Data Fig. 1b, c and Supplementary
Table 2). Pluripotency-associated genes such as OCT4 (also known as
POU5F1) and NANOG are, as expected, rapidly downregulated, and
pan-neural genes are induced early and maintained throughout the
remainder of the differentiation time course (Extended Data Fig. 1c).

Usingdatafromthemouse
Allen Brain Atlas as an
in vivo reference for genes
expressedindifferentbrain
compartments anddevel-

opmental stages, we observed a consecutive shift of expression signa-
tures along the NPC differentiation trajectory (Fig. 1b). NE through
LRG transcripts suggest anterior neural fates, while theMRGand LRG
stages show in addition someposterior identities (Fig. 1b, left). Accord-
ingly, differentiatedprogenyderived fromthesepopulations expressdeep
cortical layer neuronal markers (NEdN and ERGdN) such as FEZF2
andBCL11B and superficial layer neuronalmarkers (MRGdN) such as
POU3F2/POU3F3 and MEF2C (Extended Data Fig. 1d). Progression
from early (NE) to late (LRG) stages was also accompanied by a tran-
sition from predominantly neurogenic to mainly gliogenic potential,
althoughLRGcells still generate neurons (ExtendedData Fig. 1d). This
progressive change inNPC identity aligns well with the in vivo order of
developmental events7.
In line with these observations, our WGBS data show changes in

DNAme that can be separated into two overall patterns. The first is
characterized by widespread loss of methylation and retention of the
resulting hypomethylated state throughout subsequent differentiation
stages (Fig. 1c, top right). This pattern coincides with major cell-fate
decisions such as commitment from ES cells to the neural fate and the
transition from ERG toMRG, the latter demarcating both peak of neu-
rogenesis and onset of gliogenic potential (Fig. 1c, right middle). The
second pattern is defined by a stage-specific loss with subsequent gain
at thenext stage, as observedduring the transition fromNE toERGand
also from MRG to LRG (Fig. 1c, right). Conversely, regions gaining
DNAme during transition from one stage to another frequently reside
in ahypomethylated state in all preceding stages, indicating the possible
silencing of stem cell or pan-neural gene regulatory elements (Fig. 1c,
left). At the histone modification level we also observed the most wide-
spread changes during the initial neural induction (Fig. 1d); although it
is worth noting that the biggest gain of the repressivemarkH3K27me3
occurs at the MRG stage.
These coordinated epigenetic changes are probably the result of dif-

ferential transcription factor activity8–11.We therefore developeda com-
putational method to attribute the genome-wide changes in histone
modifications and DNAme at regions termed footprints to particular
transcription factors and quantified this remodelling potential (TERA,
transcription factor epigenetic remodelling activity; Fig. 2a, Extended
Data Fig. 2a andMethods). Notably, the H3K27ac peak set in our NPC
model was significantly enriched for single nucleotide polymorphisms
previously reported to be implicated in Alzheimer’s disease (P# 0.01)
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and bipolar disorders (P# 0.01) by genome-wide association studies,
suggesting the possibility to utilize this differentiation system as a basis
to study the genetic component of complex diseases in vitro12,13. Next,
to identify potential key regulators of onset, maintenance and trans-
ition through distinct NPC populations, we ranked all motifs and their
associated transcription factors based on their TERA scores between
consecutive time points (Supplementary Table 3). We then retrieved
the transcription factors associated with highest scoring 40 motifs for

each cell-state transition (Fig. 2b). This analysis confirmedmany well-
known key regulators of in vivo neural development and forebrain
specification that are induced at the NE stage such as PAX6, OTX2 and
FOXG1 (refs 14–16) aswell as various SOXproteins17. Notably, we also
foundpredicteddifferential activity of distinct downstreamcomponents
of signalling pathways such as a decrease of SMAD4 activity at the NE
stage, consistent with inhibition of TGF-b signalling that promotes
neural induction18. Another example that is predicted to be relevant
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Figure 2 | Distinct transcription factors are
associated with stage-specific epigenetic
transitions. a, Illustration of epigenomic
footprinting across the PAX6 locus
(chromosome11: 31,780,014–31,842,503) for dips
in H3K27ac regions (right). Black boxes highlight
footprints determined for H3K27ac peaks that
harbour various putative transcription factor
binding sites based on motif matching. b, The 40
top ranked transcription factors predicted to be
activated during the cell-state transition are
indicated on the bottom. Colour-coding represents
normalized transcription factor epigenetic
remodelling scores, averaging over all TERAsbased
on H3K4me3, H3K4me1, H3K27ac and DNAme.
In addition, predictions were filtered for factors
expressed at the stage of predicted induction.
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Figure 1 | Consecutive stages of ES-cell-derived neural progenitors are
characterized by distinct epigenetic states. a, Left, schematic of the cell
system.Middle, normalized read-count level for H3K27ac over a 1.4-megabase
(Mb) region around the SOX2 locus (chromosome3: 180,854,252–
182,259,543) where SOX2-OS refers to the SOX2 overlapping transcript. ChIP-
seq read counts were normalized to 1 million reads and scaled to the same
level (1.5) for all tracks shown. Right, additional tracks for H3K4me3,
H3K4me1 and H3K27me3 as well as DNAme (scale 0–100%), OTX2 binding
and expression covering a 100 kilobase (kb) sub-region (chromosome 3:
181,389,523–181,490,148) of this locus. Histone and RNA-seq data were
normalized to 1 million reads and are shown on distinct scales. b, Maximum
gene set activity levels shown as z scores for genes expressed in defined brain
structures (left) and developmental time points (right) based on the mouse
Allen BrainAtlas. Gene set activity was defined as average expression level of all
member genes followed by z score computation across all nine cell types.

Different., differentiated; LRGdA, LRG-derived astrocyte-like cells; RSP, rostral
secondary prosencephalone; Tel, telencephalon; PHy, peduncular (caudal)
hypothalamus; p3, hypothalamus; p2, pre-thalamus; p1, pre-tectum; M,
midbrain; PPH, prepontine hindbrain; PH, pontine hindbrain; PMH,
pontomedullary hindbrain; MH, medullary hindbrain. Developmental times
are embryonic days 11.5, 13.5, 15.5 and 18.5 and postnatal days 4, 14 and 28.
c, Distribution of DNAme levels for differentially methylated regions (change
in methylation$0.2, P# 0.01) across state transitions; for instance,
distributions for regions gaining methylation in the transition from ES cell to
NE (top left) at all stages of differentiation. Distinct methylation level trace
plots are shown for regions gaining methylation (left) during the specific
transitions (indicated on the side) and loss ofmethylation (right). Black labelled
samples are based on WGBS data and grey colour samples (LRG and LNP)
were profiled by RRBS. d, Bar plot showing the number of regions that gain or
lose selected modifications across the first four cell-state transitions.
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but not limited to the MRG stage is POU3F2, known to be involved in
sub-ventricular zone expansion and superficial layer neuronal specifi-
cation, andTCF12, which is highly expressed in germinal zones during
brain development19 (Fig. 2b and Supplementary Table 3).
To obtain a higher-level overview of the processes and roles assoc-

iatedwith thedistinct putative regulators,wedecomposed theH3K27ac
data into seven distinct modules, each corresponding to a unique epi-
genetic dynamic, genomic region andupstreamregulator set (Extended
DataFig. 2b, top).Gene set enrichment analysis20 on the genomic regions
associated with each of the distinct modules revealed that the module
activateduponneural inductionandsustained throughout theMRGstage
is strongly associated with stem cell maintenance and differentiation-
related processes as well as Notch signalling (Extended Data Fig. 2b;
module 2). Further analysis of upstream regulators of this module re-
vealed a strong association with PAX6 and FOXG1, suggesting a role
for these factors in the general establishment and maintenance of the
telencephalic cortical identity of theNPCstates (ExtendedData Fig. 2c).
To explore the relevance of predicted factors for each cellular state,

we carried out a pooled short hairpin RNA (shRNA) screen against
244 transcription factors and epigenetic modifiers selected based on our
RNA-seqdata (Fig. 3a,ExtendedDataFig. 3a andSupplementaryTable4).
In total, we recovered 110 factors whose knockdown had a significant
(Fig. 3b, q value# 0.05, mean empirical false discovery rate (FDR)5
0.045, see Methods) negative impact on the number of HES51 cells in
at least one differentiation stage (Supplementary Table 4), with high
overlap between the distinct stages (Fig. 3c and ExtendedData Fig. 3b).
Despite the expected high false-negative rate21 our screen consistently
validated more than 50% of the predicted transcription factors with a
known motif for the top 20 motifs found at each stage (Fig. 3d and
Extended Data Fig. 3c, d), while an expression-based identification
yielded only ,30% recovery (Extended Data Fig. 3c). Among the top
factors recovered from the predictions at the early stage (NE and ERG)
are the RFX proteins including RFX4, which has been implicated in
cortical and brain development22,23, FOXG1, as well as NR2F2, whose
paralogueNR2F1has been shown to serve as an intrinsic factor for early
regionalization of the neocortex24,25. Gene set enrichment analysis of
putative genomic targets of NR2F2 (see Methods) in the NE cells fur-
ther expands this role, suggesting involvement in telencephalon, dien-
cephalon andposterior hindbraindevelopment (SupplementaryTable 5).
At theMRG stage, we recover genes involved in extensive neurogenesis
and in commencing early gliogenesis such asNFIA andNFIB, which are
involved in both repressing the neuronal progenitor state throughNotch
signalling concomitantly with activating glial fates26, as well asREST—
a major pleotropic epigenetic regulator of neural cell-fate decisions27.
Next,we selected a set of 22 core factorswith evidence to be functional

at all stages as assessed by RNA-seq and the shRNA screening results
(Extended Data Fig. 4a and Methods). In order to determine whether
the subset of core factors with aDNAbindingmotif available (10 of 22)
exerts the same function at each stage,weperformeda co-binding analy-
sis based on the predicted binding sites of 523 transcription factors in
dynamically regulated distal H3K27ac footprints. This analysis uncov-
ered highly stage-specific relationships that were also supported by the
observed knockdown effect at each stage (Fig. 4a and Extended Data
Fig. 4b). Notably, most of the identified co-binding partners are either
expressed in amore stage-specific fashion or are only activated inmore
mature neuronal or glial cell types (Fig. 4b). To further validate some of
these findings, we focused onOTX2due to its high expression in allNPC
populations (Fig. 4b) and performed ChIP-seq at the NE and MRG
stages.OTX2was enriched atmore targets inNE cells, of which around
35% overlapped with MRG-bound sites (Fig. 4c and Extended Data
Fig. 4c). The shared target set is highly enriched for genes involved in
stem cell maintenance and differentiation as well as various pro-neural
gene sets known to act during advanced stages of forebrainandmidbrain
progenitor cell maturation (Fig. 4d and Extended Data Fig. 4d). This
binding pattern combined with the observation that the OTX2 target
gene set reaches peak transcriptional activity in the NEdN and ERGdN

populations implies a role for OTX2 in the preparation of pro-neural
genes expressed at later stages (Fig. 4d, e). These findings further suggest
a model where a core set of transcription factors helps sustain NPC
identity throughout the differentiation time course and at the same time
participates in the progression and modulation of NPC differentiation
potential through cooperation with stage-specific regulators.
To gain a better understanding of how factors that are active at dis-

tinct NPC stages contribute to their corresponding neuronal and glial
cell propensities, we took advantage of the fact that many transcrip-
tion factor binding sites exhibit a gain ofH3K4me1 and loss ofDNAme
at the early NPC stages before increased expression of their associated
genes in more differentiated cell types (hereafter referred to as epige-
netic priming) (Fig. 5a and Extended Data Fig. 5a–c). For instance, we
identified three pro-neural factors that show evidence of priming, are
induced only at a later stage, and possess transcription factor binding
sites that are also significantly (P# 0.05 permutation test) associated
with genes differentially expressed at a later stage (Fig. 5a, bold genes).
Because thesepro-neural genes arenot expressed at the earlyNPCstages
but in more mature cell types derived upon mitogen withdrawal, the
identificationof suchpriming events highlights that the epigenetic state
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early NE and MRG cells. d, Gene set enrichment
analysis results for OTX2 binding sites in early NE
and MRG cells. e, Median expression patterns for
ES cells, all NPCs andmoremature cell populations
shown as z scores for putative downstream target
genes of OTX2 binding sites.
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Figure 5 | Binding of core and stage-specific NPC transcription factors is
associated with epigenetic priming of pro-neural genes. a, Characterization
of transcription factors associated with motifs gaining H3K4me1 or losing
DNAme at theNE stage before their expression at a later ormore differentiated
cell state as determined by high TERA scores (bold), termed priming. In
addition, significant (P# 0.01, enrichment$ 1.5) co-binding relationships
with factors expressed at the NE stage are indicated by coloured lines. For each
transcription factor (from outer to inner circles, see example to the right for
NEUROD4) heat maps indicating the relative expression level as a z score in all

cell types as well as normalized TERA scores for H3K27ac, H3K4me3,
H3K4me1 and DNAme. b, Top, heat maps depicting the H3K4me1 (left) and
H3K27ac (right) enrichment level for predicted NEURODbinding sites at each
NPC stage for five distinct dynamic patterns. At the NE and ERG stages,
none of the NEUROD family of proteins is expressed at high levels
(,3.5 fragments per kilobase of transcript per million mapped reads). Bottom,
heat map showing the z scores of the median gene expression levels for
predicted NEUROD downstream target genes for each of the five dynamic
patterns in the more mature neuron- and astrocyte-like populations.
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is useful for predicting regulators relevant at later stagesofdifferentiation.
In order to pinpoint transcription factors potentially involved in facil-
itating these priming events at the respectiveNPC stages, we determined
significant predicted co-binding relationships between the subset of
pro-neural transcription factors and factors that in contrast are expressed
at the stage of priming (Fig. 5a).
To specifically investigate the hypothesis that a part of the pro-neural

binding site landscape is epigenetically primed at the NPC stages, we
focused on predicted NEUROD protein family binding sites within
H3K27ac footprints anddefined five patterns ofH3K27ac andH3K4me1
enrichments across these sites (Fig. 5b).We found that genes associated
with predicted NEUROD binding sites in regions gaining H3K27ac or
H3K4me1 enrichment at distinct stages of NPC progression are upre-
gulated in more mature populations derived from the respective NPC
stage (Fig. 5b and Extended Data Fig. 5d). Consistent with the idea of a
comprehensive preparation of the epigenetic landscape during lineage
specification,NEURODbinding sites that retainhigh levels ofH3K27ac
and H3K4me1 throughout the entire differentiation time course are
associated with various anterior and posterior cortical structures as well
as early and late developmental time points (Extended Data Fig. 5e).
These results support amodelwhere selected transcription factors at

the NPC stage remodel the binding site repertoire for pro-neural fac-
tors by preparing the epigenetic landscape at their respective targets.
First the general lineage landscape is established upon commitment to
the neural fate, followed by the stage-specific modulation of primed
pro-neural binding sites. This in turn might serve as a mechanism to
restrict their binding space in order to ensure proper neuronal and glial
differentiation capacity. In addition to these insights into the epigenetic
dynamics during differentiation, we provide a general analysis strategy
to interpret differences in epigenetic landscapes based on cell-fate regu-
latory transcription factors. This strategy canbe readily applied toother
data sets including the extensive collection of the NIH Roadmap
Epigenomics Project (Supplementary Table 3).

Online Content Methods, along with any additional Extended Data display items
andSourceData, are available in theonline versionof thepaper; referencesunique
to these sections appear only in the online paper.

Received 19 November 2013; accepted 21 October 2014.

Published online 24 December 2014.

1. Imayoshi, I., Sakamoto, M., Yamaguchi, M., Mori, K. & Kageyama, R. Essential roles
of Notch signaling in maintenance of neural stem cells in developing and adult
brains. J. Neurosci. 30, 3489–3498 (2010).

2. Shimojo, H., Ohtsuka, T. & Kageyama, R. Dynamic expression of notch signaling
genes in neural stem/progenitor cells. Front. Neurosci. 5, 78 (2011).

3. Carlén, M. et al. Forebrain ependymal cells are Notch-dependent and generate
neuroblasts and astrocytes after stroke. Nature Neurosci. 12, 259–267 (2009).

4. Placantonakis, D. G. et al. BAC transgenesis in human embryonic stem cells as a
novel tool to define the human neural lineage. Stem Cells 27, 521–532 (2009).

5. Elkabetz, Y. et al. Human ES cell-derived neural rosettes reveal a functionally
distinct early neural stem cell stage. Genes Dev. 22, 152–165 (2008).

6. Lafaille, F. G. et al. Impaired intrinsic immunity to HSV-1 in human iPSC-derived
TLR3-deficient CNS cells. Nature 491, 769–773 (2012).

7. Lui, J. H. et al.Development and evolution of the human neocortex. Cell 46, 18–36
(2011).

8. Voss, T. C. &Hager, G. L. Dynamic regulation of transcriptional states by chromatin
and transcription factors. Nature Rev. Genet. 15, 69–81 (2014).

9. Ziller, M. J. et al. Charting a dynamic DNA methylation landscape of the human
genome. Nature 500, 477–481 (2013).

10. Gifford, C. A. et al. Transcriptional and epigenetic dynamics during specification of
human embryonic stem cells. Cell 153, 1149–1163 (2013).

11. Arnold, P. et al.Modeling of epigenome dynamics identifies transcription factors
that mediate Polycomb targeting. Genome Res. 23, 60–73 (2012).

12. Maurano, M. T. et al. Systematic localization of common disease-associated
variation in regulatory DNA. Science 337, 1190–1195 (2012).

13. Claussnitzer, M. et al. Leveraging cross-species transcription factor binding site
patterns: from diabetes risk loci to disease mechanisms. Cell 156, 343–358
(2014).
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METHODS
Culturing undifferentiated humanES cells.HES5::eGFP bacterial artificial chro-
mosome transgenic human ES cells (H9;WA9;Wicell) expressing GFP under the
HES5 promoter were cultured on mitotically inactivated mouse embryonic fibro-
blasts (MEFs) (Globalstem).UndifferentiatedES cells weremaintained asdescribed
previously5 in medium containing DMEM/F12, 20% KSR, 1mM glutamine, 1%
penicillin/streptomycin, non-essential amino acids andb-mercaptoethanol.Undif-
ferentiated ES cells were purified with pluripotency markers Alexa 647-conjugated
Tra-1-60 and phycoerythrin-conjugated SSEA-3 (BD Pharmingen).
Neural induction and long-term propagation of NPCs. Neural differentiation
of ES cells was performed as described in refs 5,18. In brief, neuroepithelial cells
were generated either bymonolayer induction—with dissociated ES cells plated on
Matrigel (BD biosciences)—or by co-culture on MS5 stromal cells. In both cases
neural fate was directed by dual SMAD inhibition protocol18. Neural rosettes gen-
erated fromboth inductionmethodswere harvestedmechanically during all stages
of differentiation and replated on culture dishes pre-coated with 15mgml21 poly-
ornithine (Sigma), 1mgml21 laminin (BD Biosciences) and 1mgml21 fibronectin
(BD Biosciences) (Po/Lam/FN) in N2 medium composed of DMEM/F12 and N2
supplement (Invitrogen).N2supplement contained insulin,apo-transferin, sodium
selenite, putrecine and progesterone. This medium was supplemented with sonic
hedgehog (30 ngml21), fibroblast growth factor 8 (FGF8; 100 ngml21) and brain-
derivedneurotrophic factor (BDNF) (20 ngml21) (all fromR&DSystems) to induce
andmaintain early anterior regionalization of NE cells. These factors were gradu-
ally replaced by FGF2 (20ngml21) and EGF (20 ngml21) in the following 2weeks
of differentiation in order to maintain a proliferative (FGF and EGF responsive)
NPC state.NPCs fromall stageswere collected at indicated days andFACSpurified
forHES5::eGFP (NE to LRG) or EGFR for LNPs to purify for the highestNPC state
for each stage. NE cells were collected at day 12 of differentiation, ERG cells were
collected at day 14, mid-neurogenesis radial glial (MRG) cells were collected at
day 35, late-gliogenic radial glial (LRG) cells were collected at day 80, and long-
termNPCs (LNP) were collected at day 220. At each stage cells were either split for
the next passage or subjected to FACS purification for HES5::eGFP as described.
All replating was performed on Po/Lam/FN-coated dishes. For generating mature
differentiated populations, HES51 sorted NPCs were seeded at high density and
subjected tomitogenwithdrawal differentiationmedium for 17dayswhich included
N2 supplementedwith ascorbic acid/BDNF (neuronal; NEdN, ERGdN,MRGdN)
or 5% fetal bovine serum (FBS) (Invitrogen) (glial; LRGdA). Additional experi-
mental details and in-depth characterization of these cell types are provided in
Elkabetz and colleagues (manuscript in preparation).
Chromatin immunoprecipitation followed by sequencing (ChIP-seq). For the
histone ChIP experiments, we used similar approaches to ref. 28. Specifically,
around 160,000 cells were crosslinked in 1% formaldehyde for 10min at 37 uC,
followed by quenching with 125mM glycine for 5min at 37 uC, washed with PBS
containing protease inhibitor (Roche, 04693159001) and flash-frozen in liquid
nitrogen. To lyse the cells, we used 1% SDS, 10mM EDTA and 50mM Tris-HCl,
pH8.1 complemented with a protease inhibitor. The chromatinwas then fragmen-
tedwith aBranson Sonifier (model S-450D) at 4 uC, and calibrated to a size range of
200 and 800 base pairs (bp). Chromatin wasmixed with antibody and incubated at
4 uC overnight. Protein A and Protein G Dynabeads were added to chromatin/
antibody mix (Invitrogen, 100-02D and100-07D, respectively) and incubated for
1–2 h at 4 uC. Samples were washed six times with RIPA buffer (10mM Tris-HCl,
pH8.0, 1mMEDTA, pH8.0, 14mMNaCl, 1%TritonX-100, 0.1%SDS, 0.1%DOC),
twice with RIPA buffer containing 500mM NaCl, twice with LiCl buffer (10mM
TE, 250mM LiCl, 0.5% NP-40, 0.5% DOC), twice with TE (10mM Tris-HCl,
pH8.0, 1mM EDTA), and then eluted in elution buffer (10mM Tris-Cl, pH8.0,
5mM EDTA, 300mMNaCl, 0.1% SDS, pH8.0) at 65 uC. Eluate was treated with
RNaseA (Roche, 11119915001) and ProteinaseK (NEB, P8102S) overnight at 65 uC.
For theOTX2ChIP cells were collected and crosslinked in 1% formaldehyde for

15min on ice, quenched with 125mM glycine for 5min at room temperature and
pelleted.Nucleiwere then isolated andchromatinwasdigested at 37 uCwithMNase
enzymeuntil themajority of theDNAwasbetween 50and 800 bp. Specifically, 25U
and 35UofMNase enzymewere used to digest NE cells andRNS/RGcells, respect-
ively. The chromatinwas then incubatedwith the antibodies over night at 4 uCand
co-immunoprecipitation of antibody–protein complexes was performed with
Protein A or G beads for 1–2 h at 4 uC.
All antibody catalogue and lot numbers are listed next to the data set for which

they were used in Supplementary Table 1.
ChIP-seq library preparation and sequencing. To extract DNA and create the
Illumina libraries we used solid-phase reversible immobilization (SPRI) beads.
The SPRI beads were added to the samples, mixed 15 times, and incubated for
2min at room temperature. Supernatant was extracted from the beads on a mag-
net (4min). 70% ethanol was used to wash the beads and then dried for another
4min. Forty microlitres of EB buffer (10mM Tris-HCl, pH8.0) was used to elute

the DNA. The next steps of Illumina library construction include end repair, addi-
tion of A-base, ligation of barcoded adaptors and PCR enrichment. To minimize
the loss ofChIPmaterial throughout thisprocedure,weused a general SPRIcleanup
procedure after each reaction step reusing the same beads. PEG buffer (20% PEG
and 2.5M NaCl) was used to re-bind ChIP material to SPRI following each reac-
tion, andwashing and extractionoccurredas stated above. The enzymatic reactions
were carried as follows: (1)DNAend-repair: EpicentreEnd-ITRepair kit incubated
at room temperature for 45min; (2) A-base addition: Klenow (39R59 exonuclease;
New England Biolabs) incubated at 37 uC for 30min; (3) adaptor ligation: DNA
ligase (New England Biolabs) and indexed oligo adaptors and incubated at 25 uC
for 15min, followedby 0.73 SPRI/reaction to removenon-ligated adaptors; (4) PCR
enrichment: PCRmastermix (primer set, dNTPmix, Pfu Ultra Buffer (Agilent), Pfu
Ultra-II Fusion (Agilent), water), for 20 cycles. The PCR amplified libraries we
cleaned up using 0.73 SPRI/reaction (size selection mode) to remove excessive
primers. Roughly 5 picomoles of DNA library was then applied to each lane of the
flow cell and sequenced on IlluminaHiSeq 2000 sequencers according to standard
Illumina protocols.
For the OTX2 ChIP, DNA libraries were constructed using standard Illumina

protocols for blunt-ending, poly(A) extension, and ligation. MyOne Silane beads
(Life Technologies 37002D) were used to purify DNA fragments following each
step of the library preparation. Adaptor ligationwas performed overnight at 16 uC.
Ligated DNAwas then PCR amplified and gel size selected for fragments between
150 and 700 bp. Samples were sequenced using Illumina HiSeq at a target sequen-
cing depth of 20 million uniquely aligned reads.
Strand-specific RNA-sequencing library construction. RNA was extracted
using the miRNeasy kit (Qiagen, 217004). Poly(A) RNA was isolated using Oligo
d (T25) beads (NEB, E7490L). The poly(A) fractionwas then fragmented (Invitrogen,
AM8740). Fragments smaller than 200bpwere eliminated (Zymo, R1016) and the
remaining fractionwas treated with FastAPThermosensitiveAlkaline Phosphatase
(Thermo Scientific, EF0652) and T4 Polynucleotide Kinase (NEB, M0201L). RNA
was then ligated to a RNA adaptor as reporter previously29 using T4 RNA Ligase 1
(NEB, M0204L), which was then used to facilitate complementary DNA synthesis
usingAffinity ScriptMultipleTemperatureReverse Transcriptase (Agilent, 600105).
More specifically, we used the following adaptors reported in ref. 29: RNA sequen-
cing, RiL-19 39RNAadaptor: prArGrArUrCrGrGrArArGrArGrCrGrUrCrGrUrG/
ddC; RNA sequencing, AR17 reverse transcription primer: ACACGACGCTCTT
CCGA; RNA sequencing, 3Tr3 59DNAadaptor: pAGATCGGAAGAGCACACGT
CTG/ddC;RNAsequencing, PCRenrichment:AATGATACGGCGACCACCGAG
ATCTACACTCTTTCCCTACACGACGCTCTTCCGATCTCAAGCAGAAGA
CGGCATACGAGATNNNNNNNNGTGACTGGAGTTCAGACGTGTGCTC
TTCCGATCT.
RNAwas then degraded and the cDNAwas ligated to a DNA adaptor using T4

RNA Ligase 1 as described previously29. Final library amplification was completed
using NEBNext High Fidelity 2X PCTMasterMix (M054L). To clean up the final
PCR and removed adaptor dimers, two subsequent 13 and 0.83 SPRI reactions
were completed to prepare the final library for sequencing.
Pooled shRNA screen.We selected 244 transcription factors and epigeneticmodi-
fiers that were differentially or continuously highly expressed during our in vitro
differentiation time course in an otherwise unbiased fashion (SupplementaryTable
4). In addition, we includedGFP, RFP, LacZ and luciferase as internal controls.We
then obtained a sub-pool of the human 45K shRNApool30 distributed by the Broad
Institute Genomic Perturbations Platform and the RNAi Consortium (TRC)
against these genes. For each gene, five distinct shRNAs were included as well as
five scrambled and three empty control vectors, amounting to a total of 1,2301 8
shRNAs. The plasmid for shRNA expression under the control of the constitutive
U6 shRNA promoter was the lentiviral vector pLKO.1. shRNA pool production
and infection conditions were performed as previously described30. Subsequently,
we performed calibration experiments to determine to optimal combination of
multiplicity of infection (MOI) and puromyocin concentration to ensure efficient
selection. We identified MOI 0.4 and 1mgml21 of puromycin as optimal para-
meters for all stages.We then infected 26million cells at each stage ofNE, ERG and
MRG to ensure sufficient shRNA integration events to recover the complexity of
the shRNA library. Twenty-four hours post infection and before full expression but
after integration of the lentivirus into the genome we collected 3 million cells to
determine our baseline shRNA library representation. Subsequently, we subjected
the cells to 5 days of puromycin selection and then FACS sorted the resulting popu-
lations intoHES51 andHES52 compartments.Next, we assessed the representation
of the shRNAlibrary in eachof the9 populations by retrieving all shRNA integration
events from genomic DNA isolated from each sample using PCR followed by next-
generation sequencing as previously described31. More specifically, we performed
two rounds of PCR using the following primers for the primary PCR: primary
reverse: CTTTAGTTTGTATGTCTGTTGCTATTAT; primary forward: AATGG
ACTATCATATGCTTACCGTAAC. For the second, nested PCR we used: nested
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forward: GGCTTTATATATCTTGTGGAAAGGA; nested reverse: GGATGAA
TACTGCCATTTGTCTC.
Next, we performed standard Illumina sequencing library construction as out-

lined above for four technical replicates for NE and MRG and three technical
replicates for ERG, each comprising HES51, HES52 and 24-h control, amounting
toa total of 33 libraries.We then sequenced these amplicon libraries onaHiSeq2500
with a PhiX spike-in of 25%.
Individual shRNA validation for OTX2 and PAX6. RNA was extracted using
miRNeasy kit (Qiagen) followed by Maxima reverse transcription reaction kit
(Fermentas). One nanogram of cDNA was subjected to quantitative PCR (qPCR)
usingour custom-designedprimers and theABsoluteQPCRSYBRGreenROXMix
(ABgene)on aViiA-7 cycler (ABI). Threshold cycle valuesweredetermined in tripli-
cates and presented as average compared to HPRT. Fold changes were calculated
using the 2{DDCTmethod.
WGBS and RRBS library production. WGBS libraries were generated as prev-
iously described in ref. 10. RRBS was carried out using the multiplexed, gel-free
protocol described in ref. 32.
Data processing. For RNA-seq data processing, reads were trimmed to 80, 60 or
30 bp depending on their per-base quality distribution to achievemaximum align-
ment rates. Reads were mapped to the human genome (hg19) using TopHat v2.0
(ref. 33) (http://tophat.cbcb.umd.edu) employing the unfiltered gencode.v19.
annotation.gtf annotation as the transcriptome reference. TopHat was run with
default parameters except for the coverage search being turned off. Transcript
expression was estimated with Cuffdiff 2 (ref. 34). The workflow used to analyse
the data are described in detail in ref. 35 (alternate protocol B).
WGBS libraries were aligned using BSMap 2.7 (ref. 36) to the hg19/GRCh37

reference assembly. Subsequently, CpGmethylation calls weremade using custom
software as previously described9, excluding duplicate, low-quality reads as well as
reads with more than 10% mismatches. Only CpGs with more than 53 coverage
were considered for further analysis.
ChIP-seqdatawere aligned to thehg19/GRCh37referencegenomeusingMAQ37

version 0.7.1 with default parameter settings or Bowtie 2 version 2.05 (ref. 38).
Reads were filtered for duplicates and extended by 200 bp at the end of the read.
Visualization of read count data was performed by converting raw BAM files to .tdf
filesusing IGVtools39 andnormalizing to1million reads. Fragment-length-extended,
duplicate and quality-filtered reads were used for subsequent analysis.
shRNA screen data analysis. For the screen data analysis, we followed the pro-
tocol outlined in ref. 40 employing the R package limma41. First, we extracted and
counted the number of times each shRNA was observed in each library using the
shRNA sequence as barcode and the R function processHairpinReads(). Next, we
normalized the shRNA counts to the total number of reads observed containing a
shRNA to counts per million (cpm) and retained only those shRNAs with more
than 0.5 cpm inmore than 2 samples. After further quality control showing excel-
lent reproducibility (Extended Data Fig. 3f), we performed differential shRNA
count analysis between the HES51 and 24-h control and the HES51 and HES52

populations for each stage. To that end we first estimated the dispersion for each
condition and then fitted a negative binomial generalized linear model using the R
package edgeR.We then conducted a likelihood ratio test for each contrast and only
retain those shRNAs as differentially enriched at a FDR# 0.05. Todetermine genes
with significant positive or negative impact onHES51maintenance or cell survival,
we determined all genes that were targeted by at least two independent shRNAs
which showed a significant effect (FDR# 0.05) in the same direction. We then
computed a mean effect score in order to rank genes by computing the weighted
mean of the log fold change between the two conditions weighted by the log cpm
across all significant shRNAs and targeting a particular gene with an effect in the
samedirection. If an equal numberof shRNAsshoweda significant effect inpositive
or negative direction, we classified the gene as not significantly affected. Otherwise
we chose the effect direction based on the majority of the shRNAs. We then com-
bined the results from theHES51 to 24-h control andHES52 comparison into one
by taking the maximum mean effect score observed in either comparison. The
resulting mean effect scores are then used for visualization and analysis purposes
inmain text and figures and are reported in SupplementaryTable 3. In addition, we
also calculated an empirical FDR by determining the fraction of shRNAs with a
statistically significant effect based on the generalized linear model but were not
expressed based on the RNA-seq data for the condition where the significant effect
was observed.
For the TERA validation analysis, we ranked all motifs according to their TERA

scores at each stage. Next, we filtered out motifs that were not associated with at
least one transcription factor that was covered in our screen design. We then
determined the fraction of top 20 motifs (by absolute TERA values) that were
linked to transcription factors which showed a significant effect in the correspond-
ing stage-specific shRNAscreen.We report this number as the percentage ofmotifs
recovered. Onlymotif-knockdown results that have a straightforward interpretation

were considered as hits. These include: (1) positive TERA score and positive
depletion score (gene is involved HES51 maintenance, progression or cell sur-
vival); (2) negative TERA score and negative depletion score (impedes HES51

maintenance, progression or apoptosis); (3) negative TERA score and positive
depletion score (gene is involved HES51maintenance, progression or cell survival
but most likely acts as a repressor by causing H3K27ac or H3K4me3/1 loss). For
the comparison with the expression-based analysis, we ranked all significantly dif-
ferentially expressed genes by their absolute fold change and determined the frac-
tion of top 20 transcription factors observed among the differentially enriched
shRNAs in the screen.
Differential expression analysis.Differential expression analysis was carried out
using Cuffidff 2 (ref. 34) and genes differentially expressed at a FDR#0.1 for each
comparison and a minimal expression level of 1 FPKM in at least one of the con-
ditions were considered. Clustering analysis was performed using the csCluster()
function in the cummeRbund42 package version 2.6.1 (http://compbio.mit.edu/
cummeRbund/) with the Jensen–Shannon distance as metric. The number of
clusters for the NPC set (ESC, NE, ERG, MRG, LRG) and the differentiated
populations (NEdN, ERGdN, MRGdN, LRGdA) was determined as the number
of clusters between 10 and 20 with the minimum average silhouette width across
all clusters. Subsequently, a pseudocount of 1 was added to all FPKM counts
followed by a log2 transformation. The resulting values were used for all further
expression analysis.
ChIP-seq data analysis and normalization. ForH3K27ac andH3K4me3 histone
marks, the irreproducible discovery rate (IDR) framework43 with a cutoff of 0.1 in
combination with theMACS2 (ref. 44) peak caller version 2.1 was used to identify
peaks taking advantage of both replicates for each condition. For MACS2 peak
calling, we used an initial P value cutoff of 0.01 and the corresponding whole-cell
extract (WCE) control library as background. All IDR peak sets can be obtained
from GEO under GSE62193.
For the broad histone marks H3K27me3 andH3K4me1, we first determined all

1-kilobase (kb) tiles of the human genome (hg19) that were significantly enriched
over background in at least one of the replicates. To that end we used a Poisson
model45 with theWCE as background tomodel the fragment count distribution in
each genomic To that end we defined a nominal P value for enrichment within a
given region i in sample k harbouring rik ChIP fragments compared to the WCE
control sample l with ril ChIP fragments as P(C$ rik) where45:

C*Poisson max 1,eil½ �lkð Þ

and eil5 ril / ll, lk5 (region size)3 (total number of ChIP fragments in sample
k)/(corrected genome size), ll5 (region size)3 (total number of ChIP fragments
in sample l)/(corrected genome size). In order to account for regions with no or
minimal WCE read counts due to sampling, we chose eil5max(eil,1). Resulting
P values were adjusted for multiple testing using the Benjamini–Hochberg46 cor-
rection and the q value R package47. Only regions significant at a q value#0.05 and
with an enrichment level over background$1.5 were considered to be enriched.
For differential enrichment analysis of histone marks between consecutive

conditions, we used the R package diffBind48. To normalize read counts, we used
the effective library size, counting only reads in peak regions (either the IDR peaks
for H3K27ac, H3K4me3 or the enriched 1-kb tiles for H3K27me3 or H3K4me1).
The differential analysis was then conducted using the DBA_DESEQ2 method,
taking full advantage of both replicates per conditionwith the bTagwise parameter
set to true. Only regions that were differentially enriched between consecutive
conditions at a P value of 0.05 were reported.
In addition, we created a union peak set for each mark separately by joining

overlapping peaks/enriched regions in preparation for the TERA analysis. For
H3K4me1, we computed the enrichment over the union of all H3K27ac regions
sincewewanted to focus onmuchmore sharply defined putative enhancer regions
for thismark. ForH3K27ac, we focused ondistal regions only ($1 kb fromnearest
TSS) since we were specifically interested in putative enhancer regions for this
mark. For H3K4me3, we used the union of all H3K4me3 IDR based peaks regard-
less of distance, accounting for most promoters and CpG islands. We then deter-
mined the enrichment level for all regions in the union set in each replicate across
all marks separately. Region enrichment was computed as follows: first, the num-
ber of tag counts in each region was determined and normalized to reads per
kilobase per million reads (RPKM) sequenced using the full library size of non-
duplicate reads. Next, RPKM read counts were divided by themean RPKM counts
across all WCE libraries. Subsequently, the resulting enrichment levels were log2
transformed. Finally, the resulting enrichment values were quantile normalized
across the entire data set for each mark separately. The resulting values were then
average across replicates to obtain a region3 condition normalized enrichment
matrix. The resulting matrix was used as input for the TERA analysis. We tested
several ChIP normalization strategies by assessing between-replicate correlation
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and between-condition discriminative power on a large data set of 70 REMC
H3K27ac samples and identified this strategy as the best performing one.
Footprinting detection. To determine small regions depleted of histone modifi-
cations but surrounded by regions ofmuch greater enrichment, termed footprints,
we extended an approach used for the analysis of DNase I hypersensitivity (HS)
data49. Our footprints identification algorithm consisted of three main phases. In
the first phase, we identify peaks using the IDR framework (see previous section)
for H3K27ac and H3K4me3 and use these as baseline regions in which footprints
could be detected. In the second phase, we identified footprints located within/
around peak regions in the followingmanner. (1) For each peak, extend by 400 bp
from apex in either direction. (2) Split entire resulting region into bins of size
20 bp. (3) Compute number of RPKM counts for a central sliding window across
the entire region (shifting by increments of one bin) for different window sizes
ranging from two bins to ten bins in increments of one. (4) For each position of the
central window and for each window size, compute the following three quantities:
Cij2RPKM count for central window at current position i and window size j,
Rij2RPKM count for a 200-bp stretch directly to the right of the central window
and Lij2RPKM count for a 200-bp stretch directly to the left of the central
window. (5) For each resulting position i andwindow size j compute the depletion
score:

eij~
f Cijz1
� �
2Lij

z
f Cijz1
� �
2Rij

With the footprint size normalization factor f5 s/b, with s the size of the central
window and b the size of the border regions. (6) Identify non-overlapping, non-
adjacent footprint candidates starting from small to larger central window sizes
and recording footprint candidate if eij. 0 and eij, 1 and Lij.Cij and Rij.Cij,
followed by removing all other potential footprints (central window1 borders) of
larger size overlapping the current candidate. (7) Finally, all resulting candidate
footprints with a footprinting score eij# 0.9 were reported.
The latter procedurewas carried out forH3K27ac andH3K4me3 independently

for each sample. Subsequently, we merged all footprints from individual samples
into consensus footprints set for each epigenetic mark separately, collapsing over-
lapping footprints by taking the union of all regions with non-zero overlap.
Differentially methylated region detection. Differentially methylated region
(DMR) detection was carried out as previously described with slight modifica-
tions10. Pairwise comparisons of consecutive samples (hESC, NE, ERG, MRG,
LRG, LNP) were carried out on a single CpG level using a b-binomial model
and the b difference distribution requiring a maximum q value below 0.05 and
an absolute methylation difference greater than 0.1. q values were computed based
on b-binomial model P values using the Benjamini–Hochberg46 method. Only
CpGs covered by at least 5 reads in either sample were considered. Subsequently,
differentially methylated CpGs within 500 bp were merged into discrete regions.
Differential CpGs without neighbours were embedded into a 100-bp region sur-
rounding each CpG. Next, differential methylation analysis was repeated on the
region level using a random effects model. Only regions significant at a P value
below 0.01, an absolute methylation difference above 0.2 and containing at least 2
differentially methylated CpGs were considered differentially methylated. These
regions were defined as DMRs and used for subsequent analysis. For the DNA
methylation analysis in the context of the TERA framework, we restricted our
analysis to DMRs consistently covered across all conditions, including those only
assessed by RRBS. This left us with 7,929 regions.
Association of genomic regions with genes. We used the R package
ChIPpeakAnno50 to associate each regionwith its nearest ENSEMBL transcription
start site and used this mapping for all downstream analysis.
Gene set enrichment analysis.Gene set enrichment analysis for genomic regions
was carried out using theGREAT toolbox20 andonly categorieswithq values#0.05
for both the hypergeometric and the binomial test as well as a minimal region
enrichment level greater than 2 were considered, following the GREAT recom-
mendations. Due to the large number of enriched gene sets, a selected subset of the
results is shown in the different figures. In addition, we used the Allen Brain Atlas51

to determine enrichment for distinct brain structures and developmental time
points. To that end we derived gene sets from the brain atlas data in the following
fashion.
We obtained in situ hybridization counts for the developing mouse brain at 7

distinct fetal time points and 11 different brain substructures through direct
correspondence with http://www.alleninstitute.org. Specifically, we investigated
the following structures: rostral secondary prosencephalone (RSP), telencephalon
(Tel), peduncular (caudal) hypothalamus (PHy), hypothalamus (p3), pre-thalamus
(p2), pre-tectum (p1), midbrain (M), prepontine hindbrain (PPH), pontine hind-
brain (PH), pontomedullary hindbrain (PMH), medullary hindbrain (MH); and
time points: embryonic (E) day 11.5, E13.5, E15.5 and E18.5 as well postnatal (P)
P4, P14 and P28. In total, we had 14,585 measurements for 2,105 different genes

across these different regions and time points. In order to define sets of genes
characteristic for each combination of time point and structure, we computed
the z scores as well as the maximum observed variation for each gene across the
entirematrix of structure and developmental time point combinations. Only genes
that exhibited a maximum observed variation (maximum activity2minimum
activity)$1 were considered for gene set definition. Next, we mapped all mouse
genes to their human orthologues using the biomaRt database. Finally, we defined
gene sets for each region–time-point combination using genes that exhibited a
z score$2 in that particular combination. Since the Allen Brain Atlas gene sets
are defined for each developmental time point and regional identity, we next
simplified the visualization by focusing either exclusively on structures or devel-
opmental time points. Therefore, we determined the gene set with the maximum
gene set activity at each differentiation stage across all gene sets associated with
distinct developmental time points for each structure separately. Similarly, we
determined the gene set withmaximum activity for each developmental time point
now taking the maximum across all structures at each stage. The gene set activity
was determined as the mean log2-transformed expression level of all gene set
members in for each condition.
Motif library construction and mapping to transcription factors. We com-
bined the position weight matrices (PWM) from Transfac professional database52

(2011) with the PWM collection reported in ref. 53, only retaining motifs anno-
tated forHomo sapiens or mouse. To eliminate redundant motifs, we determined
pairwise motif similarities for all resulting 1,886 PWMs using the TOMTOM54

program which is part of the MEME55 suite with default parameters. Next, we
compiled a pseudo-distance matrix based on the resulting pairwise motif similar-
ities. As a proxy for motif similarity, we used the log10-transformed TOMTOM
q value which was capped at ten. To convert the resulting motif similarities into a
distancematrix, we inverted the scale by subtracting the transformed q values from
ten. We then used the resulting matrix to perform hierarchical clustering with
Euclidean distance and Ward’s method. Finally, we employed the cutree() func-
tionwith a threshold of seven to partition the resulting clustering dendrogram into
discrete clusters of motifs. For each cluster, we then determined the motif with
the highest complexity based on the relative entropy compared to a genome
background model with the following base frequencies: A5 0.2725, C5 0.189,
G5 0.189 andT5 0.2728.Onlymotifswith a relative entropy greater thanor equal
to eight were retained for subsequent analysis. After identification of the candidate
with the highest complexity for eachmotif cluster, we assigned all genesmapping to
anymotif in eachcorresponding cluster to the cluster representativemotif. This lead
to a final motif list of 557 motifs. To obtain a more quantitative association of each
motif with its linked genes, we computed the epigenetic transcription factor activity
(ETFA) scores across 70REMCH3K27ac orH3K4me3 cell types and correlated the
resultswithRNA-seq expressiondata across 40 cell types. This analysis gave rise to a
correlationmatrix containing the Pearson correlation coefficient of eachmotif with
its linked genes. This matrix was used in combination with the plain genemapping
reported in primary motif sources. For Fig. 2b, we uniquely map each motif to a
corresponding linked gene by computing an association score as the product of the
absolute Pearson correlation coefficient and the average gene expression level of the
corresponding gene.We then chose the gene with the highest association score. For
motifs without an entry in the H3K27ac correlation matrix (due to the inability to
determine suitable GEVparameters on the REMCdata set), we chose the genewith
the highest gene expression level. In Fig. 2b, only genes expressed with at least 10
FKPM in the respective condition are considered. We then report the genes map-
ping to the 40motifs for each condition, where TERA scores ofmotifs mapping the
same gene were averaged.
In Figs 4 and 5, we incorporated the results of the shRNA screen to uniquely

map motifs applying the aforementioned mapping strategy only on the genes
identified as hits. If it did not map to any gene hit by the screen, we used the
standard assignment strategy outlined above.
Identification of putative transcription factor binding sites. To determine
putative binding sites in a given genomic region, we used a biophysical model
of transcription factor affinities to DNA56,57 to determine putative binding to our
footprint sets. This biophysical model requires the training of generalized extreme
value (GEV) distributions of binding affinities based on a PWM matrix for each
transcription factor and each set of genomic regions in order to generate a suitable
backgroundmodel. In order to take the distinct properties of footprints determined
from different epigenetic marks into account, we determined the GEV parameters
for footprints arising fromH3K27ac,H3K4me3 andDNAmeusing the framework
outlined in refs 56, 57. The resulting three binding matrices were then filtered for
minimal significant binding affinity at P values below 0.05. All other entries with
higherP valueswere set to one.Next, we took thenegative log10 of the entirematrix
as a quantitative measure of binding affinity in subsequent analysis.
Inference of transcription factor activities based on epigenetic data. To infer
transcription factor epigenetic remodelling activities (TERA), we first computed
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ETFA from our epigenetic data. To that end, we first focused on motif activity
analysis and associated each motif in a second step with its corresponding tran-
scription factor. For each epigenetic mark, we used the normalized epigenetic
enrichment scores as well as DMRs with a minimal DNA methylation difference
of at least 0.2 and covered consistently in all data sets. For the DNA methylation
data, we inverted the scale to obtain demethylation scores (15 fully demethylated,
05 fully methylated) since usually the demethylated states coincides with gene
regulatory element activity. To determine the unobserved activity of a transcrip-
tion factor bindingmotif, we took advantage of recent developments in themicro-
array field58,59 and adapted this approach to epigenetic data. To that end we
modelled the enrichment level yit of a particular epigeneticmark at genomic region
i and time point t as a linear functionof the unknown transcription factor activities.
Considering p predictor variables (epigenetic motif/transcription factor activities)
and k time points we describe the unknown transcription factor activities X as a
p3 k matrix. Incorporating all regions n meeting the above listed criteria, we
employ the linear model Y~AzBXzE with the observed matrix of epigenetic
enrichment scores Y (n3 k), a constant offset matrix A (n3 k), the connectivity
matrix B (n3 p), describing the filtered binding affinities for all transcription
factor motifs to all regions and an error termmatrix E. Subsequently, we followed
the approach outlined in ref. 58 and applied partial least square (PLS) regression
and specifically the SIMPLs algorithm60 to determine the unknown transcription
factor motif activities. The idea in PLS is to employ a linear dimensionality reduc-
tion T~BR, where the p predictors inX aremapped onto c# rank(X)#min(p,n)
latent components T (n3 cmatrix), and to compute the weight matrix R not only
based on the datamatrixB but explicitly taking into account the responsematrixY.
The latter strategy maximizes predictive power even for a small number of latent
components.
In order to determine the number of latent components for each epigenetic

mark and genomic context, we performed cross validation by randomly partition-
ing the data set 20 times into two-thirds training and one-third test sets. We then
chose the number of components such that it minimized the prediction error. The
corresponding analysis methodology was implemented in the statistical program-
ming language R adapting the implementation provided in ref. 58. To assess the
significance of the resulting ETFA scores, we performed a permutation test by
randomly permuting the epigenetic enrichment scores for each gene regulatory
element and recomputed the ETFA values on the permuted values. This process is
repeated 100 times. Positive ETFA scores are considered to be insignificant and set
to 0 if a greater ETFA score is observedmore than once on the randomly permuted
set and vice versa for negative ETFA scores.
Finally, we determined the TERA scores by computing the differential ETFA

scores between consecutive conditions. These scores were determined by sub-
tracting ETFA scores of consecutive time points from each other. Subsequently,
we assessed the significance of this difference using a permutation test by ran-
domly permuting the epigenetic enrichment scores across all regions, re-computing
the ETFA scores for each conditions and assessing the TERA score between con-
secutive conditions for each motif. Positive TERA scores are considered to be
insignificant and set to 0 if a greater TERA score is observed more than once on
the randomly permuted set and vice versa for negative TERA scores.
Co-binding analysis.Co-binding relationships were evaluated using an empirical
approach with the entire set of footprints for each epigenetic mark as background.
For a given factor i, we determined the footprints set Fi relevant for the current
comparison (for example, changing their epigenetic state in particular cell state
transition) that were predicted to contain a transcription factor binding site based
on the binding model outlined above. Next, we computed the frequency of motif
co-occurrence SFij across Fi for all other motifs j in our database. To generate a
proper null distribution, we randomly sampled K5 100 standardized footprint
setsGk each of size jFij from the entire footprint collection for the epigenetic mark
under study and computed the same test statistic SGk

ij on these sets. Finally, we
determined an empirical P value and enrichment over the control based on these
quantities by counting the number of instances for which SGk

ij §SFij :

Pij~

P
k s

Gk
ij §sFij

� �

K

Only co-binding relationships significant at P values#0.01, a median enrichment
over the control$1.5 and an expression level$2 FPKM in at least one condition
were retained. For the core factor co-binding analysis, the predicted co-binding
relationships were additionally filtered for support by the knockdown data at the
stage of predicted co-binding
Validation analysis on ENCODE data. To validate the outlined strategy in silico
we took advantage of publically available transcription factor ChIP-seq data in
four cell lines from the ENCODE61 project as well as H3K27ac and RNA-seq data
for 70 cell types from the REMC project.We downloadedH3K27ac data as well as

processed transcription factor binding data from the ENCODE project for the cell
line K562 since abundant transcription factor binding data based onChIP-seqwas
available. In addition, this data set has been successfully used in several studies to
benchmark transcription factor binding predictions62,63. We then applied our
TERA pipeline to the H3K27ac data sets and computed the transcription factor
binding affinities for a set of 557 distinct motifs. With these data sets at hand, we
computed the true-positive rate (TPR), the false-positive rate (FPR) and the pos-
itive predictive values (PPV) for all transcription factors that could be matched to
at least one motif with available binding affinities (46 out of 117). In the event that
one factormatchedmultiplemotifs, we chose themotif with the highest area under
the curve.
GWAS analysis. The GWAS analysis was conducted using 11,027 GWAS SNPs
from the GWAS catalogue (August 2013). We sought to determine whether the
H3K27ac-positive regions identified in the NPC populations were enriched for
any GWAS SNP class with respect to a H3K27ac peak compendium across many
different tissues. To determine a proper background distribution we randomly
sampled K5 1000 equally sized peak sets from H3K27ac-based footprints iden-
tified across 70 epigenome roadmap data sets. Prior to further analysis, we normal-
ized the size of each peak all sets by extending it by 250 bp in each direction from
the center coordinate. Next, we determined the overlap with GWAS SNPs for
control and neural H3K27ac footprint sets. Subsequently, we computed an empir-
ical P value for each trait/disease i in the catalogue by determining the number of
trait associated SNPs SCij overlapping with each control region set Cj and the
number overlapping with the corresponding footprint set si according to

Pi~

P
j si§sCij

� �

K

Determination of core network. The core network was defined as those tran-
scription factors that were differentially expressed during neural induction from
ES cell to NE and not differentially expressed between consecutive stages of NE,
ERGandMRG.Wedid not consider the LRG stage. Furthermore, we required that
each factor was expressed at least 10 FPKM or more in NE, ERG and MRG and
that itsmean normalized,maximumdifference in expression levels between any of
the stages did not exceed one standard deviation computed across the entire data
set of 9 cell types. In addition, we also considered genes that were not differentially
expressed between any consecutive stages including the ESC stage but fulfilled all
other criteria. This identification procedure gave rise to the candidate list of core
factors. We then intersected this list with the results of our shRNA screen and
retained only those factors that were significantly depleted in the HES51 popu-
lation relative to the respective HES52 or control population in at least two stages.
Since the literature supported a role for PAX6 and OTX2 for which our shRNAs
showed no effect due to the pooled setup or absent knockdown (Fig. 3f and Ex-
tended Data Fig. 3g), we included these genes as well. Finally, we merged this list
will all transcription factors that were depleted in our shRNA screen at all three
stages in the HES51 population relative to the controls andwere expressed at least
at 10FPKMormore inNE, ERGandMRG.This algorithmyielded a list of 22 tran-
scription factors or epigenetic modifiers (Fig. 4a). We then carried out co-binding
analysis inH3K27ac footprints dynamically regulatedat each stage in order to obtain
putative stage-specific co-binding relationships.Todetermine significant co-binding
events, we used the permutation procedure outlined above and retained all co-
binding partnerswith an enrichment over the control$1.5 that were significant at
P# 0.01 that were also identified as a significant hit in the shRNA screen at the
particular stage under investigation.
Transcription factor binding site priming analysis. To determine transcription
factors associated with transcription factor binding site priming before factor
activation, we determined all transcription factors at each stage that were signifi-
cantly upregulated at the consecutive NPC time point or induced in the corres-
ponding more differentiated cell type (q value# 0.1) and showed an increase in
H3K4me1- or DNAme-derived TERA activity at the current stage under invest-
igation. In addition, we required that the corresponding motif did not map to any
transcription factor that was expressed more than 3.5 FPKM at the current stage
under investigation. From this list, we picked the pro-neural genes NEUROD4,
ASCL2 andNFIX for further investigation due to their literature support for their
pro-neural functions. Finally, we required that the potential downstream target
geneswere significantly enriched for differentially regulated genes at the nextNPC
stage or in the corresponding more differentiated cell types. To that end, we
determined all putative transcription factor binding sites for a particular factor
in dynamically regulatedH3K27ac orH3K4me1 footprints at the stage of potential
priming. We then associated each of these putative binding sites with the nearest
TSS and determined the number of differentially expressed genes for each factor.
To assess significance, we randomly drew 100 sets of equally sized H3K27ac
footprints with no motif of the factor under investigation and determined the
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number of differentially expressed genes for the subsequent stages. Only factors
that exhibited more differentially expressed genes compared to the control sets in
more than 99% of the cases were retained.
Next, we performed co-binding analysis in H3K27ac peaks differentially regu-

lated between the ES cell andNE stage as outlined above and display the top 10 co-
binding relationships per factor with an odds-ratio$1.5 that were significant at a
permutation-test-based P# 0.01 in Fig. 5a.
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Extended Data Figure 1 | Isolation and characterization of ES-cell-derived
neural progenitor cells. This figure relates to Fig. 1 in the main text.
a, Schematic of our differentiation model including the specific days of sample
collection. Human ES cells were differentiated into NE cells using dual
inhibition of TGF-b and bone morphogenetic protein followed by the
transition to neural base media. Subsequently, sonic hedgehog and FGF8 are
used to transition to the ERG stage. For the rest of the differentiation
experiment the cells were constantlymaintained in FGF2 andEGF2 neural base
media to reach the MRG stage after 35 days (D35), the LRG stage after 80 and
the LNP stage after about 200days of in vitro culture. Cell type names indicated
in red were profiled for gene expression, histone modifications as well as
DNAme by WGBS, while names shown in grey for gene expression only and
names in black forDNAmebyRRBS only.NSB, noggin/SB-431542; SHH, sonic
hedgehog; FGF, fibroblast growth factor; EGF, epidermal growth factor.
b, Hierarchical clustering for all RNA-seq data sets collapsing replicates using

the Jensen–Shannon (JS) divergence as a metric c, Gene expression patterns
shown as z scores for all differentially expressed genes (q value# 0.1) across ES
cells and four neural precursor differentiation stages for genes expressed
at$ 1 FPKM in at least one stage (n5 20,306). Genes were grouped into 18
clusters based on minimal average silhouette width using partitioning around
medoids (PAM) clustering and Jensen–Shannon divergence as a metric. Pie
charts below indicate the fraction of up- (red) and downregulated (green) genes
during each transition. d, Gene expression patterns shown as z scores for all
significantly differentially expressed genes (q value # 0.1) across four more
mature cell populations obtained through differentiation of NE, ERG or MRG
cells to neuronal-like cells (NE/ERG/MRGdN) and astrocyte-like cells
(LRGdA) derived from the LRG stage. Genes were grouped into 12 clusters
based on minimal average silhouette width using PAM clustering and the
Jensen–Shannon divergence as a metric.
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Extended Data Figure 2 | Epigenetic dynamics and transcription factor
footprints. This figure relates to Fig. 2 in the main text. a, Median TPR (red),
FPR (blue) and PPV (black) for n5 46 transcription factors with matching
motif for H3K27ac footprints (n5 27,292) in K562 cells as a function of
confidence in predicted binding (2log10 P value). True positives were defined
as predicted binding events overlapping with peaks determined by ChIP-seq
and false positives accordingly. The entire set of positives was defined as all
transcription factor ChIP-seq peaks for a particular factor that overlapped with

any H3K27ac footprint. b, Top, decomposition of H3K27ac dynamics into 7
distinct modules based on PLS regression. Colours indicate median epigenetic
enrichment level of gene regulatory elements assigned to each module for each
cellular state for H3K27ac. Bottom, selected gene set enrichment analysis
results for gene regulatory elements associated with each module.
c, Connectivity matrix showing the association strength of each of the factors
listed in Fig. 2b with each of the 7 modules identified by the partial least square
(PLS) regression.
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Extended Data Figure 3 | Functional validation using a pooled shRNA
screen. This figure relates to Fig. 3 in the main text. a, Detailed outline of the
pooled shRNA screen. Each stage (NE, ERG and MRG) was infected with an
optimized virus titre aiming for an average of one shRNA integration per
cell. Immediately after infection, cells were subjected to puromycin (puro)
selection and bulk population material was collected 24 h after infection and
before efficient shRNAknockdown. Five days after infection and selection, cells
were FACS-sorted for HES5–GFP and both GFP1 and GFP2 cells were
collected for analysis. Subsequently, gDNA was extracted and all integrated
shRNAs were amplified by PCR for each population separately. The resulting
material was then used to construct libraries for next-generation sequencing to
count the number of shRNA integrations for each shRNA in each cell
population. b, Overlap of genes identified to facilitate HES51 cell maintenance,
progression or proliferation determined by genes with at least two shRNAs
significantly (q# 0.05) over-represented in theHES51 populationwith respect
to the 24-h or HES52 control. c, Regulator predictions based on differential
gene expression. Performance is measured as percentage of the top 20
differentially expressed factors for each stage for those the transcription factors

included in the shRNA library. d, Regulator predictions based on TERA
ranking for H3K4me3, H3K4me1, H3K27ac or DNAme. Performance is
measured as percentage of the top 20 predicted activating or repressive motifs
for each stage mapping to a transcription factor included in the shRNA
library. e, Detailed heat map showing the top 30 predicted motifs and
corresponding transcription factors differentially active between consecutive
differentiation stages based on the combined TERA scores for H3K27ac,
H3K4me3, H3K4me1 and DNAme. In addition, knockdown results as
depletion scores (green/red heat map) obtained at each stage are shown on the
right. f, Heat map showing the pairwise Pearson correlation coefficient (PCC)
of the log2 read-count normalized shRNA libraries across all conditions and
technical replicates. g, Individual validation for shRNAs against OTX2 and
PAX6 at the NE stage, which showed no effect in our pooled screening
approach at any stage. Shown are qPCR levels for OTX2 or PAX6, HES5 and
puromycin relative to HPRT. Each gene was measured in an independent
knockdown experiment for a pool of the five shRNAs against PAX6 (blue),
OTX2 (green), lacZ (orange) as well as the uninfected control (red).
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Extended Data Figure 4 | Co-binding analysis. This figure relates to Fig. 4 in
the main text. a, Gene expression levels reported as z scores for core network
transcription factors and epigenetic modifiers with and without a known
DNA binding motif. b, Illustration of predicted significant co-binding
relationships (P# 0.01, enrichment$ 1.5) of core factors (rows) with more
stage-specific or pro-neuronal/glial factors (columns). Colour coding indicates

whether binding is stage specific or occurs at multiple stages. c, Overlap of
predicted binding sites in dynamic putative enhancer regions based on
H3K27ac for OTX2 inNE and ERG. d, Gene set enrichment analysis results for
predicted OTX2 binding sites in dynamic putative enhancer regions at the NE
and MRG stage.
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Extended Data Figure 5 | Epigenetic priming. This figure relates to Fig. 5 in
themain text. a, TERA scores forH3K27ac,H3K4me3,H3K4me1 andDNAme
for transcription factors showing evidence of priming (top, bold) and
transcription factors predicted to significantly co-occur in these primed
binding sites. b, Gene expression levels shown as z scores for primed and co-
binding transcription factors from panel a. c, Detailed predicted co-binding
relationship (P# 0.01, enrichment$ 1.5) of primed transcription factors
(columns) with significantly associated co-binding factors (rows).

d, Illustration of a potential priming event and the associated predicted target
gene at the ATOH1 locus (chromosome 4: 94,740–94,800). For each stage,
H3K27ac, H3K27me3 and DNAme patterns are shown along with predicted
NEUROD binding sites (black boxes) in putative gene regulatory elements
marked by a loss of DNAme (highlighted by the grey bars). e, Gene set
enrichment analysis results for predicted NEUROD binding sites split up by
dynamic patterns defined in the top of Fig. 5b. Binding sites in patterns 3 and 4
showed no significant enrichment.
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